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a b s t r a c t

Theoretical estimates are given for the overall dissipative response of ferroelectric ceramics with second-

phase inclusions, under arbitrary electromechanical loading histories. The ferroelectric behavior of the con-

stituent phases is described via a stored energy density and a dissipation potential in accordance with the

theory of generalized standard materials. An implicit time-discretization scheme is used to generate a vari-

ational representation of the overall response in terms of a single incremental potential. Estimates are then

generated by constructing sequentially laminated microgeometries of particulate type whose overall incre-

mental potential can be computed exactly. Because they are realizable, by construction, these estimates are

guaranteed to conform with any material constraints, to satisfy all pertinent bounds, and to exhibit the re-

quired convexity properties with no duality gap. By way of example, the theory is used to study the influence

of metallic particles and of microcavities on the electro-deformability of a lead zirconate titanate. In particu-

lar, the role of remanent polarization fluctuations on the piezoelectric properties is assessed.

© 2015 Elsevier Ltd. All rights reserved.
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. Introduction

The search for electro-deformable materials with specific combi-

ations of properties not found in monolithic ferroceramics has mo-

ivated the development of an increasing variety of two-phase fer-

oelectric composites. A natural option consists in dispersing in a

olycrystalline ferroelectric ceramic second-phase inclusions such as

etallic particles (e.g., Duan et al., 2000; Ning et al., 2012; Zhang

t al., 2010) or microcavities (e.g., Piazza et al., 2010). In practice,

hese composite materials are first synthesized by a suitable fabri-

ation process, then permanently polarized by application of a strong

lectric field, and finally employed within their piezoelectric regime.

ow, the influence of a second phase on the final piezoelectric prop-

rties of the composite system is not evident a priori in view of the

ntrincated role of material heterogeneity in the poling process. The

urpose of this work is to estimate theoretically such influence in

erms of the constitutive properties of the phases and the microstruc-

ural characteristics of the composite. A wide range of microme-

hanical models have already been proposed for that purpose —see,

or instance, the monograph of Topolov and Bowen (2009)—, but all
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roposals invariably treat the ferroceramic matrix of a poled com-

osite as a stress-free phase with uniform piezoelectric properties.

ue to material heterogeneity, however, strong spatial variations of

he electric field can arise during the poling process which, in turn,

an result in residual stresses and non-uniform piezoelectric coef-

cients within the permanently poled specimen (e.g., Idiart, 2014).

o account for these features, the entire poling process must be

imulated.

Given that ferroelectricity is largely hysteretic, the problem calls

or a methodology to estimate the overall response of two-phase de-

ormable dielectrics with complex particulate microstructures and

ith constituent phases that can simultaneously store and dissipate

lectro-mechanical energy. Estimates of this sort for rigid dielectrics

ave been recently derived by Idiart (2014). These estimates rely

n the generalized-standard material model for ferroelectricity pro-

osed by Bassiouny et al. (1988) —which identifies the irreversible

lectric polarization as an internal variable— and on the variational

epresentation of Miehe and Rosato (2011) for the macroscopic re-

ponse of heterogeneous ferroelectric solids in terms of an effec-

ive incremental potential. A special class of microgeometries is then

dentified such that it reproduces the essential geometrical features

f the actual composite microstructure while at the same time allow

he exact computation of this effective potential. The class consists

f certain sequentially laminated microgeometries which have been

uccessfully used already to model other types of particulate systems

ith nonlinear behavior such as viscoplastic composites and porous
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media (e.g., Danas et al., 2008; deBotton and Hariton, 2002; Idiart,

2008), and non-ohmic composite conductors (Hariton and deBot-

ton, 2003; Idiart and Ponte Castañeda, 2013). The predictions always

conform with material constraints, satisfy all pertinent bounds, and

exhibit the required convexity when applicable. This consistency is

guaranteed by the fact that the estimates are realizable —i.e., exact for

a given class of material systems— by construction. The present work

provides a generalization of this approach to deformable dielectrics.

We begin in Section 2 by formulating the problem of a hetero-

geneous dielectric body undergoing small deformations. The over-

all response is defined for a general composite system in Section 3

and then given for sequentially laminated systems in Section 4. By

way of example, specific results are reported in Section 5 for a lead

zirconate titanate with either metallic particles or microcavities. We

conclude the presentation by identifying a potential issue with a class

of constitutive models commonly used for monolithic polycrystalline

ferroceramics.

2. The composite material model

2.1. The material system and field equations

The material system under study is idealized here as a heteroge-

neous body occupying a domain � and made up of a continuous ma-

trix containing a uniform dispersion of second-phase inclusions. The

matrix phase will be identified with the index r = 1 while the inclu-

sions will be collectively identified with the index r = 2. Each phase

occupies a domain �(r) ⊂� (r = 1, 2) such that � = �(1) ∪ �(2). The

domains �(r) are described by a set of characteristic functions χ (r)(x),

which take the value 1 if the position vector x is in �(r) and 0

otherwise.

We restrict attention to isothermal processes produced by qua-

sistatic electromechanical interactions. These interactions are ex-

erted by a fixed electrostatic potential φ̂ applied via surface elec-

trodes occupying a portion ∂�v of the body boundary ∂� and by a

surface displacement û applied on a portion ∂�u of the body bound-

ary. For simplicity, we disregard the possible presence of free charges

within the material. The governing field equations are then given by

—see, for instance, Kamlah (2001)—

∇ · D = 0 and E = −∇φ in R
3, (1)

∇ · σ = 0 and ε = ∇ ⊗s u in �, (2)

with

D =
{
ε0E in R3\�
ε0E + P in �

(3)

and boundary conditions

φ = φ̂ on ∂�v and [D · n] = 0 on ∂�\∂�v, (4)

u = û on ∂�u and [σn] = 0 on ∂�\∂�u. (5)

In these expressions, φ and u are continuous fields representing the

electrostatic potential and the displacement, D, E, P, σ and ε are, re-

spectively, the electric displacement, the electric field intensity, the

material polarization, and the stress and strain tensors, [·] denotes

the jump across ∂�, n is the outward normal vector to ∂�, and ε0

denotes the electric permittivity of vacuum. In turn, ∇ is the standard

nabla operator and the symbol ⊗s represents the symmetric part of

the tensor product. Along internal surfaces of discontinuity, the vari-

ous fields must satisfy the jump conditions

[φ] = 0, [D · n] = 0, [u] = 0, [σn] = 0, (6)

where n denotes the normal vector to the discontinuity surface. In

addition, the electrostatic potential must vanish at infinity, i.e., φ →
0 as |x| → ∞.
The above field equations must be supplemented with consti-

utive relations describing the electromechanical response of each

hase. We adopt the thermodynamic approach of Bassiouny et al.

