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This paper reviews the shear rheology of suspensions of microscopic particles. The nature of interparticle
forces determines the microstructure, and hence the deformation and flow behavior of suspensions. Conse-
quently, suspensions were classified according to the resulting microstructure: hard-spheres, stabilized, or
aggregated particles. This study begins with the most simple case: flowing suspensions of inert, rigid, mono-
modal spherical particles (called hard-spheres), at low shear rates. Even for inert particles, we reviewed the
effect of several factors that produce deviations from this ideal case, namely: shear rate, particle shape, par-
ticle size distribution, and particle deformability. Then we moved to suspensions of colloidal particles, where
interparticle forces play a significant role. First we studied the case of dispersed or stabilized suspensions
(colloidal dispersions), where long range repulsive forces keep particles separated, leading to a crystalline
order. Second we studied the more common case of aggregated or flocculated suspensions, where net attrac-
tive forces lead to the formation of fractal clusters. Above the gelation concentration (which depends on the
magnitude of the attractive forces), clusters are interconnected into a network, forming a gel. We differentiate
between weak and strong aggregation, which may lead to weak or strong gels, respectively. Finally, we
reviewed the case of filler/matrix composite suspensions or gels, where rigid or viscoelastic particles (fillers)
are dispersed in a continuous viscoelastic material (matrix), usually a gel. For each type of suspension, predic-
tive curves of fundamental rheological properties (viscosity, yield stress, elastic and complex moduli) vs. par-
ticle volume fraction and shear rate were obtained from theoretical or empirical models and sound
experimental data, covering ranges of practical interest.

© 2012 Elsevier B.V. All rights reserved.
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Fig. 1. Schematic representation of a) isolated hard-spheres, b) caged and packed
monodisperse spheres at random close packing (RCP), and face centered cubic array
(FCC), c) isolated repelling particles (dashed line represents the range of the repulsive
potential), d) caged repelling particles, e) isolated fractal clusters of aggregated parti-
cles (dashed line represents the smallest enclosing sphere), f) network of fractal clus-
ters, g) filler (spheres)–matrix (dashed background) composite, f) Van der Poel–Smith
model (particulate background represents the homogeneous composite).
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1. Introduction

The words dispersion and suspension have often been used indis-
criminately to describe a biphasic system where a solid phase is dis-
persed in a continuous fluid or, in other words, particles suspended
in a fluid. The expression dispersed phase suggests that particles are
kept apart from each other due to the action of either shear forces,
or repulsive (or dispersive) interparticle forces. However, this is not
always the case. In quiescent conditions, and when attractive forces
dominate, particles tend to be aggregated or flocculated, instead of
dispersed. Consequently, we will use the general term suspension,
considering a dispersion to be the particular case of a dispersed (or
stabilized) suspension. For the same reason, we will not refer to the
particles as the dispersed phase, but the discrete phase. Then, we de-
fine a suspension as a biphasic system, where a continuous and a dis-
crete phase coexist in a given volume. The particles are the elemental
units constituting the discrete phase. Even in the case of particles
forming a continuous network, we may refer to it as a discrete
phase because its basic units are discrete particles.

In this work, we will study the rheology ofmicroscopic suspensions,
with particles ranging in the order of 10−3 to 102 μm, suspended in a
solvent represented as a continuum fluid. Why this size range? Sus-
pensions with particles smaller than the order of 10−3 μm are called
sub-nanometer-size suspensions. In this case, when the particle size
has atomic dimensions, the system consists of a molecular or ionic
dispersion, although strictly speaking it is a one-phase (not a biphas-
ic) system [1], and the continuum approximation of the solvent be-
comes questionable [2]. On the other extreme, it is very difficult
(often not possible) to obtain fundamental rheological properties (in-
dependent of sample's size and shape, and measuring system) of sus-
pensions with particles >102 μm.

First, we'll study suspensions where the continuous phase is a vis-
cous fluid (or liquid), and the discrete phase is either solid (particles),
or liquid (droplets). The latter liquid–liquid suspensions are called
emulsions. In the particular case of hardly deformable microscopic
droplets, they behave very much like solid particles. As a result, rheo-
logical models given for solid–liquid suspensions are applicable to this
type of emulsions [3]; otherwise the effect of particle deformability
shall be considered, as explained in Section 2.4. The type of dominant
particle interactions determines the microstructure of the discrete
phase, and hence the flow behavior of the suspension. According to
this, suspensions may be classified as:

1. Hard-sphere suspensions: no interparticle forces other than infinite
repulsion at contact. These rigid, inert, spherical particles are called
hard-spheres (Fig. 1a–b).

2. Dispersed or stabilized suspensions (dispersions): net repulsive
forces keep particles separated (Fig. 1c–d).

3. Aggregated suspensions: net attractive forces produce particle ag-
gregation (Fig. 1e). Above the gelation concentration, aggregates
interconnect into a network, forming a gel (Fig. 1f). They may be
classified as:
a. Weakly aggregated suspensions: aggregation is weak and reversible

(flocculation). Gels are weak.
b. Strongly aggregated suspensions — colloidal gels: aggregation is

strong and irreversible (coagulation). It may lead to strong
(real) gels at low particle concentrations.

Finally, we will study filler–matrix composite (or filled) suspensions
or gels, where the continuous phase is a viscoelastic material (usually
a gel), called matrix, and the discrete phase is constituted by visco-
elastic particles or droplets, called fillers (Fig. 1g–h).

Three kinds of forces coexist to various degrees in flowing suspen-
sions: hydrodynamic, Brownian, and colloidal forces [2]. Hydrody-
namic (or viscous) forces exist in all flowing suspensions and arise
from the relative motion of particles to the surrounding fluid. The
Brownian force is the ever-present thermal randomizing force.
Colloidal forces are potential forces and are elastic in nature [4,5].
The relativemagnitude of these forces and, therefore, the bulk rheology
depend on the particle size (d). Brownian motion and interparticle
forces quickly equilibrate for sub-nanometer-size suspensions, while
hydrodynamic forces dominate for particles larger than ~10 μm. For
particles in the intermediate range (10−3 μmbdb101 μm) the flow be-
havior is determined by a combination of hydrodynamic forces, Brow-
nian motion, and interparticle forces [5,6].

The viscosity of flowing suspensions depends on the shear rate,
and the characteristics of the continuous phase and the discrete
phase. In general, the viscosity of the suspension (η) is directly pro-
portional to the viscosity of the continuous phase, or liquid's viscosity
(ηL), which might be Newtonian or non-Newtonian. Then, most



Fig. 2. Relative viscosity vs. particle volume fraction predicted by Einstein's equation
for dilute hard-sphere suspensions (Eq. (2) with [η]=2.5), and Krieger–Dougherty's
equation for concentrated hard-sphere suspensions (Eq. (4) with ϕm=0.63).

3D.B. Genovese / Advances in Colloid and Interface Science 171–172 (2012) 1–16
rheological models are expressed in terms of the relative viscosity of
the suspension (ηr), defined as:

ηr ¼ η=ηL: ð1Þ

2. Hard-sphere suspensions

We'll begin this study from the simplest case: suspensions of
hard-spheres (Fig. 1a), sometimes referred to as neutral stability sys-
tems [7]. Hard spheres are considered to be rigid spherical particles,
with no interparticle forces other than infinite repulsion at contact.
In other words, there are no attractions or long range repulsion be-
tween the particles, but only excluded volume interaction potential.
This could be the case of either non-colloidal particles (i.e. glass
beds in Aroclor), or colloidal particles where repulsive and attractive
forces are screened (i.e. crosslinked polystyrene lattices in a variety of
solvents, silica spheres with grafted octadecyl chains dispersed in cy-
clohexane) [7,8]. In the flow behavior of hard sphere suspensions,
interparticle forces are negligible in front of hydrodynamic forces
and Brownian diffusion. Metzner [9] also suggested that when the
viscosity of the continuous phase is very high (more than about
100 Pa.s) particle–particle interactions could be negligibly small com-
pared to viscous forces.

Then, the viscosity of hard-sphere suspensions is affected by vis-
cous forces, Brownian motion, and the excluded volume of the parti-
cles [10]. Brownian motion is ever-present and arises from thermal
randomizing forces that ensure that the particles undergo constant
translational and rotational movements. However, Brownian motion
is only noticeable for particles smaller than roughly 1 μm [4]. Conse-
quently, hard-spheres have been classified as Brownian or non-
Brownian, depending on their size [5]. The flow of suspensions of
non-Brownian hard-spheres is totally dominated by hydrodynamic
forces, while Brownian hard-spheres interact through both hydrody-
namic and Brownian diffusion forces. Brownian hard-spheres are
non-aggregating colloidal particles.

The hydrodynamic disturbance of the flow field induced by solid
particles in liquid media leads to an increase in the energy dissipation
and an increase in viscosity [4]. At low particle concentrations (in the
dilute regime), the relative viscosity of hard-sphere suspensions was
first described by the oft-quoted theoretical equation of Einstein
[11,12]:

ηr ¼ 1þ η½ �ϕ ð2Þ

where ϕ and [η] are the volume fraction and the intrinsic viscosity of
the particles, respectively. Theoretically, [η] depends on particle
shape, being 2.5 for rigid spheres [3], assuming the no-slip condition
between the liquid and the particle surface, which is normally well
fulfilled for isolated particles.

At higher concentrations, particle crowding produce hydrody-
namic interactions (as well as increasing probability of collision) be-
tween particles, resulting in significant positive deviations from
Eq. (2) (Fig. 2). Manymodels have been proposed to describe the con-
centration dependence of the relative viscosity of concentrated sus-
pensions. One of the most useful expressions is the semiempirical
equation of Krieger and Dougherty [13] for monodisperse suspen-
sions:

ηr ¼ 1− ϕ
ϕm

� �− η½ � ϕm

ð3Þ

where ϕm is the maximum packing fraction of particles. As particle
concentration approaches the level corresponding to a dense packing
of particles (ϕm), there is no longer sufficient fluid to lubricate the rela-
tive motion of particles, and the viscosity rises to infinity [9] (Fig. 2). At
this point the suspension shows a shear yield stress [4]. Although the
theoretical ϕm value of monodisperse spheres is 0.74 (in a face-
centered cubic, FCC array), experimental observations have shown
that loose randompacking is close to 0.60, and that dense randompack-
ing (or random close packing, RCP) is close to 0.64 [5,14,15] (Fig. 1b).
Suspensions become solids at rest beyond random close packing, but a
finite stress can induce flow and produce significant order [10].

