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1 Introduction

The dynamics of two coincident M2 branes on the orbifold R8/Zk is described by ABJM

theory, three-dimensional U(2)k × U(2)−k supersymmetric Chern-Simons theory with bi-

fundamental matter [1]. For this particular gauge group, the ABJM theory has N = 8

superconformal symmetry and is in fact equivalent to Gustavsson-Bagger-Lambert the-

ory [2, 3]. The partition function for the theory on S3 can be computed by supersymmetric

localization [4, 5]. This theory can be deformed, preserving N = 4 supersymmetry, by

adding mass and Fayet-Iliopoulos (FI) parameters m, ζ, and the localization technique

then reduces the full supersymmetric functional integral to the matrix integral [5]

Z =
1

4

∫
d2µ

(2π)2
d2ν

(2π)2
sinh2 µ1−µ2

2 sinh2 ν1−ν2
2∏

i,j
cosh

(µi−νj+m
2

)
cosh

(µi−νj−m
2

) e ik4π ∑
i
(µ2i−ν2i )−

ik
2π
ζ
∑
i
(µi+νi)

(1.1)

where i, j = 1, 2. The parameter ζ represents a Fayet-Iliopoulos parameter for the diagonal

U(1) subgroup, whereas m corresponds to a mass for the chiral multiplets. The partition

function should be understood as a function Z(2ζ,m; k), but for ease of presentation we

will omit its arguments unless needed. For k = 1, the theory is mirror dual to N = 4 super-

symmetric super Yang-Mills theory with gauge group U(2) coupled to a single fundamental

hypermultiplet and a single adjoint hypermultiplet [5].

By shifting the integration variables, x ≡ µ − ζ, y ≡ ν + ζ, the partition function

becomes

Z =
1

4

∫
d2x

(2π)2
d2y

(2π)2
sinh2 x1−x2

2 sinh2 y1−y2
2∏

i,j
cosh

xi−yj+m1

2 cosh
xi−yj−m2

2

e
ik
4π

∑
i
(x2i−y2i )

, (1.2)

where m1, m2 are

m1 = m+ 2ζ and m2 = m− 2ζ . (1.3)

Note that ζ has dimension of mass. We are using units where the radius R of the three-

sphere is R = 1.

– 1 –



J
H
E
P
1
2
(
2
0
1
5
)
0
9
2

The purpose of this note is to explicitly carry out the integration in (1.2). In the

m = ζ = 0 case, the integral was computed in [6] (a discussion of the partition function

in the more general ABJ case can be found in [7]). On the other hand, the m, ζ-deformed

ABJM theory was studied in [8] using the Fermi-gas formulation [9] and at at large N for

the U(N)k×U(N)−k gauge group in [10] (with ζ = 0) and in [11] (with general m, ζ 6= 0),

where phase transitions in the complex parameter space generated by m1, m2 and g = 2πi/k

were investigated. Our explicit formula will uncover some interesting physical properties

of the mass-deformed system with gauge group U(2)k ×U(2)−k.

The partition function (1.2) manifests the m1 ↔ m2 symmetry or, equivalently,

ζ → −ζ. A less obvious symmetry is m2 → −m2, or [8, 11]

Z(2ζ,m; k) = Z(m, 2ζ; k) . (1.4)

For the k = 1 case, this symmetry already appeared in [5], where it was also explained by

the fact that the corresponding brane configuration is self-mirror. The symmetry implies,

in particular, that a FI-deformation ζ on the massless theory is equivalent to a mass-

deformation m = 2ζ in the theory with vanishing FI-parameter. The case m = 2ζ —

representing a fixed point of this symmetry — is special, as we shall shortly see. In the

dual N = 4 supersymmetric super Yang-Mills theory, m2 = 0 corresponds to coupling the

theory to a massless adjoint hypermultiplet.

2 Residue integration

The partition function for the m, ζ-deformed ABJM theory with U(N)k × U(N)−k gauge

group can be written in the following form [5, 11]

Z(2ζ,m; k) =
∑
ρ

(−1)ρ
1

N !

