
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 163.10.1.243

This content was downloaded on 10/09/2015 at 14:06

Please note that terms and conditions apply.

About the validity of complex mass scheme for the Δ resonance and higher energy region

approaches

View the table of contents for this issue, or go to the journal homepage for more

2015 J. Phys. G: Nucl. Part. Phys. 42 105104

(http://iopscience.iop.org/0954-3899/42/10/105104)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/0954-3899/42/10
http://iopscience.iop.org/0954-3899
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


About the validity of complex mass scheme
for the Δ resonance and higher energy
region approaches

C Barbero1,2 and A Mariano1,2

1 Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La
Plata, C.C. 67, 1900 La Plata, Argentina
2 Instituto de Física La Plata, CONICET, 1900 La Plata, Argentina

E-mail: barbero@fisica.unlp.edu.ar

Received 5 March 2015, revised 24 July 2015
Accepted for publication 30 July 2015
Published 9 September 2015

Abstract
It is a well known fact that when a resonance (R) is produced and decays, its
unperturbed propagator will be singular at p m2

R
2= when it appears in an

s-type Feynman pole graph. Nevertheless this is not a problem, since it must
be dressed by the successive re-interactions of the resonance with itself to all
orders through the non-pole T-matrix, which we include in this work for the
self-energy one-loop pion–nucleon contributions. Recently, we have shown
that within the one-loop approximation for the absorptive part it is possible to
justify the use of the complex-mass description m m i 2 - G over the
unperturbed propagator, adopted in previous calculations to treat pion–nucleon
elastic and radiative scattering, and photo and weak pion production in the
resonance region. Here we discuss the limits of the validity of this approx-
imation, since in actual calculations we must go over this range. We show that,
when the resonance energy is increased above p 1400 MeV2 ~ , this
approach becomes invalid and an alternative approximation should be con-
sidered. In addition, we discuss the usual energy dependent width approx-
imation, present in several actual isobar models used to analyze the last
neutrino scattering experiments, and show that also it could be unappropriate.

Keywords: delta resonance, dressed propagator, complex mass scheme

1. Introduction

Several reactions on free nucleons involving leptonic and hadronic probes excite the Δ

(1232MeV) hadronic resonance as an intermediate state. This resonance, being the first
excited on the nucleon, is the dominant degree of freedom in the pion (π)-production
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processes at invariant-masses of π-nucleon (N) Δ decaying pairs in the resonance region
(m m,- G + G) until ∼1.4 GeV. A consistent model for including the Δ was successfully
used for describing elastic and radiative Np scattering [1], π-photoproduction off nucleons [2]
and the single π-production in charged and neutral current neutrino (ν)-N scattering reactions
[3], in that region. Also, several parameters of this resonance such as its mass m, the Np D
coupling constant g, the width Γ, the magnetic dipole moment μ, the magnetic G Q 0M

2( )=
and electric G Q 0E

2( )= form factors and the axial coupling constant C5
V, were adjusted

consistently and with reasonable precision within this model. When we go over the before
mentioned energy range we must analyze both the validity of the model used to treat the Δ

and the effect of more energetic resonances appearing, many of them also with spin 3 2. As
an example, we consider here the Np scattering process. The idea is not to discuss in detail
the physics at energies above the 1232( )D resonance for this process, but only to analyze the
behavior of the Δ propagator at higher energies. We will try to find a well-behaved isobar
model to include theΔ resonance in that region without modifying the low energy description
in order to use with confidence the already adjusted parameters. It is interesting to mention
here that this will be useful for other reactions including theΔ, like neutrino scattering, where
a not detailed analysis of the approaches used to include the resonance has been performed
and extracted parameters are considered reliable. In addition, it is important to know the high
energy behavior of the Δ contribution to introduce later more energetic resonances which
could to hide unappropriate aspects of the model used to include them.

The paper is organized as follows: in section 2 we present different approximations for
the Δ propagator; in section 3 we present and discuss the effect of these approximations on
the Np cross section; section 4 exhibits our final conclusions.