It should be noted that before the volume fraction of particles
reaches ϕm, suspensions of Brownian hard-spheres at rest present a
first order thermodynamic phase transition, the onset of which is
the appearance of crystals (clusters of particles) at ϕF=0.494. This
point of disordered fluid to crystal transition was called the freezing
concentration. Crystal and liquid phases coexist up to ϕM=0.545,
called the melting concentration, where a transition to fully crystal-
line state (face-centered cubic order) occurs. Further increase in con-
centration leads to the formation of a colloidal glassy (non-ergodic)
state at ϕG=0.58, called the glassy concentration, where caging
stops all long-range particle motion and the dynamics becomes
arrested [2,14,16,17]. If particles are not in touch due to repulsive
forces (as described in Section 3.1), the system is called repulsive
hard-sphere glass, or just repulsive glass. If short-ranged attractions
are introduced in this state, the repulsive glass melts, and on further
increase of the attraction strength it would freeze again into an amor-
phous solid glass. However in this case it is the attractive bonding be-
tween the spheres which forms the glass, and these are termed
attractive glasses. This repulsive glass–fluid–attractive glass transi-
tion has been called the reentrant glass transition [18–21].

The mode-coupling theory (MCT) has been successfully applied to
predict these two glass transitions, and has shown that the formation
of repulsive and attractive glasses is caused by dynamical arrest due
to caging and bonding, respectively. These two arrest mechanisms
seem to dominate also the mechanical response to deformations.
The framework of MCT can be extended to address the relationship
between stress and strain rate in a system undergoing shear; this in-
cludes a way to relate the yield stress or shear modulus of an arrested
phase to its static structure factor as determined in an unstrained
state by static light scattering data [2,19–25]. MCT has also been ex-
tended to volume fractions below the glass transition to predict gel
formation. However, this approach is still open to debate because
gel structure has been shown to be heterogeneous, and



Fig. 3. Zero shear and infinite shear relative viscosities vs. particle volume fraction of
hard-sphere suspensions predicted by Eq. (4) with ϕm0≈0.63 and ϕm∞≈0.70, respec-
tively. Arrow indicates the effect of increasing shear rate for a given particle volume
fraction.
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heterogeneous structures over a wide range of length scales are not
explicitly included in MCT [26].

The exact volume fraction at which low shear viscosity diverges to
infinity is still a matter of debate. Different values have been reported
in the literature: 0.58 (glass transition), 0.60 (loose random packing),
and 0.63 (close to dense random packing) [14], although the first one
(ϕm=0.58) is commonly accepted for repulsive glasses at low shear
stresses.

Practical experience shows that the product [η].ϕm in Eq. (3) is
often around 2 for a variety of situations [3,8,14]. Then, Krieger–
Dougherty's equation is usually simplified to:

ηr ¼ 1− ϕ
ϕm

� �−2
: ð4Þ

Hydrodynamic forces, and consequently the relative viscosity
(and ϕm) of hard-sphere suspensions, are also affected by shear
rate, particle shape, particle size distribution, and particle deformability
[3,4,9,27]. When the suspended particles can no longer be considered
monodisperse hard-spheres (as in most real systems), their maximum
packing fraction deviates from the theoretical value ϕm. In this case,
an effective maximum packing fraction, ϕm,eff, is defined as the maxi-
mum packing fraction of particles that are not hard-spheres. Replacing
ϕm, with ϕm,eff in Eq. (4) gives:

ηr ¼ 1− ϕ
ϕmeff

 !−2

: ð5Þ

Eq. (5) is a general expression to calculate the relative viscosity of
suspensions of particles that are not monodisperse hard-spheres. The
value of ϕm,eff has to be determined for each particular system, as will
be described in the next sections. It can be empirically obtained by ex-
trapolation of ηr−1/2 vs. ϕ data, from the intercept of the abscissa.

Computer simulations have made significant contributions to the
theoretical development on the rheology of concentrated Brownian
hard-sphere suspensions. The major difficulty has been to account
for the many-body thermodynamic and hydrodynamic interactions.
The most widely used method for simulating suspension flow at low
Reynolds number (Rebb1 for the particle motion) has been Stokesian
dynamics, developed by Brady and co-workers (see for example the re-
view article of Brady [28] and references therein). Thismethod properly
accounts for the solvent-induced multibody hydrodynamic forces,
Brownian forces, and lubrication forces [2,4,29,30]. A special subset of
the Stokesian dynamics method are the Brownian dynamics simula-
tions, where all hydrodynamic interactions are ignored [28].

2.1. Effect of shear rate

At low particle concentrations, the viscosity of hard-sphere sus-
pensions (Eq.(2)) is independent of shear rate ( _γ). At higher concen-
trations, the viscosity exhibits a typical 3-stage dependence with
shear rate: 1) at low shear rates they show Newtonian behavior,
with a constant zero-shear viscosity (η0); 2) at intermediate shear
rates the viscosity decreases following a shear-thinning behavior;
and 3) at high shear rates the viscosity attains a limiting and constant
value, the infinite-shear viscosity (η∞). The decrease in viscosity at in-
creasing shear rates is either due to alignment of suspended particles
in the direction of flow, or to the shear thinning behavior of the sus-
pending liquid (the continuous phase) [9]. This type of behavior can
be correlated with the well known Cross equation [31].

As a result, for a given volume fraction of particles, the relative vis-
cosity decreases at increasing shear rates (Fig. 3). This manifests itself
in Eq. (4) as an increase in the value of the maximum packing frac-
tion, from ϕm0≈0.63 at the zero-shear limit, to ϕm∞≈0.71 at the
infinite-shear limit, for monodisperse spheres [3,8,10]. Since relative
viscosity of hard-sphere suspensions is shear rate dependent (it
might be called apparent relative viscosity), care must be taken to de-
fine or identify its corresponding shear rate (or shear stress). Much of
the experimental data published have been obtained at the low shear
limit. The zero-shear viscosity is also much better defined principally
and experimentally than an infinite-shear viscosity, as practically it is
very difficult to define at which shear rate one observes such a high
shear limit.

It is important to note that shear thickening has been observed in
highly concentrated suspensions (ϕ>0.4–0.5) at very high shear
rates [3,4]. In these specific cases, if one continues to increase the
shear rate after the viscosity has leveled off at η∞, above a critical
shear rate ( _γ c) the viscosity begins to increase again [32]. The onset
of shear thickening can occur gradually or abruptly [4], but the in-
crease in viscosity has rarely been seen to exist over more than one
decade of shear rate [32]. Shear thickening is generally caused by
shear-induced changes in the microstructure of the suspension, and
is mostly reversible [3,4]. If the shear rate/shear stress is high enough,
the particle ordering is disrupted; clumps of particles are formed, with
the resulting increase in viscosity (the increase of viscosity due to parti-
cle aggregation will be explained in Section 3.2). This increase becomes
more and more abrupt as the particle concentration is increased [3].

Barnes [32] reviewed the shear thickening behavior of suspen-
sions of non-aggregating solid particles, and concluded that it is
mainly affected by particle volume fraction, size and size distribution,
shape, and inter-particle interactions. First, he showed that _γc de-
creased at increasing values of ϕ, and that _γc increased rapidly at
ϕbb 0.5. This means that it is experimentally more and more difficult
to attain _γc as ϕ decreases below 50%; but not finding _γc does not
mean it does not exist. Then he concluded that shear thickening
should take place in all dispersions, if measured in the appropriate
shear rate range. On the other hand, he showed that _γc tends to
zero for monodisperse suspensions at ϕ≈0.6, which represents the
maximum packing fraction (ϕm). He pointed out that ϕm always
scales the effect of particle volume fraction, thus an increase in ϕm

would reduce the degree of shear thickening (increase _γc) in a sus-
pension and vice versa. Second, he showed that _γcdecreases at in-
creasing particle sizes (range 0.01–100 μm), with an inverse
quadratic dependence. Third, he showed that _γcincreases with the

image of Fig.�3
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number of particle classes or the width of a continuous particle size
distribution, which was attributed to an increase in ϕm (the increase
of ϕm with polydispersity will be explained in Section 2.3). Fourth,
he showed that shear thickening increases with more anisotropic par-
ticles, which could be an effect of shape alone, or to a decrease in ϕm

(the decrease in ϕm with particle aspect ratio will be explained in
Section 2.2). Finally, he pointed out that shear thickening is expected
for deflocculated suspensions, that is when there is no overall attrac-
tion between the particles, which is the case of particles that are ei-
ther neutral (hard-spheres, as in this section) or repel one another
(stabilized or dispersed, as in Section 3.1).

In the case of Brownian hard-spheres, viscous forces perturb the
microstructure against the restoring effect of Brownian motion [10].
In the low shear rate regime, Brownian diffusion predominates over
hydrodynamic interactions, and the suspension shows a high viscos-
ity (η0) due to the random arrangement of particles (Fig. 4). Inversely,
in the high shear rate regime hydrodynamic forces predominate over
Brownian diffusion, and the layers of particles can move freely past
each other giving a low viscosity (η∞) [7]. Both η0 and η∞ increase
monotonically with ϕ, with shear thinning only detectable for
ϕ>0.25–0.30, and only substantial for ϕ>0.5 [10]. This rheological
behavior was originally described by a simple model developed by
Krieger and Dougherty [13], where the apparent viscosity depends
on η0, η∞, and the shear stress [10,33–35]. The later Cross equation
is analogous to this model, but in terms of the shear rate [31]. However,
the Brownian and hydrodynamic effects can be properly scaled by plot-
ting the viscosity of the suspension as a function of the dimensionless
Peclet number, instead of the shear rate or the shear stress [3]. The Pec-
let number is defined as the ratio of the hydrodynamic to the thermal
force: Pe ¼ 6π⋅a3ηL _γ=kBT , where a is the radius of a spherical particle
(Fig. 1a), kB is Boltzmann's constant, and T is the absolute temperature.
It can also be written as Pe ¼ a2 _γ=D0, where D0=kBT/6π⋅a⋅ηL is the
diffusion coefficient of an isolated sphere [33]. The value of Pe gauges
the ability offlow to displace the structure fromequilibrium [8,10]. Con-
sequently, the relative viscosity of Brownian hard-sphere suspensions
can be properly described by a modified Krieger Dougherty model in
terms of the Peclet number [34,35]:

ηr ¼ ηr∞ þ ηr0−ηr∞
1þ Pe=Pecð Þn ð6Þ
Fig. 4. Relative viscosity vs. Peclet number at different volume fractions, predicted by
Eq. (6), with fitting parameters from Table 1.
where n=1 for monodisperse suspensions, and the fitting parameter
Pec is a characteristic Peclet number, which depends on the volume
fraction of particles. Expressions for ηr0(ϕ) and ηr∞(ϕ) may be obtained
by replacing ϕm0≈0.63 and ϕm∞≈0.71 into Eq. (4), respectively. Iwa-
shita and Yamamoto [35] simulated the rheological behavior of Brow-
nian hard-sphere suspensions using a direct numerical method, at
different volume fractions and within an approximate Pe range be-
tween 10−2 and 102, and found that viscosities remained nearly con-
stant for ϕb0.4, and showed the described non-Newtonian behavior
for ϕ>0.4. They fitted data obtained for ϕ=0.46, 0.51, and 0.56 using
Eq. (5) with n=1, and obtained the corresponding values of Pec
(Table 1). Values of ηr0 and ηr∞ were obtained for each of these volume
fractions (Table 1), and used in combinationwithPec values in Eq. (6) to
generate predictive curves of relative viscosity as a function of Peclet
number, at different volume fractions of particles (Fig. 4).