∫
dNτ

e−ikm2
∑
i τi∏

i cosh(kπτi) cosh
(
π(τi − τρ(i))− m1

2

) , (2.1)

where the sum goes over permutations. The derivation uses a trigonometric identity,

Fourier integrations and only holds for opposite Chern-Simons levels (see section 2 in [11]

for details). For N = 2, the formula (2.1) then leads to the following expression

Z =
1

2
(Z1 − Z2) , (2.2)

with

Z1 =

∫
dτ1dτ2

e−ikm2(τ1+τ2)

cosh(πkτ1) cosh(πkτ2) cosh2
(
m1
2

) , (2.3)

and

Z2 =

∫
dτ1dτ2

e−ikm2(τ1+τ2)

cosh(πkτ1) cosh(πkτ2) cosh
(
π(τ1 − τ2)− m1

2

)
cosh

(
π(τ1 − τ2) + m1

2

) ,
(2.4)

Using the identity

1

cosh2 m1
2

− 1

cosh
(
πτ − m1

2

)
cosh

(
πτ + m1

2

) =
sech2 m1

2 sinh2 πτ

cosh
(
πτ − m1

2

)
cosh

(
πτ + m1

2

) (2.5)
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and the formula for the Fourier transform [11]∫
du

e−ikm2u

cosh
(
πk
2 (u+ v)

)
cosh

(
πk
2 (u− v)

) =
4 sin(km2v)

k sinh(πkv) sinhm2
, (2.6)

we obtain

Z =
1

k2 sinh(m2) cosh2 m1
2

∫
du

sin(m2u) sinh2 πu
k

sinh(πu) cosh
(
πu
k −

m1
2

)
cosh

(
πu
k + m1

2

) . (2.7)

In the limit m2 → 0, the partition function becomes

Z
∣∣
m2=0

=
1

k2 cosh2 m1
2

∫
du

u sinh2 πu
k

sinh(πu) cosh
(
πu
k −

m1
2

)
cosh

(
πu
k + m1

2

) . (2.8)

In the following, we compute the integrals (2.7), (2.8) by residue integration.

To compute (2.7) we follow the ideas in [6], where the partition function was computed

in the case m = ζ = 0.

Thus we start by writing the integrand as the product of two even functions f, g

Z =
1

k2 sinh(m2) cosh2 m1
2

∫
duf(u)g(u) , (2.9)

with

f(u) =
sinm2u

sinhπu
, g(u) =

sinh2 πu
k

cosh
(
πu
k −

m1
2

)
cosh

(
πu
k + m1

2

) . (2.10)

Under the shift u→ u+ ik these functions transform as

f(u)→ (−)k cosh(m2k)f(u) + odd function , (2.11)

g(u)→ g(u)

These properties imply that the integral in (2.9) along the curve u = x + ik with x ∈ R
will differ from the integration along the real axis by the factor (−)k cosh(m2k). Therefore,

the rectangular contour composed by the real axis, two vertical segments and the displaced

real axis u = x+ ik becomes appropriate for residue computation in the case m2 6= 0 (see

figure 1).1

The residues encircled by the contour comprise the ones arising from the poles of f(z)

located at z = in with n = 1, . . . , k and those of g(z) located at z± = ±m1k
2π + ik2 . The

pole located at z = ik does not contribute due to a double zero in the numerator of g(z).

Calling C the closed rectangular contour described above and F(z) = f(z)g(z) one finds∮
C
dzF(z) =

(
1− (−)k cosh(m2k)

) ∫
duF(u)

= 2πi

[ k−1∑
n=1

Resz=inF(z) + Resz=z± F(z)

]
1It is easily seen that the vertical contours do not contribute when we push them to infinity.
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i

i(k − 1)

0

2i

i(k − 2)

bz

...

ik

z− z+

...