1988) wherein dissipative processes are characterized by an irre-

ersible polarization � playing the role of an internal variable. This

ramework is general enough to characterize simple responses such

s linear polarizability as well as complex responses such as rate-

ependent ferroelectricity —see, for instance, Kamlah (2001), Miehe

nd Rosato (2011).

The total energy of the material system and its surroundings is

hus written as

=
∫
�
e(x,ε, P, �) dV +

∫
R3

1

2
ε0E2 dV (7)

here the first term corresponds to the energy stored in the compos-

te material while the second term is the electrostatic energy of the

lectric field. The energy density e is taken to depend explicitly on

osition due to the heterogeneity of the body. In turn, the dissipation

f the system is assumed to be of the form

=
∫
�

∂ϕ

∂ �̇
(x, �̇) · �̇ dV, (8)

here ϕ is a convex, positive function of the irreversible polariza-

ion rate �̇ such that ϕ(·, 0) = 0, which is used to characterize the mi-

roscopic domain switching in the ferroelectric phase. The form (8)

uarantees a positive dissipation.

Thermodynamic arguments then imply that the constitutive rela-

ions of the material are given by (see Bassiouny et al., 1988)

= ∂e

∂P
(x,ε, P, �), σ = ∂e

∂ε
(x,ε, P, �)

nd
∂e

∂�
(x,ε, P, �) + ∂ϕ

∂ �̇
(x, �̇) = 0, (9)

here the first two expressions relate the electric field intensity and

tress with the polarization and strain, and the last expression pro-

ides the evolution law for the irreversible polarization �. In the case

f nonsmooth potentials, the derivatives in (9) should be understood

n the sense of the subdifferential of convex analysis. These constitu-

ive relations conform to the so-called generalized standard material

odel provided the energy e(x, ·, ·, ·) is convex (Germain et al., 1983).

n that case, the polarization can be eliminated from the constitutive

escription in favor of the electric field intensity by defining the free

nergy density

(x,σ, E, �)
.= sup

P,ε
[σ · ε + E · P − e(x,ε, P, �)] + 1

2
ε0E2, (10)

here the first term corresponds to a partial Legendre transformation

f e with respect to P and ε. Note that the function ψ is thus convex

n E and σ but concave in �. The constitutive relations (9) can then be

ritten as

= ∂ψ

∂E
(x,σ, E, �), ε = ∂ψ

∂σ
(x,σ, E, �)

nd
∂ψ

∂�
(x,σ, E, �) − ∂ϕ

∂ �̇
(x, �̇) = 0. (11)

aking use of the characteristic functions χ (r), the potentials ψ and

are finally expressed as

(x,σ, E, �) =
2∑

r=1

χ(r)(x) ψ(r)(σ, E, �),

(x, �̇) =
2∑

r=1

χ(r)(x) ϕ(r)(�̇), (12)

here ψ (r) and ϕ(r) denote, respectively, the free energy densities and

issipation potentials of each phase r.
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1 The material parameters provided in Table 1 below are such that O(||C(r)|| ×
||κ(r)||) ∼ 10 O(||h(r)||2). While the approach considered in this work can perfectly

handle material properties of the form (23)–(26), the approximations (27) will be used

to provide contact with previous works and to simplify the discussions of Section 5. It

has been verified that these approximations do not produce qualitative changes in the

predictions.
The field equations and boundary conditions (1)–(6), together

ith the constitutive relations (11)–(12) and appropriate initial con-

itions, completely define the electromechanical response of the sys-

em under consideration.

.2. Some material responses

Even though the approach considered in this work allows for

eneral stored energy densities e(r) and dissipation potentals ϕ(r), it

roves useful to record at this point some specific forms of common

se.

(i) Many nonpolar solids can be characterized as ideal isotropic

dielectrics with a non-dissipative linear response; in this case,

the potentials are of the form

e(r)(ε, P, �) = 1

2
ε · C

(r)ε + 1

2
P · κ(r)P and ϕ(r)(�̇) = 0,

(13)

where κ(r) = κ(r)I and C(r) = λ(r)I ⊗ I + 2μ(r)I. Here, I and I

are the second- and fourth-order identity tensors with major

and minor symmetry, and κ (r), λ(r) and μ(r) represent, respec-

tively, the polarizability and Lamé constants of the solid; the

free energy density is given by

ψ(r)(σ, E, �) = 1

2
σ · S

(r)σ + 1

2
E · ε(r)E, (14)

where ε(r) = ε0I + κ(r)−1 = ε(r)I and S(r) = (C(r))−1 represent,

respectively, the permittivity and compliance tensors of the

solid. The corresponding constitutive relations are given by

ε = S
(r)σ and D = ε(r)E. (15)

A perfect conductor where the electric field must vanish is

characterized by the limiting case κ (r) → 0 (ε(r) → ∞).