Shear thickening has also been found in highly concentrated
Brownian hard-sphere suspensions at high Peclet numbers (above
the ηr∞ region), which was attributed to an increase in the hydrody-
namic contribution to the stress because of shear induced dynamic
cluster. The onset of thickening is only due to the cluster formation
when hydrodynamic forces overcome Brownian contribution
[4,8,28,29].

2.2. Effect of particle shape

When the particles are non-spherical there is an extra energy dis-
sipation and consequently an increase in the viscosity. In dilute sus-
pensions this increase is reflected by the intrinsic viscosity in
Einstein equation (Eq. (2)). For prolate ellipsoids (~ fiber or rod
shape) and oblate ellipsoids (~ disk shape), Simha [36] derived
Eqs. (7) and (8), respectively:

η½ � ¼ 14
15

þ q2

15 log 2·q−3=2ð Þ þ
q2

5 log 2·q−1=2ð Þ ð7Þ

η½ � ¼ 16
15

q
tan−1q

ð8Þ

where q is the axial ratio of the ellipsoid (long radius/short radius).
Simpler formulas have been derived by Barnes [3] as [η]=0.07∗q5/3

for rod-like particles, and [η]=0.3∗q for disc-like particles.
The effect of particle shape on concentrated suspensionswas studied

by Kitano et al. [37], who proposed an equation for suspensions of non-
spherical particles, equivalent to Eq. (5). They found that the effective
maximum packing fraction decreased as the aspect ratio (L/D) of the
suspended particles increased; for example when L/D=1 (spheres)
ϕm,eff=ϕm, when 6bL/Db8 (rough crystals) ϕm,eff=0.44, and when L/
D=18, 23, 27 (fibers) ϕm,eff=0.32, 0.26, 0.18 respectively [9,31].
Fig. 5 shows how the relative viscosity increases at increasing aspect ra-
tios (non-sphericity) of the particles, for a given volume fraction. In
general, particle non-sphericity produces an increase in the intrinsic
viscosity and a decrease in the maximum packing fraction, but their
product remains≈2 (see Eqs. (4) and (5)) [3]. By definition these sys-
tems are no longer hard-sphere suspensions, but suspensions of aniso-
metric particles.
Table 1
Characteristic Peclet number, zero-shear and infinite-shear relative viscosities at three
different volume fractions of particles. Values obtained as described in Section 2.1.

ϕ Pec ηr0 ηr∞

0.46 0.20 13.73 8.07
0.51 0.50 27.56 12.60
0.56 0.63 81.00 22.40

image of Fig.�4


Fig. 5. Relative viscosity vs. particle volume fraction of suspensions with particles of
different shapes, predicted by Eq. (5) for spheres (ϕm,eff=0.63), rough crystals (ϕm,

eff=0.44), and fibers with aspect ratio L/D=23 (ϕm,eff=0.26). Arrow indicates the ef-
fect of increasing aspect ratio (non-sphericity) for a given particle volume fraction.

Fig. 6. Relative viscosity vs. particle volume fraction of suspensions of polydispersed
spheres, predicted by Eq. (5) for monomodal (ϕm,eff=0.63), bimodal (ϕm,eff=0.86), tri-
modal (ϕm,eff=0.95), and tetramodal (ϕm,eff=0.98) suspensions, with infinite size ra-
tios. Arrow indicates the effect of increasing particle size distribution for a given
particle volume fraction.
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2.3. Effect of particle size distribution

Eqs. (3) and (4) are valid for monomodal spherical particles, or
monodispersed spheres. For suspensions of multimodal or polydis-
persed spherical particles, the maximum packing fraction is higher
since small particles may occupy the space between the larger parti-
cles, and extraordinarily high solid concentrations can be achieved
[9]. Under flow conditions, the small particles act as a lubricant for
the flow of the larger particles, thereby reducing the overall viscosity
[15]. This has little effect in the viscosity of dilute suspensions
(ϕb0.2), but at high concentration levels the effects are of enormous
magnitude [9]. Then, the effect of increasing the particle size distribu-
tion (PSD) is to increase the effective maximum packing fraction,
ϕm,eff, and to decrease the relative viscosity, ηr (Eq.(5)). However,
ϕm,eff not only depends on the number of discrete size bands
(mono-, bi-, tri-, tetra-modal, etc.), but also on the size ratio, defined
as the ratio of the large particle diameter to that of the smaller ones in
the next particle class, λ=dL/dS. For a given PSD, ϕm,eff increases with
λ, and reaches a maximum value at infinite diameter ratio. Based on
the works of Funk and Dinger [38], and Servais et al. [15], the following
expressionwas derived for themaximumpacking fraction of a PSDwith
n size bands, at infinite size ratio (λ→∞):

ϕmeff ¼ ϕmn ¼ ϕm1 n−
Xn−1

i¼1

ϕmi

 !
ð9Þ

whereϕm1 is themaximumpacking fraction of amonomodal size distri-
bution (ϕm1=ϕm). Using a value ofϕm1=0.63 into Eq. (9), we calculat-
ed the effectivemaximumpacking fractionsϕm2=0.86,ϕm3=0.95,and
ϕm4=0.98, for bi-, tri-, and tetra-modal size distributions, respectively.
Using these values as ϕm,eff in Eq. (5), we obtained the predictive curves
of ηr vs. ϕ for bimodal, trimodal, and tetramodal suspensions with infi-
nite size ratios (Fig. 6). It can be observed that for a given particle vol-
ume fraction, the relative viscosity decreases at increasing particle size
distribution (PSD). Moving from monomodal to bimodal distributions
has a significant effect on the relative viscosity, but the benefit of in-
creasing to greater than trimodal distributions is small [9,15].
Both ϕm,n and λ determine another parameter of polydispersions:
the blend ratio, defined as the volume fraction of a particle class i in
relation to the sum of the other classes, υi=ϕi/ϕmn [15]. For example,
let's assume that the bimodal suspension with infinite size ratio de-
scribed before is made up by adding to a monomodal suspension of
spheres (ϕm=0.63), another monomodal suspension of infinitely
smaller spheres. These small spheres will fit in the voids of the
large spheres, increasing the total volume fraction of spheres until
ϕm,eff=ϕm2=0.86. In this new bimodal suspension, the volume frac-
tion of the large spheres is ϕL=0.63, and then the volume fraction of
the small spheres is ϕS=0.86–0.63=0.23. Then, the blend ratio of
large spheres is υL=0.63/0.86=0.73, or 73% of large particles and
27% of small particles. The same procedure may be followed to calcu-
late the blend ratios of any PSD (tri-, tetra-modal, etc.).

As explained, the infinite size ratio is an ideal situation where the
effective maximum packing fraction has an optimum value, for a
given PSD. In a real suspension, the size ratio has a finite value, and
the effective maximum packing fraction is smaller than the optimum.
A graphical–analytical method to calculate ϕm,n at many different size
ratios, and for any number of size classes, can be consulted in the
work of Servais et al. [15]. It should be noted that a real particulate
system consist of a continuous distribution of particle sizes. One
method to estimate the effective maximum packing fraction of this
type of system is to split the continuous distribution into many dis-
crete intervals.

Farris [39] used a different approach to predict the viscosity of
multimodal suspensions. He assembled many monomodal distribu-
tions and showed that the overall resulting viscosity was the product
of the relative viscosity associated with each discrete monomodal size
distribution, ηri(ϕi), assuming no interactions between the particles of
different class sizes:

ηr ¼ ∏
n

i¼1
ηri ϕið Þ: ð10Þ

In practice, narrowing or widening the particle size distribution is
an effective way to control the viscosity of a suspension. The practical
applications from this are that one can: a) minimize the viscosity at a
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Fig. 7. Relative viscosity vs. particle volume fraction of suspensions of deformable par-
ticles, predicted by Eq. (13) with ϕm=4/7, β/Λ=0.1, at different values of the Deborah
number. Arrow indicates the effect of increasing particle deformability for a given par-
ticle volume fraction.
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given volume fraction of particles or, b) maximize the solid content at
a given viscosity. Up to 50-fold reductions in shear viscosity due to
changes in particle size distribution, while maintaining the same
solid content, have been reported [15]. This facilitates pumping, mixing
and transportation in the fuel, concrete, paint and food industries. For
example, this is of extreme importance for the use of commercial
latex dispersions.

2.4. Effect of particle deformability

According to Barnes [3], at high concentrations deformable parti-
cles can accommodate each other at rest and squeeze past each
other during flow, increasing ϕm and reducing [η] in Eq. (3), resulting
in a lower viscosity. By definition, these particles are no longer hard-
spheres because they are not rigid, but deformable or viscoelastic
spheres.

Snabre and Mills [40] proposed a microrheological model to esti-
mate the steady state shear viscosity of concentrated suspensions of
viscoelastic particles. They used a Kelvin Voigt model to describe
the deformation and stable orientation of a viscoelastic particle in a
simple shear field. They assumed that the particles behave like if
they were surrounded by a fluid with a viscosity equal to that of the
suspension at a given shear rate. This is known as the self-approach,
or effective medium approximation. Then, the component of the
shear strain tensor representative of the particle deformation gradient
along the direction of the flow is:

εxx ¼ ηr
Ω2

Λ 1þΩ2
� � ð11Þ

whereΩ ¼ _γ⋅τ is a dimensionless shear rate called Deborah number, τ
is the characteristic relaxation time of the Kelvin Voigt element, and
Λ=ηP/ηL, where ηP is an effective viscosity accounting for the overall
dissipative phenomena.

