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ABSTRACT: We present a detailed analysis of nonempiri-
cally tuned range-separated functionals, with both short- and
long-range exchange, for calculating the static linear polar-
izability and second hyperpolarizabilities of various poly-
diacetylene (PDA) and polybutatriene (PBT) oligomers.
Contrary to previous work on these systems, we find that
the inclusion of some amount of short-range exchange does
improve the accuracy of the computed polarizabilities and
second hyperpolarizabilities. Most importantly, in contrast to
prior studies on these oligomers, we find that the lowest-
energy electronic states for PBT are not closed-shell singlets,
and enhanced accuracy with range-separated DFT can be
obtained by allowing the system to relax to a lower-energy
broken-symmetry solution. Both the computed polarizabilities and second hyperpolarizabilities for PBT are significantly
improved with these broken-symmetry solutions when compared to previously published and current benchmarks. In addition to
these new analyses, we provide new large-scale CCSD(T) and explicitly correlated CCSD(T)-F12 benchmarks for the PDA and
PBT systems, which comprise the most complete and accurate calculations of linear polarizabilities and second
hyperpolarizabilities on these systems to date. These new CCSD(T) and CCSD(T)-F12 benchmarks confirm our DFT results
and emphasize the importance of broken-symmetry effects when calculating polarizabilities and hyperpolarizabilties of π-
conjugated chains.

■ INTRODUCTION
Since the early 1960s,1−3 the linear and nonlinear optical
(NLO) properties of π-conjugated polymers have garnered
immense interest from both theorists4,5 and experimentalists6,7

for their use as novel optical materials. Specifically, recent
developments in these NLO materials have led to a wide variety
of technological advancements including optical memory,
holography, optical computing, nonlinear microscopy, and
electro-optic waveguide devices.8 Predictive computational
design, particularly with quantum chemical methods, will play
an important role in these advancements by providing a rational
and guided path for accurately calculating the NLO properties
in these conjugated materials. Among the various quantum
chemical techniques currently in use, the most accurate
calculations of polarizabilities and second hyperpolarizabilities
of polymers have been obtained with wave function-based
techniques (such as coupled cluster methods); however, these
calculations have been limited to short polyenes due to their
high computational costs.9 In contrast, the simple Hartree−
Fock method is sometimes still employed for the calculation of
hyperpolarizabilities of large molecules; unfortunately, the
Hartree−Fock formalism by definition does not fully account
for dynamic electron correlation, which plays an important role

in the estimation of polarizabilities and hyperpolarizabilities
(see refs 10 and 11 and references therein). Kohn−Sham
density functional theory (DFT), which includes an approx-
imate treatment of electron correlation, has become an
extremely popular and versatile method for its excellent balance
between accuracy and computational cost;12 nevertheless, the
selection of appropriate exchange-correlation (XC) functionals
for calculating polarizabilities and hyperpolarizabilities still
remains.
Historically, the accurate calculation of polarizabilites in π-

conjugated systems has presented an immense challenge for
conventional DFT methods. In particular, previous work by
others4,5,13−15 has demonstrated that DFT calculations with
common XC-functionals, including LDA, GGA, and functionals
constructed with a fixed percentage of exact exchange,
dramatically fail to provide an accurate description of both
the linear polarizability (α) and the second hyperpolarizability
(γ) of one-dimensional polymers. These difficulties stem from
the fact that polarizabilities are second-order electronic
properties and, as mentioned previously, will be extremely
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sensitive to exchange-correlation approximations in Kohn−
Sham DFT methods (in particular, for computing γ). In a very
recent paper by Champagne and co-workers,16 the authors
employed both standard and nonempirically tuned range-
separated functionals (specifically CAM-B3LYP and LC-BLYP)
to calculate the longitudinal linear polarizability and second
hyperpolarizability of polydiacetylene (PDA) and polybuta-
triene (PBT) oligomers (Figure 1). To test the accuracy of
these various range-separated methods, the authors utilized a
limited set of coupled-cluster methods with single and double
excitations and perturbative triple excitations, CCSD(T), in
conjunction with second-order and fourth-order Møller−
Plesset perturbation theory (MP2 and MP4) as benchmark
standards. On the basis of these benchmarks, the authors
concluded with the following statements: (1) “It is not
expected that [adjusting the fraction of short-range HF
exchange] will improve the polarizability and the second
polarizability,” (2) “For all levels of approximation, the
overestimation of the α values [was observed],” and (3) “The
bad performance of all levels of approximation to estimate γ of
PBT chains [was observed].”
To shed additional light on these previous conclusions, we