(ii) On the other hand, polycrystalline polar solids exhibiting

isotropic ferroelectricity are commonly characterized by po-

tentials of the form —see, for instance, Kamlah (2001),

McMeeking and Landis (2002), Miehe and Rosato (2011)—

e(r)(ε, P, �) = 1

2
(ε − ε̂

(r)
) · C

(r)(ε − ε̂
(r)

) + 1

2
(P − �)

· κ(r)(P − �) + (ε − ε̂
(r)

) · h(r)(�)(P − �) + e
(r)
st

(

and

ϕ(r)(�̇) = e(r)
c |�̇| + e(r)

0
ṗ(r)

0

1 + m(r)

( |�̇|
ṗ(r)

0

)1+m(r)

, (17)

where

C
(r) = λ(r)I ⊗ I + 2μ(r)

I, κ(r) = κ(r)I, (18)

e
(r)
st (�) = −h(r)

0
p(r)2

s

[
ln

(
1 − |�|

p(r)
s

)
+ |�|

p(r)
s

]
, (19)

ε̂
(r)

(�) = 3

2
ε(r)

s

( |�|
p(r)

s

)2
�

|�| ⊗d

�

|�| , (20)

h(r)(�) =
(
α(r)

0

�

|�| ⊗ �

|�| ⊗ �

|�| + α(r)
⊥ I ⊗ �

|�| +α(r)
=

�

|�| ⊗s I

)
× |�|

p(r)
s

. (21)

This model assumes that the polarization P and the strain ε are

additive compositions of a reversible part (P − �) and (ε − ε̂),

and an irreversible part � and ε̂. The potentials e
(r)

and ϕ(r)

st
represent the energy stored and dissipated via microdomain

switching, and ε̂ is the remanent strain induced by this switch-

ing. In the energy function (16), h(r) represents a piezoelectric

coupling tensor and the α(r)
i

represent piezoelectric moduli. In

the dissipation potential (17), e
(r)
c is the coercive field strength

of the solid —i.e., the electric field level above which domain

switching is triggered—, e
(r)
0

and ṗ
(r)
0

are, respectively, a ref-

erence electric field and a polarization rate characterizing the

rate-dependence of the switching process, and m(r) is a rate

sensitivity exponent. In the stored energy density (19), in turn,

p
(r)
s is the saturation polarization and h

(r)
0

is a material param-

eter characterizing the electric hysteresis slope. In the rema-

nent strain (20), ε(r)
s is the strain at saturated polarization, the

symbol ⊗d denotes the deviatoric part of the tensor product,

and the symbol ⊗s refers to symmetrization in the first two in-

dices. The reader is referred to Miehe and Rosato (2011) for a

detailed account of the various material parameters. It is noted

that the connection (20) between the remanent strain and po-

larization simplifies the description for it allows the use of a

single internal variable �. However, the resulting model is un-

able to capture ferroelasticity, that is, switching in response to

stress, and introduces a non-convex dependence of e(r) on �

which restricts the range of validity of the model to low me-

chanical stresses; this issue is discussed in Section 5.2. In any

event, the corresponding free energy density within the con-

vex range is given by

ψ(r)(σ, E, �) = 1

2
σ · Ŝ

(r)(�)σ + 1

2
E · ε̂(r)(�)E − σ · ĥ(r)(�)E

+ σ · ε̂(r)
(�) + E · � − e

(r)
st (�), (22)

with

Ŝ
(r)(�) = (C(r) − h(r)κ(r)−1h(r)T )−1, (23)

κ̂
(r) = κ(r) − h(r)T

C
(r)−1

h(r), (24)

ε̂(r)(�) = κ̂
(r)−1 + ε0I, (25)

ĥ(r)(�) = 1

2
(Ŝ(r)h(r)κ(r)−1 + S

(r)h(r)κ̂
(r)−1

); (26)

here, the superscript T denotes transposition between the first

pair of indeces and the last index. Now, material parameters

employed to model typical ferroelectric ceramics are usually

such that O(||C(r)|| × ||κ(r)||) 
 O(||h(r)||2), and therefore it

is common practice to take

Ŝ
(r) ≈ S

(r), κ̂(r) ≈ κ(r), ε̂(r) ≈ ε(r)= ε0I + κ(r)−1

,

ĥ(r) ≈ S
(r)h(r)κ(r)−1

, (27)

which simplifies expression (26) considerably1. Indeed, the

coupled constitutive relations then take the form

ε = S
(r)σ + ε̂

(r) − ĥ(r)E and D = ε(r)E + � − ĥ(r)T σ, (28)

while the evolution law for the irreversible polarization takes

the form

E − h(r)
0

�

1 − |�|
p(r)

s

+ 3ε(r)
s

(p(r)
s )2

σd�

− 1

|�|
[

[σ · ĥ(r)(�)E]
�

|�| + |�|
p(r)

s

(
I − �

|�| ⊗ �

|�|
)

v

κ(r)

]
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=
[

e(r)
c + e(r)

0

∣∣∣∣ �̇

ṗ(r)
0

∣∣∣∣m]
�̇

|�̇| , (29)

where σd is the deviatoric part of the stress tensor and the vec-

tor v is given by

v = 2α0

(
�

|�| · E

)
(S(r)σ)

�

|�| + α0

(
�

|�| · (S(r)σ)
�

|�|
)

E

+ α⊥tr (S(r)σ)E + 2α‖(S(r)σ)E. (30)

(iii) In practice, micromechanical studies on the piezoelectric re-

sponse of ferroelectric composites assume that the irreversible

polarization is uniform and fixed throughout the solid (e.g.,

Dunn and Taya, 1993; Spinelli and Lopez-Pamies, 2015). This

uniform-polarization approximation amounts to taking

e(r)(ε, P, �) = 1

2
ε · C

(r)ε + 1

2
P · κ(r)P

+ ε · h(r)P and ϕ(r)(�̇) = 0, (31)

with

h(r) = α(r)
0

n ⊗ n ⊗ n + α(r)
⊥ I ⊗ n + α(r)

= n ⊗s I, (32)

where ε and P are referred to the fully polarized reference con-

figuration of the solid, and the unit vector n denotes the direc-

tion of remanent polarization. The free energy density is then

given by

ψ(r)(σ, E, �) = 1

2
σ · Ŝ

(r)σ + 1

2
E · ε̂(r)E − σ · ĥ(r)E, (33)

where the hatted tensors are given by expressions analogous

to (23)–(26), and can be approximated by expressions (27).

3. The overall response

The focus of this work is on material systems where the char-

acteristic size of the microstructural heterogeneities —particles or

cavities— is much smaller than the characteristic size of the com-

posite body. Thus, making use of concepts of homogenization the-

ory, we can define an overall or homogenized response of the compos-

ite material as the relation between conjugate fields averaged over a

‘representative volume element’ (RVE)  which contains a sufficient

number of heterogeneities for the overall response to be effectively

independent of the prevalent conditions on its boundary (Germain

et al., 1983; Hill, 1963).