2. The Δ resonance propagator

Any amplitude describing the production and decay of resonances, containing resonant and
background contributions, should fulfil covariance, unitarity and satisfy gauge invariance in
the presence of electromagnetic interactions. The first requirement is fulfilled since we build
the amplitudes from effective covariant chiral Lagrangians. The second one comes from the
property SS I† = for the S-matrix which in time leads to the requirement for the amplitude

i i i X X i2 Im d , 1
X

X
LIPS[ ( )] ( ) ( ) ( )†  òå = P  

where

P p P
p

f E pd 2
d

2
, 2X

i j X j X
j

jLIPS
4 4

final in

3

3 ( )( ) ( )( )
( )

( )åp d
p

P = - = P

with f E pj E p
1

2 j
( ( ))

( )
= for bosons and f E pj

m

E p
j

j
( ( ))

( )
= for fermions, with i being a two

particle initial state and X, with j 1, 2,=  particles, all possible final states. It is important
to mention that (1) must be fulfilled ‘order by order’ in a perturbative scheme. Finally, the
electromagnetic gauge invariance in processes involving the gD D vertex [4] and all other
contributions coming from attaching a photon by minimal coupling to each particle line and
vertex in the amplitude, is guaranteed when the Ward–Takahashi identity between the Δ

radiative vertex G g
mn
D D and propagator G p2( )mn

i p p G p G p , 31 1( ) ( ) ( ) ( )¢ - G = ¢ -a g
mna mn mn
D D

- -
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is fulfilled, where G p G p g1 ( ) ( ) =ma
an n

m- , and G gD D is obtained from the minimal replacement
in the kinetic Δ Lagrangian (see [4]).

The unperturbed Δ propagator

G
p m

p m
g

m
p p
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p p

p m

m
p p p m

1
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1
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m n m n m n

satisfies the identity (3), but being singular at p m2 2= it should be dressed by the inclusion
of a self-energy (Σ) [2] giving to it a width corresponding to an unstable particle. This self-
energy (where usually only Born interaction terms are considered) could include the lowest
order Np one-loop contribution (figure 1(a)) as well as other higher order Np irreducible
scattering non-pole (NP) terms (figures 1(b)) and (c) consistent with the Np scattering
amplitude [1]. The dressed propagator can be then obtained by solving the Schwinger–Dyson
equation

G p G p G p p G p , 50 0( ) ( ) ( ) ( ) ( ) ( )= - S ¢ ¢
¢mn mn mn

n m
m n¢

or equivalently for the inverse propagators

G p G p p . 61
0

1( )( ) ( ) ( ) ( ) ( )= - Smn mn mn- -

This propagator, including one-loop self-energy contributions (figure 1(a)), has been
deduced in [5] together with a discussion about some approximated forms and reads

Figure 1. Contribution of the Np one bubble to the Δ self-energy (1 a)). One meson
exchange, and cross-N and Δ contributions (1 b) and 1 c) graphs respectively) to the Δ
self-energy.
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and the effective mass is given by

m
m J

J1
. 91

2
˜ ( )º

+
-

The coefficients Ji are functions of p2 and the S 1 2= , 3 2 spin projectors ij
S are defined

in [5]. It is important to note that this expression is valid for complex Ji, that is, when the real
and the absorptive contributions of the self energy are considered. Here we mention that:

1) It is well known that the real contributions to the loop are divergent and require a
renormalization procedure, including counterterms proportional to each one of the ij

S pro-
jectors. This is by no means a trivial task and is out of the scope of this article. In place of this,
we have used dispersion relations to estimate these real contributions, as described below.
The dressed mass m in equations (7)–(9) should satisfy the renormalization condition
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m m J p p J pRe 0, 10
p m

0 1
2 2

2
2

2 2
( ) ( ) ( )⎡⎣ ⎤⎦- + + =

=

with m0 being the bare Δ mass. Instead of solving this equation to find m, we have adjusted m
by fitting to the experimental Np cross section [8].