Snabre and Mills [40] claimed that the orientation of deformable
particles along themain strain axes induces the formation of transient
anisotropic microstructures with a higher ϕm, leading to a decrease in
viscous dissipation and suspension viscosity. For weak particle defor-
mations:

ϕmeff ¼ ϕm 1þ β·εxxð Þ ð12Þ

where β is a constant related to the type of flow. Replacing Eqs. (11)
and (12) into Eq. (5) yields:

ηr ¼ 1− ϕ=ϕm

1þ ηr·
β
Λ

Ω2

1þΩ2ð Þ

2
64

3
75
−2

: ð13Þ

It can be observed that for rigid particles (hard-spheres)Ω=0 and
Eq. (13) is reduced to Eq. (4). Eq. (13) is an implicit function, ηr(ϕ,ηr),
and has to be solved by a numerical method. Assuming typical values
of ϕm=4/7, β/Λ=0.1 [40], and different values of Ω (0, 0.1, l, and 10),
we solved Eq. (13) to obtain ηr at different values of ϕ, and the solu-
tion points were connected by lines (Fig. 7). It can be observed that
for a given volume fraction of particles, viscosity of suspensions of de-
formable particles are lower than that of hard-spheres, and decreases
at increasing values of the Deborah number.

3. Colloidal suspensions

Colloidal suspensions may be defined as byphasic systems where
the discrete phase is subdivided into elemental units (particles/droplets)
that are large compared to simple molecules, but small enough so that
interparticle forces are significant in governing system properties. The
size of colloidal particles is typically considered to be in the range of a
few nanometers to a few micrometers [5,10,41]. According to the
IUPAC [42]: a) a colloidal suspension is one in which the size of the par-
ticles lies in the colloidal range; b) the term colloidal refers to a state of
subdivision, implying that themolecules or polymolecular particles dis-
persed in a medium have at least in one direction a dimension roughly
between 1 nmand 1 μm, or that in a system discontinuities are found at
distances of that order; c) the size limits given above are not rigid since
theywill depend to some extent on the properties under consideration;
and d) a fluid colloidal system composed of two or more components
may be called a sol.

Colloidal interactions can be classified as attractive forces (including
van der Waals, electrostatic attractive, hydrophobic, bridging, and de-
pletion,) and repulsive forces (including electrostatic repulsive, steric,
hydration, and structural) [4,41]. In this review, we will focus on the
role of the three more relevant types of interparticle interactions,
namely:

a. van der Waals attraction: the ever-present van der Waals attrac-
tive force arises from attraction between molecules that have
been electronically or orientationally polarized in neighboring
particles [41]. Although the intermolecular potential decays rapid-
ly on the molecular scale, the cumulative effect is a long-range
interparticle potential [10]. Its magnitude depends on the particle
radius, its nature as determined by the Hamaker constant, and the
interparticle distance [7].

b. Electrostatic repulsion: charged particles in an electrolyte present
an arrangement of charges in the interface called the electrical
double layer (EDL). As two particles approach each other, the
overlapping of double layers leads to long-range, electrostatic re-
pulsive forces. The energy–distance curve shows an approximate-
ly exponential decay. The extent of the decay depends on the
thickness of the EDL, calculated as the Debye length (κ−1),
which in turn depends on the electrolyte concentration and
valency (i.e. ionic strength). The lower the ionic strength, the
higher the thickness of the EDL, the more slowly the interaction po-
tential decays, the longer the range of interparticle interaction [7].

c. Steric repulsion: due to the presence of a polymer layer at the sur-
face of particles, either by adsorption of chemical grafting. As two
particles approach, the overlap of the polymer layers reduces the
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volume available to each single chain, producing a short-range re-
pulsive force. The lower the thickness of the polymer layer, δ, the
more steeply the interparticle potential decays, the shorter the
range of interparticle interaction. This is particularly the case of
short adsorbed chains in good solvent conditions [4,7].

Conventionally, attractive energies are considered to be negative,
and repulsive energies positive. The total or net interaction potential
energy between pairs of particles as a function of the interparticle dis-
tance, U(r), may be predicted by the extended DLVO theory, and is
usually represented as the ratio of the interaction energy to the Brow-
nian thermal energy,U/kB.T, vs. a dimensionless particle–particle separa-
tion, (r−2.a)/a (Fig. 8), being r the distance between the centers of two
particles, and r−2.a the distance between their surfaces. The key fea-
tures of the interaction potential are the primary and secondaryminima,
and theprimarymaximum [10], aswill be described in the next sections.

The balance between thermal and interparticle forces determines
the equilibrium behavior. Brownian motion promotes collisions be-
tween pairs of colloidal particles, while the net interparticle force de-
termines if two colliding particles aggregate or not. Then, colloidal
suspensions at equilibrium can be either dispersed or aggregated,
depending if the net particle interaction energy is repulsive or attrac-
tive, respectively. Furthermore, particle–particle interactions are cru-
cial in determining order and phase transitions [5].

Under the action of an external driving force such as shear, hydro-
dynamic forces come into play and compete with thermal and inter-
particle forces to set the structure and determine rheological
properties [43]. At very high shear rates the viscosity (η∞) is dominated
only by hydrodynamic forces [3]. Thus, the magnitude of (η0−η∞) re-
flects the importance of colloidal forces in the suspension flowbehavior
[44].

It should be noted that the presence of any kind of interaction, ei-
ther attraction or repulsion, will result in an increase in the suspen-
sion viscosity, compared to that of hard-spheres, and in some cases,
a yield stress could be observed. These phenomena are determined
by the magnitude of the overall interactions and the resulting suspen-
sion microstructure, as we will see in the next sections.

3.1. Dispersed or stabilized suspensions (dispersions)

According to the IUPAC [42], colloidally stable means that the par-
ticles do not aggregate at a significant rate. In stable colloidal
Fig. 8. Net interaction potential/Brownian thermal energy ratio vs. surface–surface
interparticle distance/particle radius ratio.
dispersions (Fig. 1c–d) repulsive forces dominate and keep neighbor-
ing particles away from each other, leading to crystalline order liquid-
like structures, or even quasi-crystal structures at high enough parti-
cle concentrations [45,46]. For flow to occur particles must be forced
to move against the force fields of the other particles, demanding an
extra energy [44]. The predictive models for the viscosity of colloidal
dispersions are divided into two categories based on their scaling
technique. One is the separation of contribution method, in which
the contributions from individual factors are separated from each
other. The other is the effective volume fraction method, in which
all the contributions from different factors are lumped into one factor,
either the effective volume fraction (ϕeff) or the effective maximum
packing fraction (ϕm,eff) [5,47].

In the separation of contribution method, the relative viscosity of
dispersed suspensions has been modeled as the sum of a “hard-
sphere” contribution (ηrhs) and a “colloidal force” contribution (ηrcf)
[14,48]:

ηr ¼ ηhsr þ ηcfr : ð14Þ

The term ηrhs is considered to be the relative viscosity of a hard-
sphere suspension, and it can be calculated with Eq. (4). The term
ηrcf involves the increase in relative viscosity due to interparticle col-
loidal forces. It can be calculated from the difference between the ex-
perimental ηr data and the theoretical ηrhs values.

In the case of electrostatically stabilized particles, the distortion of
the EDL by the shear field leads to an increase in the viscosity due to
increased energy dissipation. This effect was first considered by Smo-
luchowski and is called the primary electroviscous effect [49,50]. For
dilute dispersions of spherical particles, it appears as a correction p,
the primary electroviscous coefficient, to the Einstein equation
(Eq. (2)), such that combined with Eq. (14) gives:

ηcfr ¼ 2:5·p·ϕ: ð15Þ

The coefficient p is a function of the potential in the slipping plane
or ζ-potential (a measure of the particle surface potential), and the
relative size of the particle radius (a) in respect to the thickness of
the EDL (κ−1). Several theoretical expressions have been derived
for p [49,50]. Based on the theoretical model of Ogawa et al. [48] for
concentrated dispersions (Eq. (17)), and own experimental data on
dilute dispersions, Genovese et al. [27] proposed a general expression
for p in terms of the maximum net repulsive potential between pairs of
particles (UMax), also known as the energy barrier or activation energy:

p ¼ b·
UMax

kBT

� �
ð16Þ

where b is a dimensionless proportionality constant. The value of UMax

is obtained at the maximum of the U(r) curve (Fig. 8), and determines
the stability of a colloidal dispersion. UMax values of 15–25kB.T are nor-
mally required for long-term stability [51].

For concentrated dispersions, Ogawa et al. [48] derived the follow-
ing expression based on the theory of activation processes:

ηcfr ¼ c1ϕ· exp
UMax

kBT
−

c2d
3σp

ϕ·kBT

 !
ð17Þ

where c1 and c2 are numerical constants, d is the particle diameter,
and σpis the particle stress. For practical purposes, it has been as-
sumed that c1=1 [48]. The exponent of e in Eq. (17) is the apparent
activation potential barrier, or activation energy between two neigh-
bor particles under shear. The first term of this exponent is the mean
activation energy of the particles at rest. The second term is the bias
potential created when the system is sheared, and it is the product
of the activation volume by the particle stress. The activation volume
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is inversely proportional to the number of particles per unit volume,
then it is proportional to d3/ϕ, being c2 the proportionality constant
(theoretically π/6). The particle stress (or elastic stress) arises from
the interparticle potential forces, and assuming that it is given by
the viscosity corresponding to this activation energy (ηcf), it can be
calculated as:

σp ¼ ηcf _γ ¼ ηcfr ηL _γ : ð18Þ

Replacing Eq. (18) into Eq. (17) gives:

ηcfr ¼ c1ϕ· exp
UMax

kBT
− c2d

3ηL
ϕ·kBT

ηcfr _γ

 !
: ð19Þ

Eq. (19) is an implicit function, ηrcf(ϕ,ηrcf), and has to be solved by a
numerical method.