We now invoke the variational representation of Miehe and

Rosato (2011) for the overall response of heterogeneous solids with

hereditary behavior. In this representation, the field equations are

discretized in time (t0 = 0, t1, . . . , tn, tn+1, . . . , tN = T ) following an

implicit Euler scheme, and the constitutive relations (11) are ex-

pressed as

Dn+1 = ∂w

∂E
(x,σn+1, En+1; �n)

and εn+1 = ∂w

∂σ
(x,σn+1, En+1; �n), (34)

where w is an incremental potential defined by

w(x,σ, E; �n) =
2∑

r=1

χ(r)(x)w(r)(σ, E; �n) (35)

with

w(r)(σ, E; �n) = sup
�

[
ψ(r)(σ, E, �) − �t ϕ(r)

(
� − �n

�t

)]
. (36)

In this expression, �t = tn+1 − tn is the time step. The maximizing �

in (36) is the irreversible polarization at time tn+1 which solves the

discretized evolution law (11) .
2
Given the potential structure of the discretized constitutive rela-

ions (34), the corresponding macroscopic quantities are related by

n+1 = ∂w̃

∂E
(σn+1, En+1; �n) and εn+1 = ∂w̃

∂σ
(σn+1, En+1; �n),

(37)

here

˜(σ, E; �n) = min
E∈K(E)

min
σ∈S(σ)

〈w(x,σ, E; �n)〉 (38)

s an incremental effective potential. In this expression, 〈·〉 denotes vol-

me average over , K(E) denotes the set of compatible electric fields

with volume average 〈E〉 = E, and S(σ) denotes the set of stati-

ally admissible fields σ with volume average 〈σ〉 = σ . In turn, the

onjugate macroscopic quantities are such that D = 〈D〉 and ε = 〈ε〉.

xpression (37) constitutes the overall instantaneous response of the

olid, which is completely characterized by the effective potential w̃.

he complete overall response is obtained by solving the minimiza-

ion problem (38) for given �n at each time step and integrating (37)

n time. Note that despite appearances, the effective potential does

ot correspond strictly to a two-phase composite but rather to a com-

osite with an infinite number of phases —this was initially observed

y Lahellec and Suquet (2007) in the context of viscoelasticity. This

s because the field �n is, in general, heterogeneous even within each

onstituent phase. A priori, this conflicts with one of the practical pur-

oses of homogenization procedures, which is to generate a simple

escription of the overall response in terms of a reduced number of

acroscopic variables. However, the special class of material systems

onsidered in the next section are peculiar precisely in that the local

elds, including �n, exhibit discrete distributions and, consequently,

he overall response depends on a finite number of macroscopic

ariables.

. A sequentially laminated model for particulate composites

A sequential laminate is an iterative construction obtained by lay-

ring laminated materials (which in turn have been obtained from

ower-order lamination procedures) with other laminated materials,

r directly with the homogeneous phases that make up the compos-

te. The rank of the laminate refers to the number of layering op-

rations required to reach the final sequential laminate. Given our

nterest in two-phase composites comprised of a continuous matrix

ontaining a random dispersion of inclusions, we make use of the

equence of Idiart (2008, 2014). In this sequence, a rank-1 laminate

orresponds to a simple laminate with a given layering direction n1,

ith phases 1 and 2 in proportions (1 − f1) and f1. A rank-2 laminate

s constructed by layering the rank-1 laminate with the matrix mate-

ial r = 1, along a layering direction n2, in proportions f2 and 1 − f2,

ssuming that the length scale of the embedded laminate is much

maller than the length scale of the embedding laminate. A rank-M

aminate is obtained by repeating this process M times, always lami-

ating a rank-m laminate with matrix material r = 1, in proportions

m and (1 − fm), respectively, along a layering direction nm. Making

epeated use of the well-known solution for simple laminates and

he iterated homogenization theorem, it can be shown —see Idiart

2008, 2014) for derivations in the contexts of viscoplasticity and rigid

erroelectricity— that the incremental effective potential of the rank-

laminate is given by

˜(σ, E; �n) = min
ai∈R

i=1,...,M

min
ωi∈S(ni)

i=1,...,M

{
c(2)w(2)

(
σ(2)

, E
(2); �

(2)
n

)
+ c(1)

M∑
i=1

αi w(1)
(
σ(1)

i , E
(1)

i ; �
(1)
n,i

)}
, (39)
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here S(n) = {ω such that ωn = 0}, and

(2) = 1 − c(1) =
M∏

i=1

fi and αi = (1 − fi)

fi

∏M
j=i f j

1 − ∏M
j=1 f j

(40)

re microstructural variables representing, respectively, the total vol-

me fractions c(r) = 〈χ(r)(x)〉 of each material r —such that c(1) +
(2) = 1— and the fraction of matrix material added at the ith lami-

ation —such that αi > 0 and
∑M

i=1 αi = 1—. In turn, the electric field

ntensities and the stress tensors are given by

(1)

i = E + aini −
M∑
j=i

(1 − f j) ajn j,

(1)
i = σ + ωi −

M∑
j=i

(1 − f j)ω j, i = 1, . . . , M, (41)

(2) = E −
M∑

j=1

(1 − f j) ajn j, σ(2) = σ −
M∑

j=1

(1 − f j)ω j. (42)

key observation in deriving expression (39) by iteration was that

he variational representation (38) is valid for local responses of the

orm (34) with any convex incremental potential —not necessarily of

he form (36)—, and therefore include the macroscopic response (37).

ote that the potential w(2) is evaluated at a single value of the elec-

ric field and irreversible polarization, while the potential w(1) is eval-

ated at M different values. This means that the fields are uniform

ithin the inclusion phase r = 2 and discretely non-uniform within

he matrix phase r = 1.

