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An analytical method was developed to determine four quality parameters (Biodiesel percentage, Cetane
Number, Heat of Combustion Gross and Color) in biodiesel/diesel blends through a simple synchronous fluo-
rescence spectrum of the samples.
For this purpose, chemometrics models based on fluorescence spectra and PetroSpect data obtained from
mixtures of biodiesel/diesel were built. A variable selection by the successive projections algorithm (SPA)
was used in order to obtain simple multiple linear regression (MLR) models based on a small subset of wave-
lengths. The SPA-MLR results were compared with a partial least squares (PLS) full spectrum regression.
The best values found for the root mean square error of prediction using external validation were 0.37% (w/w)
for the biodiesel in diesel, 0.5 for cetane number, 0.013 MJ/kg for heat of combustion and 0.1 for color.

© 2012 Elsevier B.V. All rights reserved.
1. Introduction

Over the past decade, the world trends are the use of renewable
sources of energy to replace fossil fuels partially or totally. Among
biofuels, biodiesel is one the best alternatives for fuel. It is obtained
from vegetable oils, animal fats and recycled greases (also called
cooking oil or yellow grease).

Argentina is now the first biodiesel exporting country. Most of
Argentina's pure biodiesel (known as B100) is already exported to
foreign markets, and production capacity is expected to increase
300% in the next 3 years. The biodiesel Argentine industry is mainly
based on the use of soybean as feedstock. In the first 3 months of
this year, the production of Argentinean biodiesel increased in 44%,
to reach up 693.124 tons of this product [1].

The world production and consumption of pure biodiesel and its
binary mixtures with diesel have increased substantially. In early
2010, the Argentine government allowed the commercial use of bio-
diesel blends. Today, the domestic market for transport fuels requires
the addition of 7% (B7) of biodiesel, and in the next months is
expected to increase to 10% (B10) [2].

Biodiesel/Diesel blend is a very complex mixture of thousands of
individual compoundswith carbon numbers between 9 and 23 (number
+54 291 4595160.
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of carbon atoms per hydrocarbon molecule). Most biodiesel compounds
are esters, glycerides, pigments and antioxidants. The diesel compounds
are paraffinic, naphthenic and aromatic in different proportions.

The determinations of biodiesel quality parameters are important
for end-users, engine manufacturers and petroleum refining to ensure
that the biodiesel can be used directly or blendedwith petroleumdiesel.
The addition of biodiesel to diesel produces several changes in parame-
ters such as: cetane number, color, combustion heat and sulfur content,
volatility, oxidation stability, lubricity, foaming, particles (total contam-
ination), and turbidity [3,4].

There are several papers in the literature related to the use of
infrared spectroscopy and multivariate calibration for monitoring the
quality of pure biodiesel (B100) obtained [5–9]. Both, near and mid
infrared spectroscopy (NIR, MIR) are used to determine quality param-
eters in mixtures of biodiesel/diesel [10–13]. In fuel laboratories and
refineries there are currently compact equipments used to determine
chemical and physical properties using this technique [14,15]. Flôres
Ferrão worked with HATR-FTIR (Horizontal Attenuated Total Reflec-
tance Infrared) to determine parameters in Biodiesel/diesel blend
[16]. 1HNMR (Hydrogen Nuclear Magnetic Resonance) is frequently
used to follow the biodiesel synthesis [17–19], and its correlation with
NIR was also described for the determination of soybean biodiesel in
diesel [5,17].

Recent works predicts the content of biodiesel in biodiesel/diesel
blends using fluorescence spectroscopy [20,21]. Owing to a higher
selectivity and simplicity of synchronous fluorescence spectroscopy
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Table 1
PetroSpec: parameters range and performance.

Range Repeatability Reproducibility

Biodiesel [% w/w] 0–15 0.1 0.3
Cetane number 30–70 0.3 0.8
Gross heat of combustion [MJ/kg] 44.100–

48.800
– –

Color 1–5a – –

a ASTM color.
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(SFS), this technique has been successfully applied in our previous
work to discriminate biodiesel samples with respect to the base oil
employed in their production [22].