According to Eq. (17) (with c1=1), a plot of kBT ln(ηrcf/ϕ) vs. σp

should follow a linear decrease for each volume fraction, with y-
intercept UMax and slope –c2.d3. Ogawa et al. [48] fitted experimental
data of styrene–butadiene particles (d≅100 nm) in water (25 °C) at
different volume fractions (0.176, 0.234, 0.293, and 0.345), and
obtained UMax(ϕ) values of about 1.80, 3.06, 4.94, and 6.66kB.T, re-
spectively, and a unique value of c2=0.136. Using these values into
Eq. (19), we solved it for different shear rates, and the solution points
were connected by lines, at each volume fraction (Fig. 9). It can be ob-
served that ηrcf increases with ϕ and decreases with _γ , but this shear
thinning effect is only noticeable at ϕ>0.25 approximately, and at
high shear rates, where hydrodynamic forces become more signifi-
cant than interparticle forces. The viscosity decrease in this shear
thinning region is due to ordering of particles by the flow.

Following the shear thinning regime, a second Newtonian plateau
develops, for which the viscosity attains an approximate constant
value as a function of shear rate, and the flow induced ordering of
the system continues to develop. At higher shear rates and for suffi-
ciently high volume fractions, the viscosity undergoes a rapid in-
crease once a critical value of the shear rate/shear stress is
exceeded. This is the same behavior as the one described for hard-
sphere suspensions (Section 2.1), although different mechanisms
have been proposed. In electrostatically or sterically stabilized
Fig. 9. Contribution of interparticle forces to relative viscosity vs. shear rate of suspen-
sions of styrene–butadiene particles (d≅100 nm) in water, at different volume frac-
tions, predicted by Eq. (19).
suspensions, the shear thickening is attributed to a shear induced
order–disorder transition. In this mechanism, the particles arrange
into sliding, ordered layers or planes formed during the shear thin-
ning regime, which persist until the second Newtonian viscosity pla-
teau. At a critical shear rate/shear stress, these layers begin to interact
via hydrodynamic coupling (hydrodynamic instabilities). This inter-
action pulls particles out of the layers, leading to increased particle
collisions, disorder, and a consequent increase in viscosity [2,4].

In the effective volume fraction method, it is considered that par-
ticles cannot approach each other more than a certain distance, due to
the repulsive forces between them, thus increasing their apparent or
effective radius from a to aeff=r⁎/2, where r⁎ is the distance of closest
approach [14] (Fig. 1c). In other words, particles interacting through
purely repulsive potentials behave as equivalent hard spheres, with
an equivalent hard sphere radius ahs=aeff. Consequently, the appar-
ent volume of particles, or effective volume fraction is given as
[52,53]:

ϕeff ¼ ϕ
aeff
a

� �3
ð20Þ

Since aeff>a, the volume occupied by the equivalent hard-spheres
is bigger than the volume occupied by the real particles, then ϕeff>ϕ.
In this model, particles are considered to be a core surrounded by a
stabilizing or exclusion layer. Consequently, a and ϕ are usually called
particle core radius, and core volume fraction, respectively. The vis-
cosity of a colloidal dispersion can be simply obtained by replacing
ϕ by ϕeff in a hard-sphere viscosity equation, like Eq. (4) [14]:

ηr ¼ 1−
ϕeff

ϕm

� �−2

: ð21Þ

Replacing Eq. (20) into Eq. (21) gives:

ηr ¼ 1− ϕ
ϕm

aeff
a

� �3� �−2

: ð22Þ

Predictive curves of ηr vs. ϕ for stabilized suspensions were
obtained assuming different values of aeff/a (1, 1.1, 1.3, and 1.6) in
Eq. (22) (Fig. 10). It can be observed that for a given volume fraction
of particles, the relative viscosity increases as their effective particle
radius increases.

When the extra excluded radius, Δ (Fig. 1c), is much smaller than
the particle core radius, i.e. when Δbba, the effective particle radius,
and then the effective volume fraction can be calculated from [4,5]:

aeff ¼ a· 1þ Δ=að Þ ð23Þ

ϕeff ¼ ϕ· 1þ Δ=að Þ3: ð24Þ

This approach works well for particles with a densely packed ex-
clusion layer and a steeply decaying interaction potential, such as
electrostatic repulsion at high ionic strength, and steric repulsion
with short adsorbed chains in good solvent [7,14]. In these cases,
Δ≈κ−1 for electrostatically stabilized systems, and Δ≈δ for sterical-
ly stabilized systems.

However, when Δ>>a (such as in electrostatically stabilized sys-
tems at low ionic strength, or sterically stabilized systems with long
adsorbed chains), the potential curve decays slowly and the equiva-
lent HS radius is difficult to determine. Consequently, Eqs. (23) and
(24) are no longer adequate, and experimental data deviates from
Eqs. (22) and (21) respectively, due to overlapping or deformation
of the exclusion layers. Particles interacting through such “soft”
potentials are often called “soft spheres” [14].

In these cases where the effective particle radius (and the effective
volume fraction) cannot be theoretically determined, the effective
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Fig. 10. Relative viscosity vs. particle volume fraction of dispersed or stabilized suspen-
sions. Theoretical curves predicted from Eq. (22) at different values of aeff/a (solid
lines). Arrow indicates the effect of increasing the effective particle radius. Experimen-
tal data of electrostatically stabilized polystyrene particles in 5×10−4 M NaCl solution
(ϕm,eff=0.144, aeff/a=1.59, black circles); polymethylmethacrylate particles sterically
stabilized with a layer of poly-12-hydroxystearic acid (ϕm,eff=0.475, aeff/a=1.07,
white circles).
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maximum packing fraction method is preferred, and Eq. (5) is used.
The value of ϕm,eff may be empirically obtained from a plot of ηr−1/2

vs. ϕ and extrapolation to ηr−1/2=0 [7], as explained in Section 2.
However, in this case ϕm,eff does not (only) depend on particle
shape, polydispersity, and deformability effects, but (also) depends
on colloidal interactions and Brownian motion [47]. The system
reaches the glass transition when ϕeff=ϕG=0.58, that is at a critical
(real particle) concentration ϕG,eff, equivalent to the effective maxi-
mum packing fraction, then ϕG,eff=ϕm,eff. The scaling relationship be-
tween ϕm,eff and ϕm is given by [5,14]:

ϕm;ef f ¼ ϕm
a
aeff

 !3

ð25Þ

As ϕ approaches ϕm,eff, the crowding of particles strongly affects
the flow behavior of the suspension, and when ϕ=ϕm,eff, an apparent
yield stress develops. Since aeff>a, the system of equivalent hard-
spheres reaches the glass transition (ϕG,eff) before the real particle
concentration reaches 58% in volume, then ϕm,effbϕm.

Combining Eqs. (20) and (25) one can obtain the scaling relation-
ship:

ϕeff

ϕ
¼ ϕm

ϕm;ef f
: ð26Þ

It might be worth remembering that ϕ is the real volume fraction
of particles, ϕeff is the apparent volume fraction of particles, ϕm,eff is
the real volume fraction of particles when the system is packed, and
ϕm is the volume fraction of close-packed monodisperse hard-
spheres. From Eq. (26), when ϕ→ϕm,eff, then ϕeff→ϕm. Replacing
Eq. (26) into Eq. (21), or Eq. (25) into Eq. (22), gives Eq. (5). This
method is typically used for charged stabilized particles as well as
for sterically stabilized particles.

Long range repulsive forces, such as electrostatic repulsion, lead to
crystalline order at low particle concentrations [14]. For example, ex-
perimental data on electrostatically stabilized polystyrene particles
(a=34 nm) in 5×10−4 M NaCl solution were satisfactorily fitted
with Eq. (5) (Fig. 10), giving ϕm,eff=0.144 [10]. This value of ϕm,eff

was considered as the transition from a disordered fluid to either an
ordered or a glassy solid (ϕG,eff); therefore a finite stress is required
to initiate flow. Above this threshold volume fraction, the dispersion
behaves as a viscoelastic solid. Assuming ϕm=ϕG=0.58 in Eq. (25),
it can be calculated that aeff/a≈1.59. Metzner [9] already have
claimed that in aqueous systems, particle–particle interactions
through electrostatic forces may be enormous, and even very dilute
suspensions may exhibit a yield stress.

Pusey and Megen [16] studied the phase behavior of concentrated
suspensions of polymethylmethacrylate (PMMA) particles (a=305 nm)
sterically stabilized with a layer (Δ≈10–20 nm) of poly-12-
hydroxystearic acid (PHSA), in a 2.66:1 decalin-carbon disulphide sol-
vent mixture. In the effective volume fraction model (Eqs. (20) to
(24)),ϕ is the volume fraction of the PMMA core, andϕeff is the effective
volume fraction that accounts for the PHSA layer. As mentioned, they
found thermodynamic phase transitions at the freezing concentration
ϕ=0.407 (ϕeff=0.494), the melting concentration ϕ=0.449
(ϕeff=0.545), and the glassy concentration ϕ≈0.48 (ϕeff≈0.58).
From Eqs. (20) or (25) it can be calculated that aeff/a≈1.07. Phan et
al. [54] measured the viscosity of PMMA–PHSA suspensions up to
ϕeff≈0.50. Combining their results with experimental data reported
in the literature for the same system, and fitting all the data for
0.30bϕeffb0.50 to Eq. (21), they obtained a value of ϕm=0.577,
which coincides with the effective volume fraction that marks the
onset to a colloidal glassy state (ϕG≈0.58). This maximum packing
fraction was scaled with Eq. (25) to obtain ϕm,eff=0.475. This value
was used in Eq. (5) to represent the data of Phan et al. [54] in Fig. 10.

3.2. Aggregated suspensions

A far more widespread situation in colloidal systems is the pres-
ence of net attractive forces between particles, leading to particle ag-
gregation [3,14]. According to the IUPAC [42]: a) an aggregate is, in
general, a group of particles held together in any way and, more spe-
cifically, the structure formed by the cohesion of colloidal particles; b)
when a sol is colloidally unstable (i.e. the rate of aggregation is not
negligible) the formation of aggregates is called flocculation or coag-
ulation; c) these terms are often used interchangeably, but floccula-
tion is preferred for the formation of a loose or open network
(called floc) which may or may not separate macroscopically, and co-
agulation is preferred for the formation of compact aggregates, lead-
ing to a macroscopic separation of a coagulum; d) the rate of
aggregation is in general determined by the frequency of collisions
and the probability of cohesion during collision; e) if the collisions
are caused by Brownian motion, the process is called perikinetic ag-
gregation; if by hydrodynamic motions, one may speak of orthoki-
netic aggregation.