The incremental effective potential (39) depends on the volume

ractions c(r) of each phase and on higher-order microstructural cor-

elations through the set of microstructural quantities {( fi, ni), i =
, . . . , M}. Thus, in order to use these constructions as model compos-

tes, the quantities (fi, ni) must be expressed in terms of the multi-

oint correlations of the microgeometries. However, this is not fea-

ible in general. One strategy consists then in identifying subclasses

f sequentially laminated constructions for which the dependence of

he overall potential on higher-order correlations can be made ex-

licit (Idiart, 2008; Idiart and Ponte Castañeda, 2013). Another strat-

gy consists in identifying subclasses for which the overall potential

xhibits desirable characteristics such as a certain symmetry group

Danas et al., 2008; deBotton and Hariton, 2002). In any event, it

roves convenient to relate the quantities (fi, ni) to the so-called H-

easures of the microgeometry μ(rs)(n) (r, s = 1, 2). These measures

re geometrical objects that depend on the two-point correlation

unctions 〈χ(r)(x)χ(s)(x − y)〉 of the microstructure; they quantify in

hase space the lack of compactness of weakly converging sequences

f characteristic functions [χ(r)(x) − c(r)] and provide a partial char-

cterization of microstructural oscillations along different directions

n physical space (Tartar, 1990). For statistically uniform microstruc-

ures they are given by (Smyshlyaev and Willis, 1998)

(rs)(n) = − 1

8π2

∫
R3

δ′′(n · x)(〈χ(r)(y)χ(s)(y − x)〉 − c(r)c(s)) dx,

(43)

nd for the particular class of sequentially laminated microgeome-

ries considered here they take the form

(rs)(n) = c(r)(δrs − c(s))
M∑

i=1

νi δ(n − ni),

ith νi = 1

c(1)

1 − fi

fi

i∏
j=1

f j, (44)

here δ(·) denotes the vector-valued Dirac delta function, and the

i are positive quantities such that
∑M

i=1 νi = 1. Relations (44)2 can
e inverted to express the fi in terms of the ν i. Upon replacing the

i in (39)–(42) by the ν i, we obtain an alternative expression for the

ncremental effective potential w̃ that depends on the underlying mi-

rogeometry through the total volume fractions c(r) of each material r

nd the set {(ν i, ni)}. The reader is referred to Idiart (2014) for further

etails.

If the incremental potentials w(r) are convex, the computation of

he effective potential (39) for given macroscopic variables σ, E and

rreversible polarizations �
(r)
n requires the solution of a convex opti-

ization problem with respect to ai and ωi. The corresponding con-

ugate variables D and ε can be then computed by differentiation; in

iew of the minimization conditions, it can be easily shown that

= ∂w̃

∂E
(σ, E; �n) = c(2) ∂w(2)

∂E

(
σ(2)

, E
(2); �

(2)
n

)
+ c(1)

M∑
i=1

αi

∂w(1)

∂E

(
σ(1)

i , E
(1)

i ; �
(1)
n,i

)
(45)

= ∂w̃

∂σ
(σ, E; �n) = c(2) ∂w(2)

∂σ

(
σ(2)

, E
(2); �

(2)
n

)
+ c(1)

M∑
i=1

αi

∂w(1)

∂σ

(
σ(1)

i , E
(1)

i ; �
(1)
n,i

)
, (46)

here the local fields are evaluated at the optimal solution. In ad-

ition, statistics of the local fields can be computed from expres-

ions (41)–(42). In particular, the first and second moments of the

ntraphase stress distribution within each phase are given by

σ〉(1) =
M∑

i=1

αiσ
(1)
i and 〈σ〉(2) = σ(2)

, (47)

σ ⊗ σ〉(1) =
M∑

i=1

αiσ
(1)
i ⊗ σ(1)

i and 〈σ ⊗ σ〉(2) = σ(2) ⊗ σ(2)
.

(48)

That these material systems represent the essential features of

wo-phase composites with particulate microstructures is supported

y comparisons with full-field simulations and approximate esti-

ates reported in various works on purely energetic/dissipative com-

osites (e.g., deBotton and Hariton, 2002; Idiart, 2008; Idiart et al.,

006; Danas et al., 2008). Furthermore, when both phases are rigid

deal dielectrics, the effective potential (39) agrees exactly with

he Maxwell-Garnett approximation —also known as the Claussius–

ossotti approximation— for two-phase linear dielectrics with H-

easure (44)1. Finally, if the uniform-polarization approximation

31) is employed, the effective potential (39) reduces to that of

pinelli and Lopez-Pamies (2015).

. Sample results for representative material systems

The model presented above is used in this section to explore the

nfluence of a second phase on the electro-deformability of polycrys-

alline ferroceramics. By way of example, we consider the extreme

ases of metallic particles and microcavities. In both cases, the ferro-

lectric matrix is characterized by potentials of the form (16)–(22).

n the other hand, the metallic particles are characterized as elastic

erfect conductors, and the microcavities are assumed to be vacuous.

able 1 shows the numerical values adopted for the various material

arameters. The values for the ferroelectric matrix roughly reproduce

he rate-dependent behavior of a polycrystalline lead zirconate ti-

anate at low frequencies (Miehe and Rosato, 2011; Zhou et al., 2001);

he values for the metallic particles correspond to platinum. The sec-

nd phase is assumed to be randomly and isotropically dispersed.

hus, we adopt the lamination sequence {ν i, ni} considered by Idiart

2014) —see also Danas et al. (2008)— with rank M = 250. It is found
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a b

Fig. 1. Macroscopic response of a ferroceramic containing metallic particles at various volume fractions (c(2) = 0.05; 0.15; 0.25): (a) electric displacement (D) and (b) axial strain

(ε) as a function of the applied electric field intensity (E). The quantities are normalized by the saturation polarization (ps), saturation strain (εs), and coercive strength (ec) of the

ferroceramic matrix.

Table 1

Material parameters adopted. The values for the ferroelectric matrix

roughly reproduce the rate-dependent behavior of a polycrystalline

lead zirconate titanate at low frequencies; the values for the metallic

particles correspond to platinum.