The SFS was also used to determine residual oil in diesel/kerosene
mixtures [23] and to determine PACs (Poly Aromatic Compounds) in
crude petroleum products such as petrol and kerosene [24].

In our previous work, the application of chemometric techniques
such as SPA-MLR (Successive Projection Algorithm–Multiple Linear
Regression) was used utilizing the fluorescence spectral data
[25,26].

The SPA–MLR algorithm works in three stages [27–30]. First, it
builds ordered chains of variables by selecting variables with the
least colinearity with previous ones. It is similar in nature to the
approach pioneered by Jurs et al. [31] although the mechanics of the
implementation may be different. Then, MLR models for each chain
of variables are built and the best model that yields the lower root
mean square error (RMSE) values is selected. Finally the algorithm
removes the variables that do not contribute significantly to the
model. A full cross-validation leave-one-out procedure has been cur-
rently used in the SPA algorithm [27].

PLS performs data decomposition into spectral score and loading
matrices prior to model building with the aid of these new variables,
using spectral and concentration data. MLR yields models are simpler
and easier to interpret than PLS, since this calibration technique per-
forms regression on latent variables, which do not have physical
meaning. On the other hand, MLR calibration is more dependent on
the spectral variables selection.

The aim of this work is to propose a fast method to determine four
main parameters (fatty acid methyl ester (FAME), Cetane number
(CN), Heat of combustion (HOC), and color); that establish the quality
of a commercial biodiesel/diesel blend. For that purpose chemometrics
models were built by usingmultivariate calibration andmolecular fluo-
rescence spectroscopy.

1.1. Quality parameters of biodiesel/diesel blends

1.1.1. Quantification of biodiesel
Infrared (IR) analysis is the most widely used measurement tech-

nology for measuring biodiesel in diesel. Both EN 14078 [32] and
ASTM D7371 [33] methods use infrared as the analytical method
and more specifically FTIR (Fourier Transform Infrared) spectroscopy.
EN 14078 involves dilution in hexane followed by a transmission
measurement and comparison of the carbonyl peak height measure-
ment against a calibration curve. The ASTM D7371 specifies an atten-
uated total reflectance (ATR)measurement on the neat fuel blend and
a chemometric partial-least-squares (PLS) model. In the biodiesel
measurement, the fatty acid methyl ester (FAME) has a characteristic
absorption at 1745 cm−1 (5.4 μm) due to the carbonyl group. Both
EN and ASTM methods specify this wavelength for the biodiesel
measurement.

1.1.2. Cetane number
It is one of the most studied parameters in literature. It is defined as

the measure of a diesel fuel ignition quality in a compression-ignition
engine. The CN is determined by a standard engine test (ASTM D613)
[34], requiring a relatively large volume of fuel sample. Also, because
of the time required to conduct the test, this method cannot be used
on-line to control diesel blending. Fast and reliable methods were
developed to monitor CN in the refinery [35,36].

Lower CN is obtained as higher percentage of biodiesel in the sam-
ple [37]. This parameter is influenced by structural features of fatty
acid alkyl esters, such as chain length, degree of unsaturation and
branching of the chain [38]. Usually, the CN increases with increasing
chain length, and decreases with increase in unsaturation in global
biodiesel/diesel composition [3].
1.1.3. Heat of combustion gross
The so-called gross heat of combustion or “higher heating value”,

also called gross calorific value, is the enthalpy of total combustion
of a fuel, that means that, all carbon converted to carbon dioxide,
and all hydrogen converted to water.

The precise determination of the HOC is of great interest for trad-
ing automotive diesel due to the fact that the HOC is the most impor-
tant parameter for determining the price of the automotive diesel to
be paid. Numerous empirical equations have been published to relate
the fuel HOC to the hydrogen elemental composition of fuel as
obtained by elemental analysis (ASTM D240) [39]. Another relation-
ship could be made with chain length, instauration and molar weight
[40].