present a new, detailed investigation using (1) nonempirically
tuned range-separated functionals that include a portion of
short-range HF exchange and (2) an extensive analysis of
broken-symmetry effects in range-separated functionals for
calculating polarizabilities and second hyperpolarizabilies in
PDA and PBT chains. In regard to the first point, previous
work by our group17 and others18−21 has suggested that the
inclusion of some short-range HF exchange does improve the
accuracy of computed excited-state properties, and we
demonstrate that this also enhances the accuracy of computed
polarizabilities. Addressing the second point, broken-symmetry
effects arise when the restricted (closed-shell) wave function
becomes unstable toward an unrestricted (open-shell)
solution.22,23 In particular, we find that the lowest-energy
electronic states for PBT are not closed-shell singlets, and
enhanced accuracy with range-separated DFT can be obtained
by allowing the system to relax to a lower-energy broken-
symmetry solution. To both supplement and verify our
findings, we also provide new large-scale CCSD(T) and
explicitly correlated CCSD(T)-F12 benchmarks for the PDA
and PBT systems. It is worth mentioning that in the original
work by Champagne and co-workers,16 only a limited set of
CCSD(T) benchmark calculations were carried out due to the
immense computational cost of these wave function-based
methods (i.e., the largest PDA and PBT chains with five and six
oligomers were not computed). For this reason, the authors
commented that their range-separated calculations could not be

checked to assess if the extrapolated DFT trends would either
degrade or improve as a function of oligomer size. In this work,
we complete these computationally intense CCSD(T)
calculations as well as provide a new set of explicitly correlated
CCSD(T)-F12 benchmarks which comprise the most complete
and accurate calculations of polarizabilities and second
hyperpolarizabilities on these systems to date. Taken together,
our new broken-symmetry range-separated DFT calculations in
conjunction with these high-level CCSD(T) and CCSD(T)-
F12 benchmarks highlight the importance of broken-symmetry
effects when calculating polarizabilities and hyperpolarizabilties
of π-conjugated chains. Finally, we give a detailed analysis for all
of these effects on various PDA and PBT oligomers and discuss
the implications of both short-range exchange and broken-
symmetry effects in calculating polarizabilities in these
challenging systems.

Theory and Methodology. Since one of the main
purposes of this work is to assess the accuracy of various
range-separated functionals for computing polarizabilities, we
briefly review the underlying theory for these methods. In
contrast to conventional hybrid functionals, the range-separated
formalism24,25 mixes short-range density functional exchange
with long-range Hartree−Fock exchange by partitioning the
electron repulsion operator into short and long-range terms
(i.e., the mixing parameter is a function of electron
coordinates). In the most general form of the range-separated
approach, the interelectronic Coulomb operator is given by26,27
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The erf term denotes the standard error function, r12 is the
interelectronic distance between electrons 1 and 2, and μ is the
range-separation parameter in units of Bohr−1. The parameters,
α and β, satisfy the following relations: 0 ≤ α + β ≤ 1, 0 ≤ α ≤
1, and 0 ≤ β ≤ 1. The parameter α in the partitioning allows a
contribution of HF exchange over the entire range by a factor
of α, and the parameter β allows us to incorporate long-range
asymptotic HF exchange by a factor of (α + β). For example,
the CAM-B3LYP functional of Yanai and co-workers28 uses α =
0.19, α + β = 0.65, and μ = 0.33; however, the CAM-B3LYP
functional does not incorporate a “full” range separation as it
only has 65% HF exchange at long-range (instead of the correct
100% asymptotic HF exchange). In our previous work on
range-separated functionals,29−33 we have used and para-
metrized “full” range-separation schemes that correspond to
setting α = 0.0 and β = 1.0. In particular, we31 and others34,35

have previously shown that maintaining a full 100%
contribution of asymptotic HF exchange is essential for

Figure 1. Molecular structures of the PBT and PDA oligomers (N = 1−6) studied in this work. The longitudinal linear polarizability and second
hyperpolarizability of both structures are computed along the z-axis shown in the figure.
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accurately describing valence excitations in even relatively
simple molecular systems. For the two range-separated LC-
BLYP methods used in this work, we fix α + β = 1.0 (with
different values of α) in conjunction with self-consistently
tuning the range-separation parameter μ by satisfying DFT-
Koopmans’ theorem.36−38 In summary, this theorem states that
the energy of the highest occupied molecular orbital (HOMO)
equals the negative of the ionization potential (IP), which is
defined as the (ΔSCF) difference between the ground-state
energy of the N electron and the N − 1 electron systems.
Within the Kohn−Sham DFT formalism, this condition is
fulfilled for the exact XC-functional; therefore, adjusting the
range-separation parameter in this self-consistent manner
provides a theoretical justification for this procedure. Although
several numerical schemes exist, one practical approach for self-
consistently tuning the range-separation parameter μ is to
numerically minimize the following function:

μ ε

ε

= +

+ + + +

μ μ

μ μ

J N N

N N
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where εHOMO
μ (N) is the HOMO energy of the N-electron

system, and IPμ(N) is the ground-state energy difference
between the N and N − 1 electron systems with the same
range-separation parameter. The second term in this equation
takes into account the N + 1 system to indirectly tune the
LUMO energy of the N electron system. The LUMO energy
cannot be directly incorporated in this equation since DFT−
Koopmans’ theorem does not explicitly relate the electron
affinity (EA) to the negative of the LUMO energy.
To obtain the optimal μ values for each oligomer, several

single-point energy calculations on fixed geometries (discussed
further below) were carried out by varying μ from 0.0 to 0.4 (in
increments of 0.02) for each of the N, N + 1, and N − 1
electron states. These calculations were computed using two
nonempirically tuned LC-BLYP methods: The first method
does not include any short-range exchange (i.e., α = 0.0, β =
1.0), and the second method contains 20% exchange over the
entire range (i.e., α = 0.2, β = 0.8). It is important to emphasize
that each of the different LC-BLYP parametrizations used in
this work still recover the full 100% exchange at asymptotic
distance (α + β = 1.0) even though each parametrization has a
different exchange contribution at short range. In addition, we
also tested the performance of the LC-BLYP(μ = 0.47) method
since there has been recent work demonstrating that hyper-
polarizabilities of various chromophores are more accurately
described without utilizing the nonempirically tuned proce-
dure.39 For all of the oligomers, we carried out a DFT stability
analysis at all LC-BLYP levels of theory to converge (if
possible) toward a lower-energy broken-symmetry solution,
which allows for an unrestricted spin state as well as a reduction
in symmetry of the orbitals. With the broken-symmetry
solutions in hand, J2 was computed (eq 2) as a function of μ
for each polyene and all of the various monomers. Spline
interpolation was subsequently used to refine the minimum for
each individual system. All DFT calculations were carried out
with the Gaussian 09 package40 using default SCF convergence
criteria (density matrix converged to at least 10−8) and the
default DFT integration grid (75 radial and 302 angular
quadrature points).
In order to maintain a consistent comparison with the

previous study of Champagne and co-workers, identical
molecular geometries obtained from ref 16 were used

throughout this work, and the Cartesian coordinates for all
the systems are listed in the Supporting Information for
completeness. Similarly, we utilized the same 6-31+G(d) basis
set to compute the longitudinal static polarizability and second
hyperpolarizability of the various PDA and PBT chains, ranging
from one to six monomer units. Following the same approach
by Champagne et al., all of the polarizabilities obtained with all
DFT methods were calculated using analytical derivatives of the
energy with respect to field strength within the coupled-
perturbed Kohn−Sham (CPKS) method. Second hyper-
polarizabilities for all DFT methods were evaluated as
second-order numerical derivatives of the polarizability with
respect to the applied external electric field. At the wave
function-based CCSD(T) and explicitly correlated CCSD(T)-
F12 levels of theory, polarizabilities and hyperpolarizabilities
were manually calculated with a custom-developed code as the
second- or fourth-order numerical derivatives of the energy
with respect to the applied external electric field. In these finite
field approaches, the following field amplitudes in atomic units
(1 au = 5.142206 × 1011 V/m) were chosen: F = 0.0, ± 1 ×
10−4, ± 2 × 10−4, ± 4 × 10−4, ± 8 × 10−4, ± 16 × 10−4, and
±32 × 10−4 au. To maintain a consistent comparison with the
various DFT methods, the CCSD(T) calculations were also
performed with the same 6-31+G(d) basis set. In addition to
the CCSD(T)/6-31+G(d) calculations, new CCSD(T)-F12
calculations were also carried out to verify both the overall
trends and quality of the CCSD(T) benchmarks. The
CCSD(T)-F12 methods have attracted recent attention for
their ability to calculate extremely accurate electronic energies
(typically at a higher level of accuracy than conventional
CCSD(T) with the same basis) by constructing a wave function
that depends explicitly on the interelectronic coordinates. As
such, the explicitly correlated CCSD(T)-F12 methods exhibit
dramatic improvements in basis set convergence, and results of
quintuple-zeta quality that were obtained with smaller triple-ζ
basis sets have previously been shown.41 To this end, we carried
out our CCSD(T)-F12 calculations with the cc-pVDZ basis,
which is the largest basis set available that is commensurate
with both the density-fitting algorithm in Molpro and our
computational resources. As a side note, both the CCSD(T)
and CCSD(T)-F12 calculations were extremely computation-
ally intensive, especially for the large PDA[5], PDA[6],
PBT[5], and PBT[6] structures. For example, the largest of
these structures, PDA[6], took up to 18 continuous days (for
each of the finite field F amplitudes) on 16 × 2.3 GHz AMD
Opteron CPUs, and each calculation consumed up to 356 GB
of disk space on rapid-access solid state drive storage. Finally,
all of the CCSD(T)-F12 polarizabilities and second hyper-
polarizabilites reported in this work were obtained from self-
consistent CCSD(T)-F12a energies. The CCSD(T)-F12a
energies were chosen over the CCSD(T)-F12b results since
extensive benchmarks have shown that the CCSD(T)-F12a
method gives better results for smaller basis sets (such as the
cc-pVDZ basis set used in this work) than CCSD(T)-F12b.42