Symbol Parameter Units Value

Ferroelectric matrix

ε Electric permittivity C/(V·m) 1800ε0

ps Saturation polarization C/m2 0.25

h0 Hysteresis slope MV·m/C 0.1

m Rate-sensitivity exponent — 0.2

ṗ0 Reference polarization rate C/(m2·s) 100

ec Coercive electric field MV/m 0.35

e0 Reference electric field MV/m 0.35

μ Lamé parameter GPa 45

λ Lamé parameter GPa 70

εs Saturation strain — 10−3

α0 Axial piezoelectric expansion MN/C 12.6

α⊥ Lateral piezoelectric expansion MN/C 276

α= Piezoelectric shearing MN/C −1460

Metallic inclusions

ε Electric permittivity C/(V·m) ∞
μ Lamé parameter GPa 60

λ Lamé parameter GPa 225

Voided inclusions

ε Electric permittivity C/(V·m) ε0

μ Lamé parameter GPa 0

λ Lamé parameter GPa 0
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2 The specimen takes some time to reach the final equilibrium state in view of the

electric viscosity.
below that the resulting predictions percolate at c(2) = 1; conclusions

are therefore expected to be relevant to composites with a polydis-

perse second phase.

For each value of applied fields, the minimization in (39) with re-

spect to the ai and ωi is solved by means of a quasi-Newton optimiza-

tion method for smooth, convex functions, while the irreversible po-

larizations in the potentials w(r) are computed by means of a direct

search complex algorithm for nonsmooth, convex functions. In the

case of metallic particles, the minimization with respect to the ai is

subject to the vectorial linear constraint E
(2) = 0 with E

(2)
given by

(42)1, while in the case of microcavities, the minimization with re-

spect to ωi is subject to the tensorial linear constraint σ(2) = 0 with

σ(2)
given by (42) .
2
.1. Free-standing specimens

We begin by considering free-standing specimens subjected to

triangular electric signal with a peak amplitude of 4ec and a fre-

uency f0 of 1Hz. The specimens are cycled from their initially un-

oled state until the macroscopic response reaches a steady cycle,

nd then left unloaded until they reach their fully relaxed, perma-

ently poled state2. The time step employed in the calculations is

t = 5 × 10−3 s.

In reporting piezoelectric properties, the following standard no-

ation for transversely isotropic systems is employed: d33 = ∂ε‖/∂E,

31 = d32 = ∂ε⊥/∂E, dh = d33 + d31 + d32, g33 = ∂ε‖/∂D, g31 = g32 =
ε⊥/∂D, and gh = g33 + g31 + g32. The symbols ε‖ and ε⊥ in these

xpressions refer to the normal strains along the parallel and perpen-

icular directions to the applied fields.

.1.1. Ferroceramic with metallic particles

Fig. 1 shows the stabilized response predicted for various volume

ractions of metallic particles (c(2) = 0.05, 0.15, 0.25). The response

f the monolithic ferroceramic is also provided as a reference. Part

a) shows plots for the macroscopic electric displacement in the di-

ection of the applied electric field as a function of the applied electric

eld intensity, normalized by the saturation polarization and coercive

trength of the matrix, respectively. It is observed that the macro-

copic coercive strength of the composite decreases with increasing

olume fraction of particles, as expected from the electric field en-

ancement within the matrix produced by the presence of a metallic

hase. The macroscopic remanent polarization, on the other hand, is

ound to be relatively insensitive to the addition of metallic particles.

his is consistent with the experimental observations of Duan et al.

2000) on PZT composites with Pt particles. Furthermore, these pre-

ictions are qualitatively identical to those obtained by Idiart (2014)

or rigid dielectrics. Thus, as anticipated in that work, the local elec-

romechanical coupling does not seem to influence the macroscopic

lectric response of freestanding specimens.

In turn, part (b) shows plots for the axial strain in the direc-

ion of the applied electric field, normalized by the saturation strain,

s a function of the applied electric field intensity. The amplitude

f the deformation cycle represents the electro-deformability of



C.J. Bottero, M.I. Idiart / International Journal of Solids and Structures 80 (2016) 381–392 387

a b

c d

Fig. 2. Macroscopic piezoelectric coefficients of a permanently poled ferroceramic versus the volume fraction of metallic particles. Dotted lines correspond to the uniform-

polarization approximation.
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he composite. It is observed that the electro-deformability decreases

ith increasing volume fraction of particles. This electric-induced

eformation is composed of a piezoelectric part and a ferroelectric

witching part, as can be seen in expression (28). For the loading pro-

ess considered here, however, the ferroelectric part is dominant. The

ecrease of the overall electro-deformability is a consequence of the

act that the ferroelectric deformation in the matrix phase, as given

y expression (20), is proportional to the polarization squared and

as the saturation strain as a limiting value. Thus, even though the

ddition of metallic particles enhances the electric field in the matrix

hase, it does not produce larger electro-mechanical deformations in

hat phase, and at the same time it reduces the amount of bulk ma-

erial exhibiting electro-mechanical coupling. Note that this mecha-

ism will operate regardless of the elastic properties of the inclusion

hase.

Fig. 2 shows corresponding predictions for macroscopic piezo-

lectric coefficients of the permanently poled specimen at the end

f the loading program, as a function of particle volume fraction.

hese coefficients were calculated by differentiating numerically the

acroscopic deformation with respect to the macroscopic electric

eld and electric displacement. The results are compared with the

opular uniform-polarization approximation —dashed lines— using

he same sequentially laminated microgeometries and material pa-

ameters. Addition of metallic particles is seen to be detrimental for
ll piezoelectric coefficients except the hydrostatic coefficient d̃h. The

redicted trends are consistent with those observed experimentally

y Li et al. (2001) on PZT ceramics with Pt particles. The main ob-

ervation in the context of this figure, however, is that the uniform-

olarization approximation may not accurately capture the influence

f metallic particles on the entire set of piezoelectric coefficients. In-

eed, while the influence on the coefficients g̃ is well captured, the

nfluence on the coefficients d̃33 and d̃31 is considerably underesti-

ated. In fact, the uniform-polarization approximation misses out

ntirely the influence on the coefficient d̃33 which, incidentally, is one

f the most relevant coefficients for certain applications. Moreover,

e have verified that re-scaling the piezoelectric coupling tensor for

he matrix phase produces the same normalized results. The above

naccuracies can then be attributed to the neglect in the approxima-

ion of intraphase fluctuations of the permanent polarization within

he matrix.

