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Starting from the QCD Hamiltonian written in the canonical Coulomb gauge formal-
ism, we developed a mapping onto an SO(4) representation which is suitable for the
description of the QCD spectra at low energies. The mapping does not break the flavor
symmetry and it preserves the singlet-colorless structure of the states. We present and
discuss the structure of integer and half-integer-spin states with masses below 2 GeV.
Finally, we extend the formalism in order to include particle–hole-like correlations in
building excitations.

Keywords: Symmetries; effective Hamiltonian; many body.

PACS Number(s): 12.38.−t, 12.40.Yx, 21.60.Fw, 12.90.+f

1. Introduction

One of the main goals in hadronic physics is to construct effective, low-energy
approximations to QCD by finding methods to treat its nonperturbative domain.
Lattice QCD (LQCD) calculations,1–8 performed over the past three decades have
shown significant advances in nonperturbative aspects of the fundamental the-
ory of strong interactions, e.g., an amazing agreement with experimental energies
reported for the lightest meson and baryon states as well as some heavier states.
Until now, LQCD is the only formalism that can handle QCD from first principles
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but it is numerically quite involved. On the other hand, progress in other theo-
retical approaches to low energy QCD has not been as impressive and they have
not extracted substantial information from LQCD in order to construct a simple
(minimal) solvable Hamiltonian. Fixing-gauge approaches, like treatments in the
canonical Coulomb gauge, offer a connection between QCD and the more tradi-
tional nonrelativistic many-body problems in nuclear physics.9–12 Over the years, a
number of nonrelativistic or semi-relativistic models describing quarks in hadronic
bound states have been proposed. However, the full effect of quark–anti-quark pairs
has never been considered because such effects lead to a many-body problem that
can only be treated in some approximation. In hadronic models,13–15 such approx-
imations are typically driven by phenomenological considerations rather than by
QCD based features. Within these phenomenological models a number of experi-
mental masses have been considered and reproduced by introducing a large number
of parameters. Nevertheless, these kind of models are of interest to illuminate any
possible connection between phenomenological models and QCD.

In Refs. 16–18, schematic models for the low-energy quark dynamics were devel-
oped with the purpose to capture selective features of the theory within a finite Fock
space. The implementation of a contact interaction as a two-body interaction led to
the SU(3)-Casimir structure,19 as well as analytic solutions. Recently, in Ref. 20, a
confining interaction corresponding to a more rigorous relation to QCD was inves-
tigated, establishing a general picture of the relevant two-body interactions to be
analyzed by many-body techniques (e.g., Tamm–Dancoff (TD) and random phase
approximations). The later requires to extend the Fock space in order to guarantee
convergence of the eigenvalues, making the analysis purely numerical and moving
away from a pursued minimal model.

In this paper, we explore a simple effective quark Hamiltonian guided by QCD
and examine various classes of solutions that may represent hadronic states. The
study is performed in the context of a group structure, the SO(4) group, the gen-
erators of which exhibit a strong correspondence with the elements appearing in
the QCD Hamiltonian. We then proceed to show that a convenient parametrization
of the SO(4) Casimir-forms fits reasonably the low-energy spectrum of QCD, both
for mesons and baryons, and write an effective Hamiltonian which encompasses the
symmetries of the SO(4) group. Because of the highly nonperturbative structure
of QCD, it is rather obvious that we do not pretend to replace the complete QCD
Hamiltonian by the effective one based on the SO(4), but we demonstrate that
it indeed contains some of the relevant degrees of freedom of QCD at low-energy.
Since the many-body aspects of QCD have been explored previously,10,17,18,20 we
also use the TD method,21 to perform a diagonalization in a basis of pairs and
compare our results with experimental data. The paper is organized as follows: The
structure of the QCD Hamiltonian is presented in Sec. 2, the mapping onto an
SO(4)-representation is discussed in Sec. 3, and the resulting Hamiltonian is shown
in Sec. 4. The TD analysis and the discussion of the results are shown in Sec. 5.
Finally, our conclusions are presented in Sec. 6.
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2. The Canonical Representation of the QCD Hamiltonian

The fundamental non-abelian theory of strong interactions, QCD, has been widely
studied in its canonical Coulomb gauge representation, Eq. (1).9,10,17 It was shown
in Ref. 10 that two of the main features of QCD, e.g., confinement and the con-
stituent particles (quarks and gluons) can be treated simultaneously in that frame-
work. However, the study of dynamical quarks and gluons and their interactions in
the low-energy regime is highly nontrivial, and the use of an effective Hamiltonian,
if it becomes available, may help to understand the nonperturbative domain of the
theory. The QCD Hamiltonian, in the canonical Coulomb gauge representation, is
written

HQCD =
∫ {

1
2
[J−1Πtr a

i JΠtr a
i + Ba

i B
a
i ]

+ψ†
cf (−iα · ∇ + βm)ψcf − gψ†

cfα · AaT a
cc′ψc′f

}
dr

+
1
2
g2

∫
J−1ρa(r)

〈
a, r

∣∣∣∣ 1
∇ ·D (−∇2)

1
∇ · D

∣∣∣∣ a′r′
〉
J ρa′

(r′)drdr′. (1)

The transverse chromo-electromagnetic fields in QCD Coulomb gauge are indicated
by Π and B, while ψ represents the quark fields. The last two terms in Eq. (1) are
the quark–gluon interaction (g-term) and the quark and anti-quark color charge-
densities interaction (g2-term), respectively. The latter is a gauge dependent inter-
action, coming from the inverse of the Faddeev–Popov term (∇ · D)−1 and its
determinant J = det(∇ · D).9 In the low-energy regime of QCD, light quarks and
their interactions play the most important role, and the effects of dynamical gluons
may be absorbed in the interaction V (R) = − a