1.1.4. Color
Determining the color of petroleum products is an important qual-

ity characteristic, since color serves as an indication of the degree of
refinement of the material, contamination, degradation, or oxidation
of diesel. This occurs when diesel is stored for long periods of time,
when it is exposed to temperatures above room temperature or in
the presence of moisture. Most diesel compounds, partially hydroge-
nated aromatic hydrocarbons, hydroxyaromatics, pyrroles, indoles,
polycylic aromatics, as well as olefins are susceptible to oxidation.

The diesel compounds associated to colormeasurement like indoles,
cycloalkylindoles, and benzoindoles (predominantly carbazoles), are
polycyclic aromatics.

The methodology recommended for determining the color of
automotive diesel oil samples is the colorimetry analysis according
to ASTM D1500, by which a sample is introduced into a glass cell
and the color of the sample is compared with an optical filter color
scale [41].

2. Experimental

2.1. Apparatus

FIA Laboratory (INQUISUR, UNS-CONICET):

Spectrofluorimeter Shimadzu RF-5301, with a xenon discharge
light source (150 W), was used to obtain all the spectra. Synchro-
nous fluorescence spectra were performed using a quartz cell,
0.2 cm×1 cm×3 cm=0.6 mL. The wavelength interval (Δλ)
utilized was 50 nm.

PETROBRAS Laboratory (Refinery Ricardo D. Eliçabe, Bahía Blanca):

PetroSpec fuel equipment (PAC) (TD PPA) is a near andmid infrared
spectroscopic analyzer. PetroSpec TD PPA was used for determining
FAME, CN, HOC and color.

This instrument lets the determination of above mentioned param-
eters with repeatability and reproducibility agree with those required
by the standard ASTM Methods [14]. It has an internal library with a
diverse matrix of over 600 fuels, developed globally by major fuel pro-
ducers (Shell and Ethyl Corp). Table 1 shows the operational range
parameters of the PetroSpec analyzer.
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The outlier samples are detected by this instrument through the
Mahalanobis distances [42] from the calibration set.

2.2. Reagents

Isooctane (2, 2, 4-trimethylpentane), of 99.8% anhydrous
(Sigma-Aldrich) was used as solvent of biodiesel/diesel samples.

2.3. Samples

A set of 30 diesel samples were acquired in different gas stations
(from diverse refineries) in Bahía Blanca city, 15 with 5% of biodiesel
(w/w), and the others 15 with 7% of biodiesel (w/w).

PETROBRAS supplied 5 samples of soybean biodiesel (B100) and 1
sample of pure diesel.

In addition to the 30 purchased biodiesel/diesel samples, 40 samples
were prepared by using those samples supplied by PETROBRAS, mixing
diesel and biodiesel in order to obtain percentage range to between of
1.5% to 12.0% biodiesel (w/w), in 1.5% (w/w) increments.

All samples were used for building the chemometrics models, for
that purpose the spectra of diluted sample were registered. The dilu-
tion of samples was done in volumetric flask, 0.5 ml of sample is
diluted to 10.0 ml with isooctane 99.8%. Samples without any dilution
were used in the PetroSpec instrument.

2.4. Processing data

Data obtained from respective spectra and PetroSpec analyzer were
preprocessing and PLS modeling with The Unscrambler 9.7 software. It
was used full cross validation (CV) to determine the number of latent
factors. The MLR variables (wavelength) were selected through the
SPA. The model was obtained using CV to define the number of vari-
ables. The algorithm is a lab-made routine implemented in Matlab 7.6.

The overall set of 70 samples were divide into 40 samples for cal-
ibration and 30 for prediction set by applying the SPXY (Sample set
Partitioning based on joint x–y distances) algorithm [43]. SPXY is an
extended KS algorithm [44] by encompassing both x- and y-differences
in the calculation of inter-sample distances in order to evaluate the pre-
diction ability of the resulting model. The resultant prediction set is rep-
resentative and ensures that the predictive ability of the model is
evaluated in a fair manner along the entire calibration range.