2) Firstly, we have only considered the absorptive contribution to the one-loop self-
energy in the rest of the propagator. For this, all the Ji in equations (7)–(9) are taken as pure
imaginary and their expressions are given in [5].

The dressed propagator within this approach will be named ’EXACT’ in the rest of the
paper. It is important to mention that at this stage the treatment we give to the real part of the
self-energy is similar to that achieved in [9], where the self-energy is taken as its on shell
value and the propagator is reduced to the 3 2 sector, as well as in [10], where the 3 2 part of
the propagator is included within a chiral perturbation framework. Also, we mention [11]
where a many-body approach to the Δ self-energy is developed within a nuclear matter
framework. There, the energy dependence of the real part is considered except for the nuclear
matter propagator and not for the free one, with the zero density contributions subtracted since
the authors assume a Δ renormalized propagator in free space with its physical mass.

Another important point to mention here is with regard to to gauge invariance. Since G0,
which corresponds to 0S º in (6), satisfies the Ward identity (3) it is clear that the exact
dressed propagator (7) does not. To render again electromagnetic gauge invariance we must to
add vertex corrections representing the coupling of the photon in ‘all’ ways to the self-energy
contribution depicted in graph 1 a), a very lengthly calculation in our case. This procedure has
been developed in [10, 12] (and references therein) for the propagator in the 3 2 sector within
a chiral perturbation framework. Nevertheless, as we will see, it is possible to simplify this
situation (as done for other unstable particles [6]) around the resonance region to get a gauge
invariant amplitude in the presence of finite width effects.

Neglecting terms of O g4( ) and of O m p g2 2(( ) )- which are expected to be very small

in the resonance region ( p m2 » ) in equations (7), (8) and (9), one gets [5]
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Figure 2. Dressing of NpD  . In the NP box we must to include one meson
exchange, and cross-nucleon andΔ rescattering contributions as in figures 1(b) and (c).
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and where the energy-dependent NpD  decay width is defined as:

s
g s m m

s
s m m

4 48
, , , 13
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2 2 2

5 2
3 2 2 2( )( )

( ) ( )
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+ - p
p

with x y z x y z xy xz yz, , 2 2 22 2 2( )l = + + - - - . For the sake of completeness, we
mention that up to this moment we have considered only the dressing of the Δ propagator.
Nevertheless, analyzing the formal scattering T-matrix calculations [2], one can realize that
the NpD  vertex should be also dressed by NP Np rescattering terms like those that built
figures 1(b) and (c) and as shown schematically in figure 2. This of course generates a
dependence on s in the vertex, or equivalently an effective coupling constant g(s), due to the
intermediate Np propagator in the second graph of figure 2.

Now, we consider the formal limit of massless N and π in the loop contribution to m̃ [6]
and in the dressed Np D vertex. We assume within this formal limit that the dressing gives a

dependence g s
g

s
( ) ˜

= , with adimensional g ag0˜ º , with g0 being the bare Np D coupling

constant and a a constant to fit since we are avoiding the direct calculation of the momentum
integral present in the vertex correction. Thus, we derive from (13) the following approxi-
mated expression for the effective mass

m m i
2

, 14˜ ( )-
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192
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In the s m2» region we have a constant witdth CMSG » GD D , where now CMSG will be fitted in
place of a. This is the so-called complex-mass scheme (CMS) [4]. Within this prescription we
can rewrite finally the propagator (using the expressions for the projectors) as
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which consists in replacing m m i 2CMS - G in the unperturbed G0 one. As a result, the
transition amplitude has a pole located at the complex-mass position and is no longer singular.
In addition, the CMS propagator G G m m i 20

CMS( )=  - G satisfies the Ward identity (3)
like G0 before, assuring the gauge invariance of the radiative amplitude. As previously
mentioned, we have successfully used the CMS prescription to introduce the finite width of
theΔ for describing elastic and radiative Np scattering [1], π-photoproduction [2] and weakly
charged and neutral current Nn scattering production [3], determining several parameters of
the Δ resonance within a consistent model built with a resonant amplitude plus the tree-level
nonresonant background.