The probability of cohesion is given by the interparticle potential
during collision. Van der Waals interaction prevails at very small
interparticle distances (r=1–10 nm), resulting in a minimum net in-
teraction potential energy, called the primary minimum (Fig. 8),
where the attractive forces are large enough to give permanent parti-
cle contact, or irreversible aggregation, called coagulation [3,10]. To
coagulate two approaching particles, they must have enough kinetic
energy (due to Brownian motion) to overcome the energy barrier
(kB.T>Umax) and fall in the primary minimum.

In many systems, the combined effect of attractive and repulsive
forces produces a secondary minimum in the net interaction potential
(Fig. 8). If kB.TbUmax, the particles cannot pass the energy barrier and
will fall in this local energy minimum or potential well. The depth of
this potential well is a measure of the interparticle bond energy (Ub),
while the position of this minimum corresponds to the most likely
separation of the particles [41]. If Ub is about 10 to 20 kB.T units, the
flocculation is weak and reversible [10,55,56], but no flocculation
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occurs if Ubb10 kB.T units because Brownian motion will keep the
particles apart [3]. Overall, these systems may be classified as strongly
aggregated suspensions if the interparticle bond energy is high (say
Ub>20 kB.T), or weakly aggregated suspensions if 10 kB.TbUbb20 kB.T
[55].

Aggregation of colloidal particles typically leads to the formation
of highly branched fractal flocs, called clusters. At low particle con-
centrations, clusters are not interconnected (Fig. 1 e) and the suspen-
sion remains liquid-like, or weakly elastic with no yield stress [57]. In
contrast, above a critical concentration called the percolation thresh-
old or gel point ϕg [4], clusters are interconnected into a network, and
the system becomes solid-like (Fig. 1f), with yield stress and elastic
moduli increasing with ϕ. In the former case (ϕbϕg), rheological
properties are dominated by the discrete aggregates, while in the
later case (ϕ>ϕg), mechanical properties of a continuous network
are probed [57].

Gelation in aggregating colloids occurs when clusters become
crowded [14]. Irreversible gelation is that in which particles gradually
stick together very strongly to form permanent fractal type aggre-
gates, which in turn eventually join together to produce large inter-
connected macroscopic networks. On the other hand, reversible
gelation is that in which particles stick together rather weakly to
form a transient network having some of the connectivity and visco-
elastic properties of a weak gel-like solid [58]. In practice, the aggre-
gation and gelation of many real systems may fall somewhere
between these two situations.

Clusters can be properly treated as fractal objects because they are
self-similar and remain invariant under a change of length scale [46].
The average number of elementary particles in a fractal cluster, N, is
related to its average radius, R, through:

N≈ R
a

� �f

ð27Þ

where a is the radius of the monosized spherical particles, and f is the
fractal dimension of the cluster [3,10,45,46,55,59]. A prefix constant
close to 1 can be introduced in the right-hand term of Eq. (27)
depending on the definition of R, which can be the hydrodynamic ra-
dius, the collision radius, the radius of gyration, or the radius of the
circumscribed sphere [60]. The fractal dimension reflects the internal
structure of the flocs (it is proportional to their density) and depends
on the mode of aggregation [10]. Its value may range from almost 3
for the most dense, close-packed aggregates (a value of f=3 simply
would mean a packing like in a crystal lattice), to lower values for
more open structures. Typical values are f≈1.8 for fast Brownian, dif-
fusion limited cluster aggregation (DLCA), and f≈2.1 for slow, reac-
tion limited cluster aggregation (RLCA) [46,58,59,61].

Clusters are supposed to behave like spheres composed of parti-
cles in contact with trap fluid (Fig. 1e) [60]. Thus, the main effect
resulting from the aggregation process is an increase in the volume
of the discrete phase with respect to its nominal value, ϕ, i.e. the
sum of the volumes of the constituent (elemental) particles [46].
This effect is considered by the effective volume fraction of the clus-
ters, ϕc=ϕeff, defined by the smallest spheres enclosing the clusters
[3,55,62,63]:

ϕeff≈ϕ·N
3
f−1≈ϕ·

R
a

� �3−f

: ð28Þ

The viscosity of the aggregated suspension may be obtained by in-
troducing the effective volume fraction of the clusters (Eq. (28)) into
Eq. (21) [45,46,64]:

ηr ¼ 1− ϕ
ϕm

R
a

� �3−f
 !−2

: ð29Þ
Since ϕeff >>ϕ (R>>a), the viscosity of the aggregated suspen-
sion (Eq. (29)) is much higher than that of the hard-sphere suspen-
sion (Eq. (4)), and the liquid–gel transition occurs at a critical value
known as the gelation concentration (ϕg), which is then equivalent
to the effective maximum packing fraction, ϕg=ϕm,eff, and lower
than ϕm. The value of ϕg depends on the magnitude of the interaction
energy at contact: the higher the attraction, the lower the critical con-
centration for gelation. It is worth noting that in both stabilized and
aggregating colloidal suspensions, the critical concentration at
which the liquid–solid transition occurs (ϕm,eff), decreases as the
magnitude of the interaction energy increases (repulsive barrier in
the first case, and potential well in the other). It can also be observed
from Eq. (28) (and Eq. (29)) that, unlike hard-sphere and stabilized
suspensions, in aggregated suspensions the effective volume fraction
(and the viscosity) depends on the size of the clusters (R), via the
number of elemental particles in the cluster (N) [14].

3.2.1. Weakly aggregated suspensions
The shear flow breaks down the aggregates or flocs, which are re-

stored under quiescent conditions due to the attractive force field, in
addition to Brownian motion [3,10,14,55,64]. The structure recovers
to a reproducible rest state in a reasonable time after shear, so the his-
tory dependence can be controlled [10,17]. At a given shear stress (σ)
or shear rate ( _γ), the steady state is reached when a dynamical equi-
librium is established between breakdown and reformation of the ag-
gregates [45]. At this point the aggregates reach a maximum stable
(or mean equilibrium) size, R. This steady state size (and the number
of particles per cluster) can be predicted either from the balance be-
tween aggregate cohesion and flow related stresses, or from competi-
tion between aggregation and fragmentation dynamics [60]. It has
been shown that the equilibrium value of R (and N) decreases at in-
creasing values of σ or _γ [45]. Shearing hard enough will result in
the flocs being reduced to the primary particles [3]. Consequently,
above the yield stress (if ϕ>ϕg) the viscosity decreases from a high,
zero-shear viscosity to a low, infinite-shear viscosity, through a
shear thinning region at intermediate shear rates [14,45,46,59].

Different models have been proposed to describe this phenome-
non, based on the fact that the maximum equilibrium size of the clus-
ters is limited by the maximum shear stress (or torque, or
momentum) that they can support before they break. Wessel and
Ball [62] proposed that when the bending moment acting on the clus-
ters due to the applied shear forces (Γ) is bigger than the binding energy
between particles (Γc), themaximum stable cluster size (R) is related to
the shear stress of the solvent (σL), then to the shear rate ( _γ) and the
viscosity of the solvent (ηL), byR≈σ−1=3

L ≈ ηL _γ
� �−1=3.

However, it has been found to be more effective to employ the al-
ready mentioned self-consistent approach, and to consider that the
aggregates are surrounded by an effective medium with a viscosity
equal to that of the suspension [45,46,55,60]. Then, the viscosity (or
the shear stress) of the liquid solvent has been replaced by the viscos-
ity (or the shear stress) of the suspension. Based on this criterion,
Snabre and Mills [45] developed a model for fractal clusters made
up of particles >1 μm, so that hydrodynamic effects dominate over
Brownian motion:

R
a
≈1þ σ c

σ

� �m ð30Þ

where σ is the shear stress of the suspension, given by:

σ ¼ η· _γ ¼ ηr·ηL· _γ : ð31Þ

The exponentm in Eq. (30) mainly depends on the structure of the
aggregates, and their mechanism of deformation and breakup under
the action of external stresses [45,60]. A weak bonding energy be-
tween particles (reversible flocculation) gives rise to soft clusters,
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unable to transmit any elastic stresses, then deforming irreversibly
the internal structure. On the other hand, in rigid clusters small elastic
deformations preserve the structure of rigidly connected particles in
relation with irreversible flocculation. For soft clusters m=1/2, and
for rigid clusters m=1/3. In Eq. (30), σc is the characteristic stress
for cluster break up, or characteristic cohesion stress, which depends
on the strength of the particle–particle interactions. It may be related
to the surface adhesive energy per unit contact area, Ea [45], or to the
adhesion force, Fa, defined as the force required to separate the parti-
cles at an infinite distance from each other [60], by:

σ c≈Ea=a≈Fa=a
2
: ð32Þ

Replacing Eq. (31) into Eq. (30) gives:

R
a
≈1þ ηr

ηL _γ
σ c

� �−m

ð33Þ

where (ηL _γ=σ c) is a dimensionless shear rate. Replacing Eq. (33) into
Eq. (29) gives:

ηr ¼ 1− ϕ
ϕm

1þ ηr
ηL _γ
σ c

� �−m� 	3−f
( )−2

: ð34Þ

Eq. (34) is an implicit function, ηr(ϕ,ηr), and has to be solved by a
numerical method. It was solved for soft clusters (m=1/2) and rigid
clusters (m=1/3), assuming typical values of ϕm=4/7, f=2.0 [45],
and different values of ϕ (0.1, 0.3, and 0.5). Solution points obtained
for ηr at different values of ηL _γ=σ c were connected by lines
(Fig. 11). It can be observed that for a given volume fraction of parti-
cles, the viscosity decreases at increasing shear rates, due to the de-
crease in the equilibrium cluster size (and its effective volume
fraction). At infinite shear rates, the clusters are reduced to the prima-
ry particles (from Eq. (33), R≈a), and the viscosity reaches a plateau
Fig. 11. Relative viscosity vs. dimensionless shear rate of weakly aggregated suspen-
sions, predicted by Eq. (34) with ϕm=4/7, and f=2.0, for soft clusters (m=1/2,
dashed lines), and rigid clusters (m=1/3, solid lines), at different particle volume frac-
tions. Arrow indicates the effect of increasing the particle volume fraction for a given
shear rate.
corresponding to a hard-sphere suspension (Eq. (34) is reduced to
Eq. (4)).