As a result of such fluctuations, residual stresses remain within

he permanently poled composite. Predictions for the second mo-

ents of the intraphase residual stress distributions are given in

ig. 3a. The various curves correspond to the second moments of the

orm ||σ||, the mean hydrostatic stress σ m, and the von Mises equiv-

lent stress σ e, which can be computed by evaluating the following

races of the second-moment tensors (47)-(48): 〈||σ||2〉(r) = I · 〈σ ⊗
〉(r), 〈σ 2

m〉(r) = (1/3) J · 〈σ ⊗ σ〉(r), 〈σ 2
e 〉(r) = (3/2) K · 〈σ ⊗ σ〉(r).
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a b

Fig. 3. Field statistics in a ferroceramic containing metallic particles: (a) second moments of the intraphase residual stress distributions versus volume fraction of particles, (b)

probability density function for the distribution of electric field intensity within the matrix phase at various levels of applied field, for the choice c(2) = 0.25.
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Here, J and K are the standard fourth-order hydrostatic and shear

projection tensors such that I = J + K. Note that in view of these def-

initions the identity 〈||σ||2〉(r) = 3〈σ 2
m〉(r) + (2/3)〈σ 2

e 〉(r) holds. Plots

correspond to the square root of these quantities normalized by μεs.

It can be seen that at low to moderate volume fractions of particles

residual stresses are, on average, much larger in the inclusion than in

the matrix phase, while the opposite holds at large volume fractions.

Given the magnitude of μεs for the material parameters of Table 1,

these stress levels would be well below the mechanical strength of

the metallic particles and the matrix-particle interface, but could be

in the order of the mechanical strength of the ferroceramic matrix

under tension. In this connection, it is noted that hydrostatic stresses

within the matrix phase are found to be mostly of positive sign.

In any event, uniform-polarization approaches neglect these resid-

ual stresses entirely and are therefore unable to inform any failure

criteria.

We conclude this discussion by noting that, unlike the monolithic

ferroceramic, the electric response of the composite shown in Fig. 1a

exhibits a two-stage saturation which becomes more pronounced

with increasing volume fraction of particles. This feature was already

observed —but not explained— by Idiart (2014) in the context of rigid

composites. Interestingly, it is also found in recent phase-field sim-

ulations of periodic composites (Keip et al., 2015). The feature can

be ascribed to the bimodal character of the electric field intensity

within the matrix phase. Fig. 3b shows the probability density func-

tion P(1)
E

(E) of the electric field intensity E(x) = |E(x)| within the

matrix phase3, at four values of the applied electric field along the

loading ramp from the initial unpoled state —see inset— for the choice

c(2) = 0.25. The probability densities were computed from the set of

minimizing electric fields in (39) making use of the formulae of Idiart

et al. (2006) —in order to have a sufficiently large set of local field

values, these functions were obtained with sequential laminates of

rank 3000. The bimodal character of the distribution and its evolu-

tion with applied loading is clearly observed. Thus, at state A, the two

peaks sit at field intensities below the coercive strength so that the

matrix is mostly unpoled and the macroscopic response is linear. At

state B, the leading peak is sitting above the coercive strength level
3 This function is such that P(1)
E

(E) d E is the volume fraction of phase r = 1 where

the variable E takes values in the range E and E + d E.

l

s

o

o

o that a large portion of the matrix is now undergoing switching and

he macroscopic response suddenly increases in slope. At state C, the

eading peak sits at the field intensity for which the matrix begins

o saturate (∼1.5ec) while the trailing peak still sits below the coer-

ive strength; the macroscopic response exhibits a first saturation at

his stage. But as the trailing peak crosses the coercive strength more

atrix material undergoes switching and, consequently, the macro-

copic response increases in slope once again. Finally, at state D, the

ntire electric field distribution lies well above the coercive strength

o that the macroscopic response exhibits a second and final satura-

ion. This bimodal distribution is also responsible for the distortion

f the butterfly wells with increasing volume fraction of particles ob-

erved in Figure 1b. Bimodal electric field densities are also found in

igid ideal dielectrics with Hashin microgeometries, where the peaks

an be associated with van Hove-type singularities of the electric

eld distribution within the matrix phase (Cule and Torquato, 1998).

hese microgeometries correspond to polydisperse particle distribu-

ions just like the sequentially laminated microgeometries consid-

red here. By contrast, the electric field density function in rigid ideal

ielectrics with monodisperse particle distributions is found to be

nimodal (Cheng and Torquato, 1997), so that a two-stage satura-

ion in the macroscopic response is not expected in this case. This

s probably the reason why the experimental results of Duan et al.

2000) on PZT composites do not show such feature. In any event,

nowledge on the character of the probability densities of the fields

ay prove useful not only in understanding the observed response

ut also in deriving simplified mean-field approximations following

deas of Pellegrini (2001).

.1.2. Ferroceramic with microcavities

Fig. 4 shows predictions for various porosity levels (c(2) =
.05, 0.15, 0.25). Once again, the response of the monolithic ferro-

eramic is also provided as a reference. Part (a) shows normalized

lots for the macroscopic electric displacement in the direction of

he applied electric field as a function of the applied electric field in-

ensity. It is observed that the macroscopic coercive strength is rel-

tively insensitive to porosity, while the macroscopic remanent po-

arization decreases with increasing porosity. This is the exact oppo-

ite to the influence of the metallic particles observed in the previ-

us section, and it is consistent with the experimental observations

f Zeng et al. (2007) and Nie et al. (2010) on porous PZT ceramics.
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a b

Fig. 4. Macroscopic response of a ferroceramic containing microcavities at various volume fractions (c(2) = 0.05; 0.15; 0.25): (a) electric displacement (D) and (b) axial strain (ε)

as a function of the applied electric field intensity (E). The quantities are normalized by the saturation polarization (ps), saturation strain (εs), and coercive strength (ec) of the

ferroceramic.
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urthermore, the predictions are qualitatively identical to those re-

orted by Idiart (2014) for rigid dielectrics, which confirms that the

ocal electromechanical coupling does not influence the macroscopic

lectric response of freestanding specimens.