Now, we are interested in processes of π-production in ν-nucleus (A) scattering where
the invariant mass of the final Np pair is around 1700MeV for the peak of the neutrino flux
energy distribution [7, 8], and higher than this value for the MinerνA experiment [13]. This
encourages us to analyze the behavior of the CMS approximation for higher energies,
comparing its predictions with those obtained with the calculation based on the EXACT
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propagator previously presented. Advancing our results, we will see that the CMS approx-
imation diverges from the data when we go above the Δ region. Otherwise, the EXACT
propagator given in equation (7) without approximations but with g g0 in m̃, reproduces
poorly the low energy data when the values of g0 and m fitted with the CMS are used, but
behaves properly at high energies. The idea will be then to develop an intermediate
approximation that coincides with the CMS at low energies with a better behavior when the

Np invariant mass grows. This will be called the ‘EXCMS’ dressed propagator and corre-
sponds to the exact expression (7), but with the assumptions (14) and (15) for the effective
mass. For completeness, in the next section we also estimate the effects of JRe i( ),
i 1, , 7=  , by using the dispersive relations (PV denotes the principal value)

J p p
J s s

s p
sRe

1
PV

Im
d . 17i

m m

i2 2
2

N
2

( ) ( )
[ ]( )

( )
( )

⎡⎣ ⎤⎦
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟òp

=
-+

¥

p

Finally, we mention another approach used in several reports [14–16]. That is to use the
expression (16) for the propagator with m̃ not in every place but only in the singular
denominator (this causes a violation of (3) still with a constant width) and with an energy
dependent width (EDEPW) obtained from (13) leading to the approximation

s m m s m s m m

m s s m s m s m4 4

N N N N

N N N

2 2

2 )
( ) [( )

( )

+ - = -

+ - + + »
p

p

valid only in the Δ region. In addition, some of those studies confuse the first line in
equation (16) with 3 2 , really it is p m3 2

2 2( ) = , and drop the second line, taking
p m m2 2 2˜= = . We call this approach EDEPON (energy dependent on-shell). Finally, the
question about the unitarity of the several approximations also will be addressed below.

3. Results and discussion

To compare the behavior of the different models we choose the simplest reaction involving
the excitation of the Δ, that is the pp+ scattering up to energies T p m2 900lab

2= +p p p 
MeV ( s 1700N =p MeV) covering also the energy range of the final Np pair but now for
weak π production reactions at E 1 GeV~n . Our model will include the Born amplitudes
shown in figure 3 built by a resonant (R) pole term (first graph) plus a background (B) with
NP contributions (second to fourth graphs).

It is very important to mention that in the R contribution, higher order terms will be
generated through the use of the perturbed propagator, but the B one will be kept at tree level.
Then, this model is far from one devoted to fixing scattering phase-shifts with good precision.
Nevertheless, these kind of isobar models are actually adopted for describing elementary

Figure 3. Born amplitude for Np scattering.
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amplitudes in Nn scattering [3, 15, 16] and it will be crucial to analyze the behavior at the
required energies.

In the upper panel of figure 4 we show the calculation of the total cross section ( Ts ) for
the different versions of the Δ propagator presented previously. We have used m = 1211.20
MeV, 88.16G = MeV, g 14.460 = GeV−1( f 4 0.317N p =p D ) obtained from fits to data [1]
in the resonance region, working within the CMS approach. The parameters for the B con-
tributions are also described in [1]. We show the behavior of the total cross section for the
CMS, EXCMS, and EXACT approaches for the Δ propagator in R, always with the same B
and using the same CMS fitted parameters. We observe that the CMS describes the data well
up to T 300lab ~p MeV ( s 1400N p MeV) over this region. This divergency originates
since, to arrive to equation (16) from equation (7), we have used the approximation p m2 2