The SPXY algorithm consists of augmenting the distance defined
in Eq. (1) with a distance in the dependent variable (y) space for
the parameter under consideration. Such a distance dy(p, q) can be
calculated for each pair of samples p and q as:

dy p; qð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
yp−yq

� �2
r

¼ jyp−yq
��� ���; p; q∈ 1;N½ � ð1Þ

In order to assign equal importance to the distribution of the sam-
ples in the x and y spaces, distances dx(p, q) and dy(p, q) are divided
by their maximum values in the data set. In this manner, a normalized
xy distance is calculated as:

dxy p; qð Þ ¼ dx p; qð Þ
maxp;q∈ 1;N½ �dx p; qð Þ
þ dy p; qð Þ

maxp;q∈ 1;N½ �dy p; qð Þ ;p; q∈ 1;N½ �
ð2Þ

A stepwise selection procedure similar to the KS algorithm can
then be applied with dxy(p, q) instead of dx(p, q) alone.

The CV study was done in a single calibration set. The prediction set
was employed to compare the performance of the resulting models
according to the root mean square error of prediction (RMSEP) metric,
which is defined by using an Eq. (3), where ypred and yobs are predicted
and reference values, respectively, of ‘i’ sample set and ‘n’ is the number
of samples used. It is worth noting that the prediction samples are not
used in any phase of the variable selection or calibration procedures.
The predictive ability of the models was evaluated by the RMSEP.

RMSEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn
i¼1

ypred−yobs
� �2

n

vuuut
ð3Þ

3. Results and discussion

3.1. Synchronous fluorescence spectra acquisition

Biodiesel and diesel shownative fluorescence [20,45], the overlapping
spectra prevented the direct determination of the whole parameters
[21]. So, synchronous fluorescence was used in order to reduce this
overlapping and the SPA algorithm allowed the resolution of the four
parameters in themixtures. To avoid self-quenching all samples should
be diluted [46]. When synchronous fluorescence technique is used, the
selection of wavelength interval (Δλ) is one of the most important
experimental parameters. This selection was made testing different
Δλ and multivariate analysis. The scans were recorded from Δλ=10
to 80 nm in 10 nm increments. The best SPA-MLR and PLS models
were obtained with Δλ=50 nm.

The fluorescent spectra of the samples were obtained in synchro-
nous mode, within a range of 272–800 nm, keeping a fixed Δλ of
50 nm, with excitation and emission slits of 5 nm and a scan speed of
230 nm min−1. These selected spectral regions have 529 wavelength
values for each sample that were used in the multivariate analysis.

4. Chemometric models

The best results for preprocessing were obtained with a smooth-
ing with Savitzky–Golay algorithm using first order polynomial and
a 13 points window. The data were mean centered for PLS analysis.
Multivariate calibration involves the development of a mathematical
model that relates a property, in this case the fluorescence intensity
of a set of known reference samples. It involves a calibration step in
which the relationship between spectra and parameter values is esti-
mated from a set of reference samples, and a prediction step in which
the results of the calibration are used to estimate the parameter
values from an unknown sample spectrum.

The algorithms use a calibration (Xcal) and a prediction (Xpred) set
consisting of instrumental data and parameter values measured by
the PetroSpec (y-values).

For PLS modeling were eliminated the noisy variables by the pack-
age tools given.

The essence of SPA consists of projection operations carried out on
the calibration matrix. A detailed explanation of the projection oper-
ations is given elsewhere [27,28]. It is worth noting that prediction
samples are not used in any phase of the variable selection or calibra-
tion procedures. Table 2 presents the results of both multivariate cal-
ibration methods and the number of latent variables (LV for PLS) and
selected variables (NV for SPA-MLR) used in the models. Fig. 1 present
de selected variables for each parameter in an average spectrum.

4.1. Quality of estimates and predictions

In order to obtain the quality of the estimates, prediction and bias
can be used. Bias can be defined as the mean of the errors and can be
written as:

Bias ¼

Xn
i¼1

ypred−yref
� �

n
ð4Þ



Table 2
Results from multivariate analysis.