The F12b variant differs from the F12a method by the inclusion
of an additional energy correction which approximately doubles
the magnitude of the coupling between the conventional and
explicitly correlated pieces of the calculation.42,43 Taken
together, the CCSD(T)-F12 polarizabilities and second hyper-
polarizabilities offer a second check on both the DFT and
CCSD(T) results as well as provide new, additional high-
quality benchmarks for the PDA and PBT systems.

Journal of Chemical Theory and Computation Article

DOI: 10.1021/acs.jctc.6b00360
J. Chem. Theory Comput. XXXX, XXX, XXX−XXX

C

http://pubs.acs.org/doi/suppl/10.1021/acs.jctc.6b00360/suppl_file/ct6b00360_si_001.pdf
http://dx.doi.org/10.1021/acs.jctc.6b00360


■ RESULTS AND DISCUSSION

Figure 2 shows the smooth curves that result from computing
J2 as a function of μ for (a) PDA without short-range exchange
(LC-BLYPα=0.0,β=1.0), (b) PDA including short-range exchange
(LC-BLYPα=0.2,β=0.8), (c) PBT without short-range exchange
(LC-BLYPα=0.0,β=1.0), and (d) PBT including short-range
exchange (LC-BLYPα=0.2,β=0.8). As discussed in the Theory
and Methodology Section, we carried out a full DFT stability
analysis at all LC-BLYP levels of theory for both PDA and PBT
to allow (if possible) for a lower-energy broken-symmetry
solution. As shown in Figure 2, only closed-shell solutions were
obtained for PDA (regardless of μ value), whereas a broken-
symmetry configuration was obtained for large values of μ in
PBT for both LC-BLYPα=0.0,β=1.0 and LC-BLYPα=0.2,β=0.8. These
results can be rationalized from the chemical structures of these
systems since PDA is composed of successive double-single-
triple-single CC bonds (cf. Figure 1) and is more alternant than
PBT, which exhibits a single−double−double−double bond
CC bond pattern (i.e., the π orbitals are much more strongly
conjugated along the backbone of PBT compared to PDA).
From a more theoretical viewpoint, range-separated functionals
with higher values of μ inherently contain larger contributions
of HF exchange in the XC potential, and it is well known44−48

that DFT methods containing a large percentage of HF
exchange will favor a lower-energy broken-symmetry config-
uration.44−48 It is interesting to note that for sufficiently large
values of μ, all PBT oligomers (even the smallest PBT[2]
structure) will exhibit a broken-symmetry solution where the
alpha and beta spin densities alternate through the whole

backbone of the molecule, and a long-range ordering of the
spin density persists as the length of the oligomer increases.
This phenomenon corresponds to electrons localizing in the p
orbitals of the carbon atoms in an antiferromagnetic pattern,
which can be visualized as the spin density differences in Figure
3. Note that we do not obtain an antiferromagnetic pattern for

PDA since the ground states for all of the PDA structures
(regardless of μ) are closed-shell singlets, and the alpha and
beta spatial distributions are the same.
The optimally tuned μ values for PDA and PBT as obtained

by both the LC-BLYPα=0.0,β=1.0 and LC-BLYPα=0.2,β=0.8 func-
tionals are summarized in Table 1. It is interesting to note that
the optimal μ values for both PDA and PBT are not affected by

Figure 2. Plots of J2 as a function of mu for (a) PDA without short-range exchange (LC-BLYPα=0.0,β=1.0), (b) PDA including short-range exchange
(LC-BLYPα=0.2,β=0.8), (c) PBT without short-range exchange (LC-BLYPα=0.0,β=1.0), and (d) PBT including short-range exchange (LC-BLYPα=0.2,β=0.8).
The shaded regions in (c) and (d) denote the values of μ where a symmetry-broken solution is obtained.