Figure 1. Rectangular contour for residue computation. The poles on the imaginary axis z = in

with n = 1, . . . , k − 1 arise from the f function, while those at z± = ±m1k
2π + ik2 follow from the g

function.

which gives∫
duF(u) =

2πi

1− (−)k cosh(m2k)

[
− i

π

k−1∑
n=1

(−)n
sin2

(
nπ
k

)
sinh(m2n)

cosh
(
m1
2 −

inπ
k

)
cosh

(
m1
2 + inπ

k

) + Rk

]
(2.12)

where

Rk =


(−)

k
2
ik
π

coth
m1
2

sinh
km2
2

sinh
km1
2

cos km1m2
2π , k even

(−)
k+1
2

ik
π

coth
m1
2

cosh
km2
2

cosh
km1
2

sin km1m2
2π , k odd

(2.13)

Case m2 = 0, k odd. It is evident from (2.12) that the m2 → 0 limit of (2.9) is smooth,

the result is

Z
∣∣
m2=0

=
1

k2 cosh2m

[ k−1∑
n=1

(−)n
n sin2

(
nπ
k

)
cosh

(
m− inπ

k

)
cosh

(
m+ inπ

k

) − (−)
k+1
2
k2m cothm

π cosh km

]
, k odd

(2.14)

where we have used m1 = 2m.

Case m2 = 0, k even. The factor multiplying the bracket in (2.12) prevents taking m2 → 0

in the even k case. To compute the integral in (2.8) we consider

I =

∫
duf̃(u)g(u) , (2.15)

with g(u) as in (2.10) and

f̃(u) =
i

k

(u− ik/2)2

sinhπu
.
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Upon integration, the odd piece in f̃ vanishes against g(u) and therefore the partition

function (2.8) can be written as

Z
∣∣
m2=0

=
1

k2 cosh2m
I (2.16)

The shift u→ u+ ik in f̃(u) gives

f̃(u)→ (−)k+1f̃(−u) .

As discussed below (2.11), this property makes the rectangular contour in figure 1 appro-

priate for computing I by residues.

For the residues analysis we should now consider the pole in f̃(z) at the origin z = 0

but a zero in g(z) eliminates it; along the same lines the residue from z = ik/2 is absent

since a zero appears for f̃ . Calling F̃(z) = f̃(z)g(z) one finds∮
C
dz F̃(z) = 2I ,

on the other hand∮
C
dz F̃(z) = 2πi

[ k−1∑
n=0

Resz=in F̃(z) + Resz=z± F̃(z)

]

= 2πi

[
i

kπ

k−1∑
n=1

(−)n
(
k

2
− n

)2 sin2
(
nπ
k

)
cosh

(
m− inπ

k

)
cosh

(
m+ inπ

k

) + R̃k

]
. (2.17)

where

R̃k = (−)
k
2

2i(mk)2

π3
coth(m) sinhmk

cosh(2mk)− 1

The n = k
2 term in the sum vanishes as expected. The final result is

Z
∣∣
m2=0

= − 1

k cosh2m
·[ k−1∑

n=1

(−)n
(
n

k
− 1

2

)2 sin2
(
nπ
k

)
cosh

(
m− inπ

k

)
cosh

(
m+ inπ

k

) + (−)
k
2

2m2k

π2
coth(m) sinhmk

cosh(2mk)−1

]
(2.18)

3 Summary of results and limits

Thus we have obtained

Z =
2

k2 sinh(m2)

1

1− (−1)k cosh(m2k)
(J1 − J2) (3.1)

where

J1 =
1

cosh2
(
m1
2

) k−1∑
n=1

(−1)n
sin2

(
nπ
k

)
sinh(m2n)

cosh
(
m1
2 −

inπ
k

)
cosh

(
m1
2 + inπ

k

) (3.2)

– 5 –
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and

J2 =


(−)

k
2

2k sinh
km2
2

sinh(m1) sinh
km1
2

cos km1m2
2π , k even

(−)
k+1
2

2k cosh
km2
2

sinh(m1) cosh
km1
2

sin km1m2
2π , k odd

(3.3)

Using
2

1 + coshα
=

1

cosh2
(
α
2

) , 2

1− coshα
= − 1

sinh2
(
α
2

) , (3.4)

we can finally put the partition function in the form

Z
∣∣
k even

= − 1

k2 sinh(m2) sinh2
(
km2
2

) (J1 − J2) (3.5)

Z
∣∣
k odd

=
1

k2 sinh(m2) cosh2
(
km2
2

) (J1 − J2) (3.6)

In the formulas (3.5)–(3.6), the symmetry m1 ↔ m2 — which is manifest in the integral

form (1.2) — is hidden. Interestingly, this symmetry is only recovered upon summation

over n. On the other hand, the symmetry m2 → −m2 is manifest.