Figure 4. Total cross section of pp+ scattering for different versions of the propagator.
Upper panel CMS, EXCMS and EXACT with the same CMS fitted parameters and the
EXACT with the new fitted parameters. Lower panel EXACT, EDEPW and EDEPON
with the same new fitted parameters. Data is taken from the database at the Center of
Nuclear Studies, Department of Physics, George Washington University.
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which both affects the coefficients of the 1 2 propagator contributions and the energy
dependence of m̃, which is no longer valid when we go far away from the resonance peak. In
fact, if we observe the behavior of Ts evaluated within the EXCMS scheme, in which the
approximation p m2 2 was used only to get (14) and where (15) is used, it coincides with
the CMS in this energy region and shows an improvement in the behavior at energies above
the peak until T 900lab = MeV. Finally, using the EXACT propagator (equations (7) and (9))
with the same parameters as the CMS and EXCMS, we see that the data are not well
described in the resonance region with the Δ peak slightly shifted, and coincide with the
EXCMS above this region. Thus, we should hope that including together the rescattering
effects on B (remember that we are making a tree label treatment here) and the real part of the
self-energy, which mainly affects the high energy behavior, will improve the description of
the data. To get an estimate of the real part effects we have included the results obtained
within the EXCMS approach using equation (17) to evaluate the real part of the Ji,
i 1, , 7=  . The curve is shown in figure 4 as EXCMS (real self-energy). As can be seen,
one gets a small improvement, indicating that the rescattering effects on B and the inter-
ference with the resonance could be important. This additional improvement is by no means
trivial to achieve and we feel that it is not crucial at the moment for making a comparison with
the other approaches EDEPW and EDEPON used mostly in the literature, mainly because
they do not include the effects mentioned above.

From this, we conclude that the overvaluation of the data over the resonance region could
be attributed to the tree label treatment of the B amplitude. Now in the EXACT calculation,
the width is not a parameter to adjust and the real effective mass should not be the same, since
we are using (9) and not (15), with g g0= without including vertex corrections as explained
before. If we try to make a fit with the EXACT propagator we get m = 1235.48 MeV,
g = 15.32 GeV−1( f 4 0.366N p =p D ) and g 4 0.329p =s for m 650 MeV=s (the most
unknown meson in the model) where again, as was seen before [1], the sensitivity to ms was
analyzed. As can be seen, the new fit improves the description, but still the calculation with
EXCMS is closer to the data. In the lower panel of figure 4 we compare the EXACT
calculation with the above mentioned EDEPW and EDEPON approaches, this last one
assumed by other authors [15]. We use the new fitted parameters with the EXACT propa-
gator, which are very close to that assumed in the aforementioned work. As can be seen, this
EDEPW approach, in spite of being close to the EXACT in the resonance region, diverges for
higher energies due to the same reasons as before, the approximations in the 1 2 sector
coefficients. The EDEPON description is the worst, since the cutting done in equation (16)
through out both, contributions from the 3 2 and 1 2 sector that are important in the peak
region and in the determination of the R-B interference. More sensitivity to the data is
presented in the calculation of the differential cross section. In figure 5 we show it for
different precise T labp energies and for several approaches. We can see again that within our
rudimentary model for the B amplitude (which does not include rescattering) the best
description is within the EXCMS approach. Also, for higher energies both the EXACT and
the EXCMS depart from the data but are much closer than the other approaches.