Potanin et al. [55] proposed a microrheological model in which the
shear stress (then the viscosity) was estimated as the sum of hydro-
dynamic and structural contributions:

ηr ¼ ηhydrr þ ηstructr : ð35Þ

The first term (ηrhydr) was attributed to the hydrodynamic cores of
fractal aggregates, and was calculated from an expression analogous
to Eq. (29). However, they did not follow Eq. (30), but another
break up criterion, which may be consulted in the original paper.
The second term (ηrstruct) accounts for the forces transmitted by chains
of particles linking neighboring aggregates into a transient network.
Soft and rigid chains were distinguished, but only the latter were con-
sidered to transmit stress through multiple connected backbones
which deform as elastic contorted rods. The backbone is the fraction
of the chain that is elastically active (darker particles in Fig. 1e), i.e.
able to transmit elastic forces which give rise to the network stress
tensor. Fig. 1.f shows the end-to-end distance of chains, or correlation
length of the network, ξ. In the case of backbone chains which span
the whole aggregate or connect neighboring aggregates, ξ≈R. The
number of particles per chain, Nch, is given by a relationship analo-
gous to Eq. (27) [55,65]:

Nch≈
ξ
a

� �x

ð36Þ

where x is the chemical dimension of chains or chemical length expo-
nent. Then, x is the dimension of the chain bearing the load. The value
of x ranges between 1 (straight chains) and ~1.6 (self-avoiding ran-
dom walk), while x=1.3 is the value expected for percolation clus-
ters [55,57,65]. Eq. (36) was originally proposed for irreversible
aggregation, and its terms will be further discussed in the next sec-
tion. In the low-shear Newtonian limit the hydrodynamic interaction
may be neglected, and the aggregates form a space-filling network, so
that the relative viscosity is reduced to the structural contribution:

ηr0≈ηstructr ≈α·τ0·ha
c2·a

σ c

ηL
ϕ

7þ3x−2f
3−f ð37Þ

where α is the capture efficiency of the fraction of particle collisions
resulting in rigid interaggregate chains, τ0=6.π.ηL.a3/(kB.T) is the
characteristic diffusion time of an isolated particle, ha is the equilibrium
gapwidth between particles,σc as in Eq. (32) (Fa defined as the bonding
force betweenparticles), and c=(U/kB.T).exp(−z.U/kB.T), where z is the
minimumnumber of bonds to be brokenwhen a particle exchanges sta-
ble positions within the rigid chain.

As mentioned, the previous models for weakly aggregated suspen-
sions under shear were obtained at the steady state, when the clus-
ters reached their equilibrium size after the break-up and re-
aggregation processes. These changes are not instantaneous, but re-
quire a finite time to take place. This non-equilibrium nature of the
structure implies that the rheology of weakly aggregated suspensions
can be affected by shear history, i.e. shear rate and time [3,10,26]. On
shearing the suspension at a given shear rate, the average radius of
the cluster — and consequently the viscosity — decreases (up to the
equilibrium value), and on standing the cluster size — and then the
viscosity — gradually recovers [3]. This time effect is called reversible
thixotropy. A wide range of thixotropy models has been proposed,
most of them phenomenological [26], and out of the scope of this
review.

Above the percolation concentration ϕg, cluster growth and over-
crowding result in gelation and in the appearance of an infinite span-
ning structure. As a result, the suspension shows a yield stress under
which this network no longer flows and displays solid-like
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viscoelasticity [45]. Combining Eqs. (28) and (30) the following ex-
pression may be obtained:

σ
σ c

≈ ϕ
ϕeff

 ! 1
f−3

−1

2
4

3
5−1

m

: ð38Þ

The yield stress (σ0) can be obtained by extrapolating the values
of the shear stress at the zero limit of shear rate, also corresponding
to an effective volume fraction ϕeff that tends to the maximum packing
fraction ϕm. Then, for ϕgbϕbϕm, Eq. (38) is reduced to [45,60]:

σ0

σ c
≈ ϕ

ϕm

� � 1
m 3−fð Þ

: ð39Þ

Predictive curves of σ0/σc vs. ϕ (Fig. 12) for suspensions of soft
clusters (m=1/2) and rigid clusters (m=1/2) were obtained using
values of ϕm=4/7 and f=2.0 in Eq. (39).

Wessel and Ball [62] obtained the expression σ0≈ϕ
2

3−f , which is
proportional to Eq. (39) with m=1/2 (soft clusters). In the model
of Potanin et al. [55], the dynamic yield stress obtained from the hy-
drodynamic contribution was:

σhydr
0
σ c

≈ 2
5π

� �
ϕ
ϕm

� � 3
3−f

: ð40Þ

It can be noted that Eq. (40) is proportional to Eq. (39)withm=1/3
(rigid clusters). On the other hand, the dynamic yield stress obtained
from the structural contribution was:

σ struct
0

σ c
≈ 2

5π

� �1þx
4þx α·ha

a

� � 3
4þx

ϕ
6

4þx: ð41Þ

Authors [55] claimed that Eq. (41) was valid at low ϕ, while
Eq. (40) at higher ϕ, and the dynamic yield stress is the maximum
of both. Under small-amplitude oscillatory deformation, they
obtained an expression for the high-frequency elastic modulus:

G′
∞≈

α·k1=20

c
σ cϕ

7þ2x−2f
3−f ð42Þ
Fig. 12. Yield stress/shear stress for cluster break-up ratio vs. particle volume fraction
of weakly aggregated suspensions, predicted by Eq. (39) with ϕm=4/7, and f=2.0,
for soft clusters (m=1/2), and rigid clusters (m=1/3).
where k0 is a numerical coefficient. Chougnet et al. [60] studied the
rheological behavior of cement and silica suspensions, and found
good agreement between experimental data and the model of Snabre
and Mills [45], both for viscosity (Eq. (34)) and yield stress (Eq. (39)).

3.2.2. Strongly aggregated suspensions — colloidal gels
When the inter-particle interaction is highly attractive, a gel struc-

ture is formed even at low particle volume fractions. A colloidal gel is
a special state of flocculated systems in which a continuous network
of particles is formed before settling occurs, with the resulting sus-
pension having a very high viscosity and a finite shear modulus.
According to the IUPAC, a gel is a colloidal system with a finite, usual-
ly small, yield stress [42]. Ultimately, the rheological properties of a
colloidal gel depend on the response of the gel backbone, the portion
of the microstructure that is active in stress transmission [61]. The
load is transmitted from cluster to cluster not via all the elements in-
side the cluster, but only through the backbone (darker particles in
Fig. 1e), in contrast to the branches attached to the backbone, which
do not transmit the load [59]. The elastic backbone has been approxi-
mated as a linear chain of springs [66]. The number of springs in a floc
that belongs to the backbone is given by Eq. (36), where it is equivalent
to Nch. Analogously, the correlation length of the network (ξ) for colloi-
dal gels is the critical length scale for gelation, and represents the size of
the closely packed fractal flocs (Fig. 1f), or blobs [66], or the size of the
mesh, which is of the order of the size of the aggregates (R) that have
filled the space [59]. The other term in Eq. (36), x, has been defined as
the backbone fractal dimension of the flocs [66], or fractal dimension
of the single bonds [59], or bond dimension, which describes the fractal
geometry of the backbone structure [61]. Its value is less than the fractal
dimension of the flocs (f), and larger than unity to provide a connected
path [66].

Shih et al. [66] developed a scaling model to describe the visco-
elastic properties of colloidal gels, well above the gelation threshold.
Considering the gel network as closely packed fractal flocs, they
found that the critical strain for nonlinearity and the plateau modulus
depend on the strength of interactions between the flocs compared to
within the flocs. When the links between flocs have a higher elasticity
than those within the flocs, known as the “strong-link regime”, the
macroscopic elastic constant is given by [66]:

G′≈ϕ
3þx
3−f : ð43Þ

When the flocs are more rigid than the inter-floc links, which is
known as the “weak-link regime” [66]:

G′≈ϕ
1

3−f : ð44Þ

Uriev and Ladyzhinsky [59] developed a model for the shear flow
of low concentration colloidal gels in the solid-like and the fluid like
states. Considering that the structure of these gels corresponded to
a space-filling network of colloidal aggregates having a tenuous frac-
tal structure, with rigid bonds between particles, they obtained an ex-
pression equivalent to Eq. (43):

G′≈k·G
0

p·ϕ
3þx
3−f ð45Þ

where G′p is the elastic modulus of the particle material, and kb1 is a
dimensionless fitting coefficient accounting for the contact zone be-
tween the particles [59]. They also proposed an expression for the
yield stress, based on the minimum energy required to break up the
backbone connecting structure in equilibrium, i.e. the single bond ener-
gy Ub:

σ0≈
k·Ub

a3
ϕ

3
3−f ð46Þ
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Fig. 14. Yield stress vs. particle volume fraction of strongly aggregated gels, predicted
by Eq. (49) with f=2.0, ϕm=0.64, and a=0.5 μm, at different values of the critical
bending moment (Mc). Arrow indicates the effect of increasing Mc for a given particle
volume fraction.
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where k is the fitting coefficient. Finally, they developed amodel for the
low shear limit viscosity, which they called the “solid-like viscosity”,
considering that the flow was controlled by the aggregates connected
into a network:

η0≈k·G
0

p·τb exp
Ub

kBT

� �� 	
·ϕ

3þ2x
3−f ð47Þ

where τb is the period of the thermal oscillations of the single bond.
Pantina and Furst [61] developed a micromechanical three point

bending test for the direct measurement of the particle–particle
bond rigidity, κ0, which can be used to estimate the shear elastic modu-
lus of colloidal gels through the expression:

G′ ¼ κ0

a
ϕ

3þx
3−f ð48Þ

which is equivalent to Eqs. (43) and (45). Studying PMMA aggregates
under various physicochemical conditions, they [61] obtained κ0 values
in the range between 0.01 and 1 N/m2. Assuming typical values of
f=2.0, x=1.3, and a=0.5 μm in Eq. (48), predictive curves of G′ vs. ϕ
at different values of κ0 (0.01, 0.1 and 1 N/m2) were obtained (Fig. 13).