Note that Z is real. While this is expected in a unitary theory, it is not generally the

case in Chern-Simons theories (for a discussion, see [12]). In the present case, it is related

to the fact the theory is a combination of two Chern-Simons theory with opposite levels.2

Consider, as particular examples, the important cases k = 1, 2. The partition functions

take the form

Z
∣∣
k=1

=
2

sinh(m1) sinh(m2) cosh
(
m1
2

)
cosh

(
m2
2

) sin

(
m1m2

2π

)
, (3.7)

Z
∣∣
k=2

=
2

sinh2(m1) sinh2(m2)
sin2

(
m1m2

2π

)
. (3.8)

Now the symmetry m1 ↔ m2 has become manifest.

Note that the partition functions for k = 1, 2 have zeros. Restoring the R dependence,

the zeros are located at

m1m2R
2 = 2π2n , n = ±1,±2, . . . (3.9)

They represent Lee-Yang zeros (see, for example, [13]). In the infinite volume, R→∞,

the zeros condense in a certain line, and a phase transition should emerge. The fact that

the partition function has zeros seems to be related to the fact that the coupling, g = 2πi/k,

is imaginary for real k. Indeed, from the general expressions (3.2)–(3.3) we see that the

arguments of the sine and cosine functions in (3.7), (3.8) contain a factor π/k. If the

coupling g is (unphysically) continued to the real line by taking k → ik, the partition

function zeros would then lie on the imaginary g-axis, in accordance with the Lee-Yang

theorem (see [11] for a related discussion).

For the undeformed ABJM theory, the k = 1 case is of special interest, since it is

conjectured to describe the dynamics of two M2 branes in eleven-dimensional Minkowski

2We thank Miguel Tierz for comments on this point.
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spacetime. An interesting question is what is the origin of these Lee-Yang singularities in

the brane realization.

The partition function Z(2ζ,m; k) does not have any zeros for k > 2. For higher values

of k, the partition function becomes more involved, below we quote explicitly the k = 3

and k = 4 cases

Z
∣∣
k=3

=
2

3

2− sin
(
3m1m2

2π

)
csch

(
m1
2

)
csch

(
m2
2

)
(coshm1 + cosh 2m1)(coshm2 + cosh 2m2)

(3.10)

Z
∣∣
k=4

=
1− sech(m1)− sech(m2) + cos

(
2m1m2

π

)
sech(m2) sech(m1)

8 sinh2m1 sinh2m2

(3.11)

Note that the symmetry under the exchange m1 ↔ m2 is manifest.

Asymptotic formulas. Let us consider the limit of a large sphere, mR� 1, at fixed k.

Assuming m1 > 0, m2 > 0 and restoring the R dependence, we find

Z
∣∣
k=1
∼ 32 e−

3
2
(m1+m2)R sin

(
m1m2R

2

2π

)
, (3.12)

Z
∣∣
k=2
∼ 32 e−2(m1+m2)R sin2

(
m1m2R

2

2π

)
, (3.13)

Z
∣∣
k>2
∼ 64

k2
e−2(m1+m2)R sin2

(
π

k

)
. (3.14)

The general asymptotic formula with arbitrary sign for m2 and m2 6= 0, is obtained by

replacing m2 by |m2|.
The absolute value implies a discontinuity in the first derivative of F = − lnZ. This

indicates a first-order phase transition in the parameter m2 at m2 = 0, i.e., when the two

mass scales m, 2ζ cross. Explicitly, at large R, we have

F = 2
(
|m1|+ |m2|

)
R+O(1) , k > 1 . (3.15)

Hence
d∆F

dm2

∣∣∣∣
m2=0

= 4R , ∆F ≡ Fm2>0 − Fm2<0 . (3.16)

For k = 1 the discontinuity in the first derivative of ∆F is equal to 3R, as can be seen

from (3.12).