Figure 3. Spin density difference (blue = positive spin density and red
= negative spin density) obtained with LC-BLYP(μ = 0.47) for the
various PBT oligomers.
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the broken-symmetry solutions since the shaded regions
(where a broken-symmetry solution is obtained) in Figure 2

lie to the right of the minima of all the J2 curves. In other words,
the ground-state wave function at the optimal μ values for PBT

Table 1. Nonempirically Tuned μ Values for All Oligomers of PDA and PBT at the LC-BLYP/6-31+G(d) Level of Theorya

PDA PBT

N LC-BLYP (α = 0.0, β = 1.0) LC-BLYP (α = 0.2, β = 0.8) LC-BLYP (α = 0.0, β = 1.0) LC-BLYP (α = 0.2, β = 0.8)

1 0.289 (0.294) 0.240
2 0.241 (0.246) 0.196 0.254 (0.260) 0.205
3 0.212 (0.216) 0.170 0.213 (0.214) 0.168
4 0.194 (0.194) 0.153 0.185 (0.183) 0.142
5 0.181 (0.178) 0.142 0.166 (0.160) 0.125
6 0.172 (0.166) 0.134 0.151 (0.145) 0.111

aNumbers in parentheses are μ values obtained by Champagne et al.16

Table 2. Longitudinal Linear Polarizability and Second Hyperpolarizability for Increasingly Large PDA Oligomers at Various
Levels of Theorya

N CAM-B3LYP CAM-B3LYP (BS)

LC-BLYP
(α = 0.0, β = 1.0)

μ = adj.

LC-BLYP
(α = 0.2, β = 0.8)

μ = adj.
LC-BLYP
μ = 0.47

LC-BLYP (BS)
μ = 0.47 CCSD(T) CCSD(T)-F12

α (a.u.)
1 140.14 140.14 139.14 139.50 131.73 131.73 123.33 (123.33) 123.92
2 323.26 323.26 327.87 327.03 290.62 290.62 267.20 (267.03) 272.71
3 558.04 558.04 584.22 577.84 483.61 483.61 439.70 (439.50) 454.19
4 825.12 825.12 893.36 875.60 695.05 695.05 627.67 (627.39) 654.38
5 1111.36 1111.36 1241.75 1206.20 916.30 916.30 824.27 865.75
6 1408.90 1408.90 1618.19 1558.40 1142.92 1142.92 1024.23 1081.85

MAE 176.64 176.64 249.69 229.70 58.97 58.97
γ (× 103 a.u.)
1 116 116 115 112 93 93 110 (105) 104
2 964 964 982 951 666 666 522 (693) 624
3 3785 3785 4131 3952 2228 2228 2657 (2344) 2302
4 9670 9670 11,592 10,894 4949 4949 5366 (5146) 5231
5 18,913 18,913 25,091 23,088 8658 8658 8468 7909
6 31,133 31,133 45,508 40,903 13,086 13,086 13,866 11,220

MAE 5599 5599 9405 8152 330 330
aAll DFT and CCSD(T) calculations utilized the 6-31+G(d) basis with the CCSD(T)-F12 calculations using the cc-pVDZ basis and density-fitting
approach described in the main text. The abbreviations “BS” and “μ = adj.” indicate a broken-symmetry calculation and a nonempirically tuned value
of μ, respectively. Values in parentheses denote the CCSD(T) values obtained by Champagne et al.16

Table 3. Longitudinal Linear Polarizability and Second Hyperpolarizability for Increasingly Large PBT Oligomers at Various
Levels of Theorya

N CAM-B3LYP CAM-B3LYP (BS)

LC-BLYP
(α = 0.0, β = 1.0)

μ = adj.

LC-BLYP
(α = 0.2, β = 0.8)

μ = adj.
LC-BLYP
μ = 0.47

LC-BLYP (BS)
μ = 0.47 CCSD(T) CCSD(T)-F12

α (a.u.)
2 322.62 322.62 320.13 323.19 309.09 306.00 271.53 (271.51) 271.39
3 688.28 684.84 693.53 698.06 636.98 596.55 542.98 (542.83) 550.57
4 1196.72 1143.86 1235.13 1236.96 1069.64 955.85 894.94 (894.28) 918.93
5 1836.27 1693.92 1951.31 1942.37 1587.36 1363.60 1311.41 1364.21
6 2589.62 2315.23 2842.01 2811.11 2170.35 1804.02 1777.08 1870.96

MAE 367.11 272.51 448.83 442.75 195.10 45.62
γ (× 103 a.u.)
2 363 363 403 374 341 552 543 (542) 303
3 2652 4387 2902 2698 2385 3469 3272 (3181) 1909
4 11,535 17,960 12,623 11,793 9361 11,804 10874 (11042) 9608
5 35,815 50,818 40,298 37,788 25,697 28,113 30,172 25,531
6 87,968 112,605 104,413 98,032 55,568 53,443 68,510 59,783