The same authors [67] demonstrated that the yield stress of a col-
loidal gel can be quantitatively understood based on the critical bend-
ing moment of the underlying gel microstructure, Mc, according to:

σ0≈
Mc

a3
ϕ
ϕm

� � 3
3−f ð49Þ

where ϕm≈0.64 was considered as the point where the aggregates
become close packed. Eq. (49) is equivalent to Eq. (46) with
Mc=k.Ub. For the same PMMA aggregates mentioned previously,
Furst and Pantina [67] obtained Mc values in the range between
10−18 and 4×10−17 N.m. Using the values of f=2.0, and
a=0.5 μm into Eq. (49), predictive curves of σ0 vs.ϕ at different
values of Mc (10−18, 10−17 and 10−16 N.m) were obtained
(Fig. 14). It can be observed that for a given volume fraction of parti-
cles, both the elastic modulus (Fig. 13) and the yield stress (Fig. 14) of
the gels increase at increasing interparticle bonding energy.
Fig. 13. Elastic modulus vs. particle volume fraction of strongly aggregated gels, predicted
by Eq. (48) with f=2.0, x=1.3, and a=0.5 μm, at different values of particle–particle
bond rigidity (κ0). Arrow indicates the effect of increasing κ0 for a given particle volume
fraction.
4. Composite (or filled) suspensions and gels

Filler–matrix composite suspensions may be regarded as systems
where rigid or viscoelastic particles (the filler), are embedded in a
continuous viscoelastic material (the matrix) [68], as represented in
Fig. 1g. In many cases, the matrix is a gel in itself, and the system is
called a composite (or filled) gel. It has been found that the viscoelas-
tic properties of composite suspensions/gels depend mainly on the ri-
gidity of the matrix, the rigidity and volume fraction of the filler, and
the interaction or affinity between the filler and the matrix [31]. If
there is no interaction, this results in a decrease in the composite
shear modulus with increasing volume fractions of the filler. If there
is a strong interaction between both, this results in an increase in
the shear modulus of the composite at increasing volume fractions
of the filler if the latter is stiffer than the matrix [69], or the opposite
trend if the filler is softer than the matrix. This is the behavior
expected at small deformations. On the other hand, deviations from
this behavior may occur under conditions of high strain due to slip
at the matrix–filler interface, and or non-uniform distribution of
stress and strain throughout the material [31,69,70].

The reinforcement effect of particles on the suspension/gel has
been defined as the relative elastic modulus:

G
0

r ¼ G
0

c=G
0

m ð50Þ

where G′c is the elastic modulus of the composite suspension/gel, and
G′m is the elastic modulus of the matrix [31]. Smith [71] simplified the
coefficients in Van der Poel's theoretical model [72] for calculating the
shear modulus of a particulate composite. They considered an ideal-
ized composite material consisting of small spheres imbedded in a
matrix. The spheres were of approximately the same size, firmly at-
tached to the matrix, and uniformly distributed so that the composite
material is macroscopically homogeneous and isotropic. The system
was modeled as if each filler sphere (of radius a) was surrounded
by a shell of matrix material (of radius r=1), which in turn is embed-
ded in the homogeneous material (Fig. 1h). The mechanical proper-
ties of this homogeneous material are assumed to be the same as
the average macroscopic properties of the composite material (this
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is somehow analogous to the effective medium approach). The final
equation for G′r can be reduced to:

α G′
r−1

� �2 þ β G′
r−1

� �
þ δ ¼ 0 ð51Þ

where, for spherical particles:

α ¼ 8P−ϕ7=3S
� �

Q−3 M−1ð Þϕ½ �−126P M−1ð Þϕ 1−ϕ2=3
� �2 ð52Þ

β ¼ 17:5P 3M þ 4:5ð Þ−3 M−1ð Þϕ½ �−7:5 8P−5ϕ7=3
� �

M−1ð Þϕ ð53Þ

δ ¼ −131:25P M−1ð Þϕ ð54Þ

and the quantitiesM, P, S, and Q depend on the elastic modulus of the
filler particles, G′f, and that of the matrix (G′m), namely: M=G′f/G′m,
P=9.5M+8, S=76(M−1), and Q=3M+4.5.

Eq. (51) has two roots; the highest real root provides the correct
value of G′r. M is defined as the filler relative rigidity. The value of G′f
(andM) ranges from∞ for perfectly rigid particles, to 0 for perfectly vis-
cous particles. It has been noted [31] that while ϕ, ϕm, and G′m can be
determined by conducting experiments carefully, there does not appear
to be a reliable experimental method for determination of G′f.

Predictive curves ofG′r vs.ϕ for different values ofM (0, 1, 10, and∞)
were obtained from Eqs. (51) to (54) (Fig. 15). It can be observed that
when the rigidity of the filler is higher than that of the matrix
(G′f>G′m), the filler produce a positive reinforcing effect on the
suspension/gel; when G′f=G′m the filler has no effect on G′r,
and when G′fbG′m the filler has a negative effect. van Vliet [69] studied
the rheological behavior of gels filled with emulsion droplets stabilized
by different macromolecules, which were chosen to provide either no
or a strong interaction between the filler and the matrix. For non-
interacting particles, experimental data was close to the curve for
M=0, which corresponds to the theoretical behavior of a spherical
foam structure. He concluded that gels filled with non-interacting par-
ticles behave as if filled with particles with the rheological properties
of water. For interacting particles, experimental data were both below
and above the theoretical prediction for rigid particles (M→∞),
Fig. 15. Relative elastic modulus vs. particle volume fraction of composite gels, pre-
dicted by Eqs. (51) to (54) (dashed lines), and Eqs. (55) to (57) with V=0.5 and
ϕm=0.64 (solid lines), at different values of relative rigidity of the filler particles
(M=G′f/G′m). Arrow indicates the effect of increasing M for a given particle volume
fraction of particles.
depending on the type of gel matrix. The former result was attributed
to either the emulsion droplets not being completely rigid, and/or the
formation of an intermediate layer between the particles and the gel
matrix with different rheological properties. The latter result was also
reported by Kim et al. [73], and in both works it was attributed to parti-
cle aggregation (during matrix gelation), increasing their effective vol-
ume fraction. Another possibility is that Van der Poel–Smith's model
(Eqs. (51) to (54)) simply underestimates experimental values of G′r.

One of the approximate solutions of Van der Poel–Smith's model is
the well known Kerner's equation [74], which predicts G′r values even
lower than Van der Poel–Smith's model, significantly when the vol-
ume fraction of filler exceeds 0.2 [71]. Lewis and Nielsen [75] modi-
fied Kerner's equation introducing a term that accounts for the
maximum volume fraction of the filler:

G
0

r ¼
1þ A·B·ϕ

1−B· 1− exp − ϕ
1−ϕ=ϕm

� �h i ð55Þ

A ¼ 7−5·V
8−10·V

ð56Þ

B ¼ M−1
M þ A

ð57Þ

where V is the particles Poisson's ratio (for spheres V=0.5, then
A=1.5) [31]. Using values of V=0.5 and ϕm≈0.64 in Eqs. (55) to
(57) [70], predictive curves of G′r vs. ϕ for different values of M (0,
1, 10, and ∞) were obtained (Fig. 15). It can be observed that Kerner–
Lewis and Nielsen's model predicts G′r values higher than Van der
Poel–Smith's model, significantly at volume fractions higher than
about 0.3. Brownsey et al. [70] studied the rheological behavior of com-
posite gels consisting of spherical deformable filler particles embedded
in a gelatin gel matrix. They found that Kerner–Lewis and Nielsen's
model predicted lower values of reinforcement compared to experi-
mental data, but still in reasonable agreement. They attributed this dif-
ference to a lower real value of the maximum packing fraction of the
composite, compared to the theoretical value of 0.64. Carnali and Zhou
[76] studied the rheological behavior of starch gels, considering them
as composites where the dispersed starch granules (the fillers) have a
reinforcing effect on the amylose gel (the matrix). They fitted experi-
mental data with the Kerner–Lewis and Nielsen's model, and obtained
highly satisfactory agreement at ϕm=0.72, M=12 for systems gelati-
nized at 70 °C, and ϕm=0.74, M=8 for systems gelatinized at 85 °C.

Analogously to Eq. (50), the relative complex modulus may be de-
fined as:

G�
r ¼ G�

c=G
�
m ð58Þ

where G⁎c and G⁎m are the complex shear moduli of the composite
suspension/gel and the matrix, respectively. Pal [68] used the self-
consistent or effective medium approach to derive an expression for
the relative complex modulus of composite suspensions/gels with
solid viscoelastic particles (G⁎f >>G⁎m):

G�
r ¼

G�
r−G�

f =G
�
m

1−G�
f =G

�
m

 !2:5

· 1− ϕ
ϕm

� �−2:5⋅ϕm

ð59Þ

where G⁎f is the complex modulus of the filler particles. Eq. (59) is
analogous to Krieger and Dougherty's equation (Eq. (3)). For composite
gels filled with rigid particles, G⁎f→∞ and the first term of the product
is reduced to one. For this type of composites, Pal [68] and Manski et al.
[77] fitted G⁎r vs. ϕ experimental data with Eq. (59) and obtained good
predictions with ϕm values of 0.5 and 0.6, respectively. Using a value of
ϕm≈0.6 in Eq. (59), predictive curves of G⁎r vs. ϕwere obtained at dif-
ferent values of G⁎f/G⁎m (10, 100, and ∞) (Fig. 16). It can be observed
that for a given volume fraction of the filler, the relative complex

image of Fig.�15


Fig. 16. Relative complex modulus vs. particle volume fraction of composite gels, pre-
dicted by Eq. (59) with ϕm=0.6, at different values of relative complex modulus of
the filler particles (G⁎f/G⁎m). Arrow indicates the effect of increasing G⁎f/G⁎m for a
given particle volume fraction.
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modulus of the composite increases at increasing values of the relative
complex modulus of the filler.

5. Conclusions

From the many models proposed in the literature to describe the
shear viscosity of flowing suspensions, the Krieger–Dougherty equation
was selected because of its effectiveness, simplicity, and versatility. The
original expression (Eq. (4)) is well known to effectively predict the rela-
tive viscosity of hard-sphere suspensions. The many deviations from this
ideal case may be accounted by simple modifications of the original
equation, either by replacing the particle volume fraction by an effective
volume fraction, or by replacing the maximum packing fraction by an
effective maximum packing fraction. Theoretical expressions and em-
pirical values have been reported for both the effective volume fraction
and the effective maximumpacking fraction of each type of suspension,
and used in thiswork to reproduce predictive curves of relative viscosity
vs. particle volume fraction within typical ranges of experimental data.

In the case of aggregated suspensions, they form gels above the
percolation concentration, showing solid-like viscoelasticity. Several
theoretical models for the yield stress and elastic modulus of these
gels have been reported in the literature.We demonstrated the analogy
between thesemodels, and used typical empirical values to plot predic-
tive curves of yield stress and elastic modulus vs. particle volume frac-
tion within practical ranges of experimental data. The same was done
for the relative elastic and relative complex moduli of filler–matrix
composite gels.
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