For the general theory with gauge group U(N)k ×U(N)−k, large N phase transitions

in the complex parameter Ng = 2πiN/k were studied in [10, 11]. These phase transi-

tions require taking infinite volume and, at the same time, a strong coupling limit with

fixed kR — a limit that already appeared in the context of supersymmetric U(N) Chern-

Simons theory with massive fundamental matter in [14, 15]. It should be noted that such

decompactification limit is different from the present (more physical) limit of large R at

fixed k.

Another interesting aspect of (3.14) is that it is in a form suitable for a weak coupling

expansion in powers of 1/k:

Z
∣∣
k>2
∼ −32

k2
e−2(m1+m2)R

∞∑
n=1

(−1)n

(2n)!

(
2π

k

)2n
. (3.17)
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The perturbative expansion has an infinite radius of convergence. However, the original

theory on the three-sphere of finite radius R has an asymptotic perturbative expansion,

with 2n! asymptotic behavior for the 1/k2n term. This can be seen by using the integral

form (2.7) and generalizing the study of [16, 17] on the resurgence properties of the per-

turbation series of ABJM theory. Now, expanding the integrand in (2.7), one finds a series

with finite radius of convergence determined by the poles of sech(πu/k ± m1/2) in the

complex u-plane. The integral over u then adds an extra (2n)!, leading to an asymptotic

(but Borel summable) perturbation series.

4 The special case m2 = 0

The m2 = 0 case is special and must be considered separately. In particular, it represents

the critical point in the phase transitions that arise in the decompactification limit. In

section 2 we have obtained the following formulas:

Odd k:

Z
∣∣
m2=0

=
1

k2 cosh2m

k−1∑
n=1

(−)n
n sin2 πn

k

cosh
(
m+ iπn

k

)
cosh

(
m− iπn

k

) +
(−)

k−1
2 2m

π cosh(km) sinh(2m)
.

(4.1)

Even k:

Z
∣∣
m2=0

=
1

k cosh2m

k−1∑
n=1

(−)n+1

(
n

k
− 1

2

)2 sin2
(
nπ
k

)
cosh

(
m− inπ

k

)
cosh

(
m+ inπ

k

)
+ (−)

k
2
+1 4m2

π2
sinhmk

sinh(2m)
(

cosh(2mk)− 1
) (4.2)

In particular,

Z
∣∣
k=1

=
2m

π cosh(m) sinh(2m)
,

Z
∣∣
k=2

=
2m2

π2 sinh2(2m)
. (4.3)

Note that the partition function does not have zeros in this case.

Asymptotic formulas m2 = 0. Consider again the limit of a large sphere, mR � 1,

at fixed k, but now with m2 = 0. We find

Z
∣∣
k=1
∼ 8mR

π
e−3mR, (4.4)

Z
∣∣
k=2
∼ 8

π2
m2R2 e−4mR, (4.5)

Z
∣∣
k>2
∼ 4

k2
e−4mR tan2 π

k
. (4.6)
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Note that these formulas differ from the asymptotic formulas (3.12)–(3.14) given above

for Z(m1,m2) at m2 = 0. This is expected, since the latter were obtained by assuming

|m1R|, |m2R| → ∞.

Unlike the m2 6= 0 case, the perturbation series for this flat-theory limit has now finite

radius of convergence |π/k| < π/2, therefore perturbation series is convergent for all k > 2,

where the formula applies. On the other hand, just like the general m2 6= 0 case, the theory

on a finite-radius S3 has an asymptotic perturbation series with 2n! asymptotic behavior.

Finally, it would be interesting to study supersymmetric Wilson loops in the present

mass/FI deformed theory, along the lines of [18].
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