On the other hand, it is supposed that a better description of the data corresponds with the
better fulfilling of unitarity in the amplitude. Now, we wish to discuss the EXACT, EXCMS,
EDEPW and EDEPON approaches from the point of view of unitarity (for the CMS this was
discussed before in [1]). It is understandable that if we only consider the pole-Δ amplitude
(left graph in figure 3) together with the EXACT propagator (7), equation (1) with X Np= is
satisfied order by order in the strong Np D interaction, since the imaginary part of any
intermediate loop (see figure 1(a)) of an n-order amplitude gives the same contribution as

2∣ ∣ on the right side for an n/2-order amplitude. This will not be true for the other
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mentioned approaches since they are obtained using approximations on (7). Nevertheless, as
we have included an energy dependent g in the EXCMS case, indicating that vertex cor-
rections produced by the B contributions are also present, then the simple way to corroborate
unitarity in the EXACT case is no longer valid. It would be more appropriate to analyze the
unitarity of the full (R+B) amplitude. It is clear that the B amplitude is not unitary since
equation (1) is not fulfilled, with this amplitude being real at tree label and certain unitarity
violation will occur for the R+B amplitude. In figure 6 we show with thin lines the calcu-
lation for Ts using the imaginary part on the left-hand side of equation (1) and with thick lines
the right-hand one. As we can see, unitarity is not fulfilled in any of the approximations, but

Figure 5. Comparison of the pp+ differential cross section calculated with the different
approaches for the indicated T labp energies.
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the closest results between both sides of equation (1) are obtained within the EXCMS case.
Within the EXACT approach in spite of having unitarity of the R amplitude the R+B is not
unitary since we do not consider vertex corrections and also due to the real character of the B
amplitude. The lack of unitarity for EDEPW is worse with the maximum violation seen
within the EDEPON approach.

Finally, it is important to make a comment regarding the cross-Δ contribution (third
graph in figure 3). As mentioned previously, the growth of the cross section for the CMS,
EDEPW and EDEPON approaches is due to the approximations achieved for the coefficients
of the 1 2-sector in equation (7). Then, it is possible to think that a good approach would be
to directly remove the spin 1 2 part of the propagator. As for the cross-Δ contribution is
p m2 2< and the self-energy one-loop contribution is zero (see [5]) this amplitude is cal-
culated with the unperturbed (4) propagator equivalent to (7) with 0S = . Now, the projectors
in (7) have p2 denominators [5] that could be zero (generating singularities) for the mentioned
cross-Δ graph, and without a delicate balancing between the 3 2 and 1 2 contributions the
non-singular (4) form will not be reached. If we remove the 1 2 sector then (7) transforms
into

G p
m p

m p
,

2 2
3 2( )( )

˜
˜

=
+
-

mn mn

which can be singular when p 02 = [17]. Then it is not possible to remove the 1 2 sector.

4. Final remarks

In summary, we have discussed here the limits of validity of the CMS approximation, already
used to fit several 1232 MeV(D ) parameters from data in the resonance region. It is shown
that due to the approximations assumed in the EXACT propagator to get the approximated
CMS one, this can be applied with confidence around the resonance region. In order to choose
the best model for energies over this limit, we have performed an analysis of the Np

Figure 6. Comparison of the pp+ total cross section calculated using the right-hand side
of equation (1) (tick lines) with those calculated with the left-hand one (thin lines)
indicated with the legend ‘Im’. We analyze the EXACT, EXCMS, EDEPW, and
EDEPON approximations with the same NR background.
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scattering cross section with different approaches for the Δ propagator, some of them already
used in the literature, but perhaps not well analyzed in this range. We have analyzed the
unitarity condition in each case, and we have found the so called EXCMS results to be the
most adequate. Also we have estimated the effect of considering the energy dependence of the
real part of the coefficients of the self-energy within this approach, which improves the result
but not enough to avoid discrepancies with data. Although it is not possible fulfil gauge
invariance within the EXCMS without introducing vertex corrections, it is useful since the
coincidence of it with the CMS in the resonance region enables us to combine the same
parameters obtained before with the CMS (where gauge invariance is fulfilled) and a good
behavior at higher energies. Although the unitarity is not fulfilled due to the real background
amplitude, the violation seems to be small enough to use the EXCMS approach in other
reactions at the same energies. Especially in weak pion production, where in place of having
two strong vertices we combine a weak and a strong one, this indicates that departure from
data will be smaller. A detailed inclusion of rescattering effects in the background amplitude
will be analyzed in a future contribution.
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