MAE 5312 14,624 9658 7760 4004 3652
aAll DFT and CCSD(T) calculations utilized the 6-31+G(d) basis with the CCSD(T)-F12 calculations using the cc-pVDZ basis and density-fitting
approach described in the main text. The abbreviations “BS” and “μ = adj.” indicate a broken-symmetry calculation and a nonempirically tuned value
of μ, respectively. Values in parentheses denote the CCSD(T) values obtained by Champagne et al.16
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are closed-shell singlets and are not within the shaded regions
in Figure 2. From these tabulated data entries, we observe an
inverse correlation between the optimal μ values and the length
of the oligomers, where μ decreases as the number of
monomers increases. This general size-dependence in other
chemical systems has been previously reported by several
groups20,49−52 and also in the previous study on PDA and PBT
in ref 16. Our optimally tuned μ values are in excellent
agreement with the LC-BLYPα=0.0,β=1.0 calculations given in the
previous study by Champagne et al., shown in parentheses in
Table 1. Specifically, we observe a negligible difference of
∼0.005 Bohr−1, and this deviation can be attributed to the
difference between both tuning schemes. Reference 16 directly
employs the DFT−Koopmans’ theorem, where μ is tuned such
that the energy of the −HOMO is equal to the IP, whereas we
obtain μ by adjusting both the energy of the −HOMO to the IP
and, in an indirect manner, the LUMO energy via the N + 1
electron system. All subsequent linear polarizability and second
hyperpolarizability calculations were carried out using all of the
optimal μ values listed in Table 1.
Tables 2 and 3 summarize the static longitudinal linear

polarizability and second hyperpolarizability for the PDA and
PBT oligomers, respectively, computed by the CAM-B3LYP,
LC-BLYPα=0.0,β=1.0, LC-BLYPα=0.2,β=0.8, LC-BLYP(μ = 0.47),
CCSD(T), and CCSD(T)-F12 methods. The broken-symme-
try (BS) results for CAM-B3LYP and LC-BLYP(μ = 0.47) are
also given in the tables for direct comparison to their closed-
shell counterpartsrecall that the optimally tuned LC-BLYP

methods for both PDA and PBT were not affected by the
broken-symmetry solutions. In addition, we also tabulated the
<S2> values for both CAM-B3LYP (BS) and LC-BLYP (BS) (μ
= 0.47) (cf. Table SI-12 in the Supporting Information) and
found that while <S2> increases in size for PBT[2]−PBT[6],
these systems are more accurately characterized as diradicals,
without higher-lying spin states contributing to the trends in
polarizability (cf. Figure SI-1, Tables SI-13, and SI-14 for LC-
BLYP (BS) (μ = 0.47) calculations of the triplet state in the
Supporting Information). All mean absolute errors (MAE)
were computed with respect to the CCSD(T)/6-31+G(d)
benchmarks to allow for a consistent comparison with the DFT
calculations that were computed with the same 6-31+G(d)
basis set. It is worth mentioning that the discrepancy between
our results and previous CCSD(T) calculations of the
hyperpolarizability16 arise from the different numerical method-
ology and computational hardware used in these previous
studies. Specifically, Champagne and co-workers utilized a
Romberg differentiation procedure53 for their calculations,
whereas we directly fitted the CCSD(T) energies (as a function
of the applied external field) to second- and fourth-order
polynomials to obtain the linear polarizability and second
hyperpolarizability, respectively. We found that the Romberg
procedure was extremely sensitive to very small energy
differences (even as small as 10−8 Hartrees), which can easily
arise from different versions of software and machine
architectures used in these previous studies. As such, all of
the CCSD(T) results reported in this paper utilize the

Figure 4. Percent relative error (compared to CCSD(T)) in α and γ as a function of number of monomer units in PDA (upper panel) and PBT
(lower panel) for different levels of theory.
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polynomial fitting procedure, which we found to be more
numerically stable, for obtaining the linear polarizability and
second hyperpolarizability. Furthermore, to check for possible
nondynamical correlation effects in our CCSD(T) calculations,
we also computed the T1 diagnostic for all of the oligomers and
obtained T1 values ranging from 0.0125 to 0.0131 and 0.0156
to 0.0164 for PDA[1]−PDA[6] and PBT[2]−PBT[6],
respectively (T1 values greater than 0.02 indicate that a
multireference electron correlation method is necessary54). In
addition, we also carried out broken-symmetry unrestricted
CCSD(T) (UCCSD(T)) calculations for all of the PBT
oligomers (cf. Figure SI-2 in the Supporting Information) and
found that all of the UCCSD(T) energies using the broken-
symmetry HF reference determinant were larger than their
restricted CCSD(T) counterparts, further verifying (in
conjunction with the T1 diagnostic discussed previously) that
correlation effects are properly handled at the single-reference
restricted CCSD(T) level of theory. Finally, we also did
additional CCSD(T) calculations using the nondiffuse triple-ζ
6-311G(d,p) basis (cf. Table SI-15 in the Supporting
Information) to assess the convergence of the 6-31+G(d,p)
results used as benchmarks in both our study and the previous
study by Champagne. We find that the presence of diffuse
functions in the 6-31+G(d,p) basis plays a larger role than the
additional valence basis functions in the 6-311G(d,p) basis,
which is consistent with previous studies by Champagne and
co-workers.5,14 Furthermore, the explicitly correlated CCSD-
(T)-F12 calculations closely mirror the overall trends in the
CCSD(T)/6-31+G(d) methods, giving additional indication of
the basis-set convergence of our calculations.
Figure 4 presents a graphical summary of Tables 2 and 3 by