In turn, part (b) shows normalized plots for the axial strain in the

irection of the applied electric field as a function of the applied elec-

ric field intensity. In contrast to the case of metallic particles, the

lectro-deformability seems to be insensitive to porosity. However,

he piezoelectric coefficients of the permanently poled specimens do

ary strongly with porosity, as can be seen in Fig. 5. The presence

f porosity is seen to be beneficial for all coefficients g̃ and the hy-

rostatic coefficient d̃h. The trends are consistent with available ex-

erimental results for ferroceramics with closed porosity (Topolov

nd Bowen, 2009). It is emphasized, however, that the results do

ot apply to material systems with open porosity, where a much

tronger influence of porosity on macroscopic properties is expected

Barolin et al., 2014). Finally, it is observed that, like in the case of

etallic particles, the uniform-polarization approximation captures

he right trends, being quite accurate for the coefficients g̃, but un-

erestimates somewhat the influence of porosity on the coefficients

3̃3 and d̃31. Thus, the latter seems to be a common inaccuracy in-

roduced by the approximation, at least in the context of particulate

edia.

Plots for the second moments of the residual stress distribution

ithin the matrix phase are given in Fig. 6a; recall that the micro-

avities sustain no stress. Overall, the same trends as in the case of

etallic particles are found, with the hydrostatic stress being mostly

f the positive sign. However, a comparison with Fig. 3a shows that

he residual stresses in the ferroelectric matrix are, on average, lower

n the presence of microcavities than in the presence of metallic parti-

les. This is opposite to what occurs in composites subject to mechan-

cal loads, where stiffer inclusion phases induce lower stress levels in

he matrix phase —see, for instance, Idiart et al. (2006).

We conclude this discussion by noting that the macroscopic elec-

ric response of Fig. 4a does not exhibit the two-stage saturation and

utterfly distortion observed in the case of metallic particles. Fig. 6b

hows the probability density function of the electric field intensity

ithin the matrix phase at four values of the applied electric field. A

nimodal character is clearly observed. The absence of a two-stage

aturation in this case is thus consistent with the mechanism identi-

ed in the previous section.
.2. Compressed specimens

We now consider specimens under the simultaneous action of

lectric fields and mechanical stresses. Polycrystalline PZTs can with-

tand compressive stresses well above 50 MPa (Munz et al., 1998).

hus, by way of example, we subject unpoled specimens to a uni-

xial compressive stress of 50 MPa followed by a triangular electric

ignal with peak amplitude 4ec and frequency of 1 Hz along the di-

ection of the applied stress. The resulting predictions for material

ystems with metallic particles and microcavities at a volume frac-

ion of c(2) = 0.25 are reported in Fig. 7.

Parts (a) and (b) show the macroscopic axial strain as a function

f the applied electric field for both types of material systems. Dot-

ed lines correspond to the monolithic ferroceramic while solid lines

orrespond to the two-phase ferroceramics. Moreover, two sets of

ontinuous lines are shown: blue lines correspond to a low-cycle re-

ponse while red lines correspond to a high-cycle stabilized response.

he main observation in the context of these figures is that, in con-

rast to the previous findings for free-standing specimens, the high-

ycle stabilized response differs considerably from the low-cycle re-

ponse, especially in the porous specimen. These differences, how-

ver, are not expected to be physically meaningful but rather a spuri-

us result of the ill-defined energy density characterizing the ferroce-

amic matrix. As already noted in Section 2, the energy density (16) is

ot convex as required by the framework of generalized standard ma-

erials and, consequently, uniqueness of solutions to the incremental

roblem is not guaranteed.

It is precisely a non-uniqueness in the irreversible polarization

volution that results in the above odd behavior. Plots for the average

rreversible polarization �(1) over the ferroceramic matrix are shown

n parts (b) & (d). These plots show the maximum value over each

lectric cycle of the parallel and perpendicular projections of the vec-

or �(1) to the axis of applied loads, as a function of cycle number. In

iew of the overall isotropy of the unpoled specimens, the vector �(1)

hould remain aligned with the axis of applied loads throughout the

oading process; that is, the perpendicular projection should be zero.

y contrast, the predictions show an exponential growth of the per-

endicular projection up to a finite saturation value imposed by the

ocal requirement that |�(x)| < ps. That this is a consequence of the

on-convexity of the energy density (16) can be seen by evaluating

he local evolution law (29) at a uniaxial stress σ and aligned electric
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a b

c d

Fig. 5. Macroscopic piezoelectric coefficients of a permanently poled ferroceramic versus porosity. Dotted lines correspond to the uniform-polarization approximation.

a b

Fig. 6. Field statistics in a ferroceramic containing microcavities: (a) second moments of the intraphase residual stress distributions versus porosity, (b) probability density function

for the distribution of electric field intensity within the matrix phase at various levels of applied field, for the choice c(2) = 0.25.
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a b

c d

Fig. 7. Macroscopic axial strain (ε‖) and average irreversible polarization in the matrix phase (�(1)) of compressed specimens with (a) & (c) metallic particles and (b) & (d)

microcavities at a volume fraction of c(2) = 0.25.
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eld E, and projecting it onto a perpendicular direction to the applied

oads:[
h0

1 − |�|
ps

+ εs

p2
s

σ

]
�⊥ =

[
ec + e0

∣∣∣∣ �̇

ṗ0

∣∣∣∣m]
�̇⊥
|�̇| , �⊥(0) = 0. (49)

he effect of piezoelectric coupling in this evolution law is negligible

nd has been omitted for clarity. It is evident that the trivial solution

⊥(t) = 0 to Eq. (49) is stable provided the bracketed factor multi-

lying �⊥ on the left-hand side is positive. While this is the case for

ny tensile stress level (σ > 0), it is not the case for sufficiently large

ompressive stresses (σ < 0). This is likely to be the reason why the

redictions for the free-standing specimens are found to be stable.

n any event, this is a serious deficiency of the monolithic ferroelec-

ric model, which can be pinned down to the relation (20) between

he irreversible strain and polarization. In fact, the term depending

n σ enters the evolution law (49) by virtue of the deviatoric oper-

tion in (20). Even though some propounders of relation (20) claim

t is not intended for high stress levels —e.g., McMeeking and Landis

2002)—, expression (49) suggests non-uniqueness issues may arise

or compressive stresses of the order of ∼ h0 p2
s /εs, which can be a

ew megapascals for typical ferroceramics. Thus, ferroelectric models
ased on relation (20) should be used with caution even within their

resumable range of validity.
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