PLS SPA-MLR

FAME (% biodiesel w/w) LV/NV 6 14
RMSECV 0.58 0.65
RMSEP 0.37 0.58
BIAS −0.03 0.09
SEP 0.37 0.59
r 0.9945 0.9846

Cetane number LV/NV 7 9
RMSECV 0.9 0.9
RMSEP 0.7 0.5
BIAS 0.01 −0.15
SEP 0.7 0.5
r 0.9621 0.9693

Heat of combustion (MJ/kg) LV/NV 7 11
RMSECV 0.018 0.035
RMSEP 0.013 0.026
BIAS 0.00 0.01
SEP 0.014 0.027
r 0.9924 0.9677

Color LV/NV 2 18
RMSECV 0.2 0.2
RMSEP 0.2 0.1
BIAS 0.00 −0.09
SEP 0.2 0.2
R 0.9470 0.8785
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The standard error of prediction (SEP) measures the precision of a
prediction [47]. The SEP is defined as:

SEP ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XNp

i¼1

ŷi−yi−BIASð Þ2

Np−1
� �

vuuut ð5Þ
Fig. 1. Selected variables for each par
The full cross-validation leave-one-out procedure was applied,
which consists of systematically removing one of the training samples
in turn, and using only the remaining ones for the construction of the
latent factors and regression models [48].

The best choice for measuring the calibration merits is root mean
square error of the validation (RMSECV) and that explains the rug-
gedness of the model. The ability of a model to predict a new sample
is expressed in terms of root mean square of prediction (RMSEP). This
RMSEP obtained for each parameter shown in Table 2 are comparable
to other techniques [11,41,49].

Table 3 shows the results of FAME, CN, HOC and Color determina-
tions using ASTM methods and the proposed method with SPA-MLR
modeling. As can be observed, for all analyzed samples, the obtained
concentrations by proposed method were in close agreement with
those obtained of ASTM methods.
5. Conclusions

A rapid, simple and inexpensive method for determining quality
parameters (fatty acid methyl esters, cetane number, gross heat of
combustion and color) of biodiesel/diesel commercial blends is pro-
posed. The parameters were determined from the synchronous fluo-
rescence spectra data of real samples by using the chemometric
models.

Based on the results obtained in this proposal, we would suggest
using this methodology to build a compact piece of equipment to be
used in commercial samples, with a simple on-line dilution and spe-
cific light sources and sensors for each wavelength selected by the
SPA.
ameter in an average spectrum.



Table 3
Determination of FAME, CN, HOC and color in biodiesel/diesel commercial blends.

ASTM Proposed method

Sample FAME (ASTM D7371) CN (ASTM D613) HOC (ASTM D240) Color (ASTM D1500) FAME CN HOC Color

1 5.39 (0.02) 30.8 (0.3) 45.635 (0.010) 1.7 (0.1) 5.25 (0.37) 31.0 (0.4) 45.645 (0.025) 1.7 (0.1)
2 7.87 (0.03) 37.8 (0.2) 45.756 (0.009) 2.3 (0.0) 7.86 (0.21) 37.8 (0.2) 45.739 (0.010) 2.4 (0.0)
3 6.56 (0.02) 39.3 (0.3) 45.540 (0.005) 2.2 (0.1) 6.70 (0.43) 39.1 (0.5) 45.542 (0.021) 2.2 (0.0)
4 4.98 (0.04) 33.1 (0.1) 45.661 (0.008) 1.6 (0.0) 5.09 (0.15) 33.4 (0.4) 45.669 (0.008) 1.7 (0.1)
5 5.12 (0.01) 33.2 (0.1) 45.653 (0.008) 1.1 (0.0) 4.95 (0.36) 33.3 (0.3) 45.645 (0.014) 1.1 (0.1)

The samples were analyzed in triplicate (n=3). Standard deviations are indicated in brackets.
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