plotting the percent relative error for each of the various DFT
methods using the CCSD(T)/6-31+G(d) calculations as
benchmarks. Our calculations of the PDA linear polarizabilities
(α) in Figure 4(a) using CAM-B3LYP, LC-BLYP(μ = 0.47)
and CCSD(T) are in accordance with the values computed in
ref 16. As mentioned in the Introduction, the previous work by
Champagne and co-workers did not compute the CCSD(T)
polarizabilities for the largest PDA and PBT chains with five
and six oligomers, and therefore, the overall trends in their
range-separated calculations could not be checked to see if the
extrapolated DFT trends would either degrade or improve as a
function of oligomer size. By completing these computationally
expensive benchmarks, we can now state that the same
dramatic overestimation of the longitudinal linear polarizability
with the nonempirically tuned LC-BLYPα=0.0,β=1.0 functional
persists for large oligomers. However, in contrast to previous
findings,16 we find that the accuracy of the linear polarizability
does improve when a small amount of HF exchange is included
at short-range (LC-BLYPα=0.2,β=0.8) compared to the “base” LC-
BLYPα=0.0,β=1.0 approach (a reduction in the MAE from 249.69
to 229.70 au is observed). Moreover, the accuracy of LC-
BLYPα=0.2,β=0.8 appears to further improve as a function of the
number monomer units, N, particularly for N ≥ 3. The CAM-
B3LYP functional gives more accurate predictions of the linear
polarizability than either of the nonempirically tuned LC-BLYP
methods, but the LC-BLYP(μ = 0.47) functional gives the best
agreement (with the lowest MAE values of 58.97 au) compared
to CCSD(T) benchmarks, which is consistent with ref 16 and
previous work on polarizabilities by other groups.39 Turning to
the second hyperpolarizabilities (γ) of PDA, Figure 4(b) shows
a similar trend in accuracy compared to Figure 4(a) for the
linear polarizabilities. As before, incorporating some portion of

short-range HF exchange does improve the overall accuracy as
a function of oligomer size; however, the most accurate second
hyperpolarizabilities are still obtained with the LC-BLYP(μ =
0.47) functional (MAE = 330 au). Moreover, as shown in
Figures 4(a) and (b), there is no change in either α or γ when
the stability of the wave function is taken into consideration
since the ground states of all the PDA oligomers have a closed-
shell solution regardless of μ value.
Turning to the PBT oligomers, we find that the over-

estimation of the static linear polarizability (α) is more severe
than for PDA. Similar to Figure 4(a), we also find that the
polarizabilities are improved by including some short-range HF
exchange, although the difference between these methods is
smaller in the PBT system (MAEs for LC-BLYPα=0.0,β=1.0 vs LC-
BLYPα=0.0,β=1.0 in PBT are 448.83 and 442.75 au, respectively).
However, in contrast to the PDA chains, the PBT oligomers are
much more strongly conjugated along their backbone and can
converge toward a lower-energy broken-symmetry solution. As
mentioned previously, DFT methods that contain a large
percentage of HF exchange will favor an unrestricted open-shell
configuration, and we find that a lower-energy broken-
symmetry solution is actually preferred in CAM-B3LYP and
LC-BLYP(μ = 0.47) for PBT. Interestingly, as the amount of
HF exchange is increased in the XC-functional, the slope in the
error of the static linear polarizability (as a function of oligomer
size) decreases, as shown in Figure 4(c). However, it is worth
noting that increasing the amount of HF exchange to 100%
(i.e., pure Hartree−Fock) will lead to severe overestimations
for both α and γ as a function of size (cf. Figure SI-2 and Tables
SI-13 and SI-14 in the Supporting Information). In the case of
PBT, the characteristic plateau in the asymptotic limit, which
still corresponds to a fairly large ∼20% percent error, is reached
for LC-BLYP(μ = 0.47). However, for the PBT linear
polarizabilities, the broken-symmetry solutions give a more
accurate result compared to their restricted, closed-shell
counterparts in all cases. Specifically, allowing the system to
relax to a lower-energy broken-symmetry solution with CAM-
B3LYP leads to a constant value for the linear polarizability as
N increases, where the associated error is less than 30%. This is
in stark contrast to the growing error of ∼45% in the restricted,
closed-shell CAM-B3LYP method. A remarkably different
behavior is obtained with the broken-symmetry LC-BLYP(μ
= 0.47) method where a negative slope as a function of
oligomer size is obtained, resulting in a relative error of less
than 5% when N > 4. As mentioned previously, we also carried
out LC- BLYP (BS) (μ = 0.47) calculations of the triplet state
(cf. Figure SI-1 in the Supporting Information) and found that
the errors in the linear polarizability were larger than their LC-
BLYP (BS) singlet state counterparts, further confirming that
these systems are more accurately characterized as diradicals,
without higher-lying spin states contributing to the trends in
polarizability. In summary, the MAEs for the linear polar-
izabilities in PBT can be summarized as follows: α[LC-BLYP(μ
= 0.47) (BS)] ≪ α[LC-BLYP(μ = 0.47)] < α[CAM-B3LYP
(BS)] < α[CAM-B3LYP] < α[LC-BLYPα=0.2,β=0.8 (μ adj.)] <
α[LC-BLYPα=0.0,β=1.0 (μ adj.)]. Finally, we now turn to the
second hyperpolarizabilities of PBT, whose relative errors are
smaller in comparison to the values obtained for PDA. From
Figure 4(d), we observe that a poor accuracy is obtained in the
hyperpolarizability values when a broken-symmetry CAM-
B3LYP approach is applied. However, similar to our findings
with the linear polarizabilities in PDA, the use of LC-BLYP(μ =
0.47) with the lower-energy broken-symmetry solution
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improves the accuracy of the second hyperpolarizability. As
such, the MAEs for the second hyperpolarizabilites in PBT can
be summarized as follows: γ[LC-BLYP(μ = 0.47) (BS)] <
γ[LC-BLYP(μ = 0.47)] < γ[CAM-B3LYP] < γ[LC-
BLYPα=0.2,β=0.8 (μ adj.)] < γ[LC-BLYPα=0.0,β=1.0 (μ adj.)] <
γ[CAM-B3LYP (BS)]. Among all the DFT methods examined
here, the broken-symmetry LC-BLYP(μ = 0.47) functional is
the most accurate for both α and γ in PBT, highlighting the
importance of broken-symmetry effects when calculating
polarizabilities and hyperpolarizabilties of these π-conjugated
oligomers.

■ CONCLUSIONS
In this study, we have calculated and analyzed the static linear
polarizability and second-order hyperpolarizabilities for several
PDA and PBT oligomers using a variety of range-separated
DFT methods. Specifically, we have examined a diverse set of
nonempirically tuned range-separated functionals with both
short- and long-range exchange as well as conventional CAM-
B3LYP and LC-BLYP range-separated hybrids with fixed values
of μ (namely, LC-BLYP(μ = 0.47)). To test the accuracy of
these various range-separated methods, we calculated new
large-scale CCSD(T) and explicitly correlated CCSD(T)-F12
benchmarks for the PDA and PBT systems, which extends
previous benchmarks on these systems that were limited to
smaller oligomers. Most importantly, these new CCSD(T) and
CCSD(T)-F12 calculations comprise the most complete and
accurate calculations of linear polarizabilities and second
hyperpolarizabilites on these systems to date.
Contrary to previous studies on these systems, we find that

the inclusion of some amount of short-range exchange does
improve the accuracy of the computed polarizabilities for both
PDA and PBT, although the degree of improvement is more
modest for the linear polarizability compared to the second
hyperpolarizability. More importantly, in contrast to prior
studies on these same systems, we find that the lowest-energy
electronic states for PBT are not closed-shell singlets, and
improved accuracy with range-separated functionals can be
obtained by allowing the system to relax to a lower-energy
broken-symmetry solution. This enhanced accuracy is most
pronounced in the broken-symmetry LC-BLYP(μ = 0.47)
functional, which attains a relative error of less than 10% for the
linear polarizability. Similarly, the computed second hyper-
polarizabilities are also significantly improved by allowing for a
lower-energy broken-symmetry solution in the LC-BLYP(μ =
0.47) calculations. Recent studies on molecular polarizabilities
have advocated for the use of range-separated methods with
large μ values (which correspond to larger amounts of HF
exchange), and it is well known that DFT methods containing a
large contribution of HF exchange will naturally favor an
unrestricted open-shell configuration. We now expand these
statements to add that one should carefully check for a broken-
symmetry solution when computing linear polarizabilities and
second hyperpolarizabilites with range-separated functionals,
particularly for π-conjugated systems. To the best of our
knowledge, this present study is the first to highlight the
improved accuracy of range-separated methods for polar-
izabilities and second hyperpolarizabilites when a lower-energy
broken-symmetry solution is obtained. On a practical note,
since many novel NLO polymer materials are strongly
conjugated, it is crucial to test for a lower-energy open-shell
configuration in their ground state when calculating NLO
properties with range-separated functionals. Taken together,

these new broken-symmetry range-separated DFT calculations
in conjunction with our high-level CCSD(T) and CCSD(T)-
F12 benchmarks emphasize and highlight the importance of
broken-symmetry effects when calculating linear polarizabilities
and second hyperpolarizabilties of π-conjugated chains.
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