R + bR, which is obtained from a
self-consistent treatment of the gauge-dependent interaction between color charge
densities, as it was shown in Ref. 10. Therefore, one can write, for the effective
QCD Hamiltonian, the expression

HQCD
eff =

∫
{ψ†(r)(−iα · ∇ + βm)ψ(r)}dr +

1
2

∫
ρa(r)V (|r − r′|)ρa(r′)drdr′,

(2)

where ρa(r) = ρa
q(r) + ρa

q̄ (r) = ψ†(r)T aψ(r) and ψ†(r) = (ψ†
1(r, σ, c, f), ψ†

2(r, σ,
c, f)), with σ, c, f indicating the spin, color and flavor intrinsic degrees of free-
dom. In order to calculate the spectrum of low-energy mesons, lattice QCD7,8 and
many-body techniques have been applied, mostly numerically, to reproduce certain
characteristics of the spectrum. Practically all those approaches fail in reproduc-
ing the pion mass. Some of the standard bosonization-methods, like the TD and
random phase approximations, have shown to be useful22 to elucidate the role of
the pion as a Goldstone-like state of the theory. Although the many-body meth-
ods are much less involved, than lattice calculations, their implementation requires
some minimal information i.e., quarks masses, couplings and interactions, about
the fundamental degrees of freedom and about the symmetries exhibited by them.
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3. Mapping to a Simple Model

As mentioned in the previous section, the motivation of this work comes from the
side of the effective QCD Hamiltonian, Eq. (2), and the nonperturbative predictive
power of many-body methods for the low-energy regime of QCD. The quantized
structure of the effective Hamiltonian (2) has been discussed in Ref. 20 and it is
given by

HQCD
eff =

∑
Γ1µ1

εΓ1(b
†
Γ1µ1

bΓ1µ1 − dΓ1µ1d
†
Γ1µ1

)

+
∑
Γ

∑
Γi

{V1(Γi)[([b
†
Γ1

⊗ bΓ2 ]
Γ − [dΓ1 ⊗ d†Γ2

]Γ) ⊗ ([b†Γ3
⊗ bΓ4 ]

Γ

− [dΓ3 ⊗ d†Γ4
]Γ)]0̂

0̂
+ V2(Γi)[([b

†
Γ1

⊗ bΓ2 ]
Γ − [dΓ1 ⊗ d†Γ2

]Γ) ⊗ ([b†Γ3
⊗ d†Γ4

]Γ

+ [dΓ3 ⊗ bΓ4 ]
Γ)]0̂

0̂
+ V3(Γi)[([b

†
Γ1

⊗ d†Γ2
]Γ + [dΓ1 ⊗ bΓ2 ]

Γ) ⊗ ([b†Γ3
⊗ bΓ4 ]

Γ

− [dΓ3 ⊗ d†Γ4
]Γ)]0̂

0̂
+ V4(Γi)[([b

†
Γ1

⊗ d†Γ2
]Γ + [dΓ1 ⊗ bΓ2 ]

Γ)

⊗ ([b†Γ3
⊗ d†Γ4

]Γ + [dΓ3 ⊗ bΓ4 ]
Γ)]0̂

0̂
}, (3)

where the vacuum state is represented by |0̃〉 and it is annihilated by the action of
quark and anti-quark, bΓ and dΓ, operators respectively, i.e., bΓ|0̃〉 = dΓ|0̃〉 = 0. Γi

is a short hand notation for the irreducible representations of spin, color and flavor.
The matrix elements Vi have been explicitly shown in Ref. 20, and they consist of
a confining interaction resulting from a Coulomb plus linear potential.

In order to assure basis independence of the observables (eigenvalues) from
the diagonalization of the Hamiltonian of (3), the number of configurations (Γi)
should be large, but a reduction of the Fock space may provide some insights on
the spectrum. To achieve this goal, we have constructed all the possible operators
that describe particles of spin- 1

2 , for the specific space shown in Fig. 1. The energy
degeneracy between the two lower (upper) states could be viewed also as an isospin
degeneration, e.g., up, down and strange quarks masses in an SU(3) group. Such

m > 0 m < 0

σ = 1

σ = 2

E

0

−

Fig. 1. Model space.
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m > 0 m < 0

σ = 1

σ = 2

E

0

−

(a)

m > 0 m < 0

σ = 1

σ = 2

E

0

−

(b)

Fig. 2. (a) Rising and lowering of the σ-value operations. (b) Invariant σ-value operations.

degeneracy and symmetry can be explicitly broken by introducing another state
(ε2 > ε > 0) at higher energy for the strange quark state.

The minimal number of operations in the space of Fig. 1 is 16, and they are
shown in Fig. 2, eight of these correspond to rising and lowering the value of σ, and
the other eight leave the value of σ invariant. The label σ is associated with anti-
quark (σ = 1) and quark (σ = 2) states. Their color and flavor degrees of freedom
are contained in the creation and annihilation operators C†

σm(a, f), Cσm(a, f), with
a = (G,B,R) (color) and f = (u, d, s) (flavor). The minimal model constructed here
rely on the fact that physical states are color singlets, and that the states will not be
classified by their flavor content (see Sec. 4) since that requires the flavor symmetry
being explicitly broken.

All the operations of the subspace are shown in Fig. 2, and they are easily iden-
tified within the context of the Hamiltonian of Eq. (3). We order these operations
by the action of six operators, which are

Â =
∑
m

C†
2mC1m, B̂ =

∑
m

C†
2mC1−m, Ĉ = Â†, D̂ = B̂†,

Ê =
∑
σ,m

(−1)σ

2
C†

σmCσm, F̂ =
∑
σ,m

(−1)σ

2
C†

σmCσ−m,

(4)
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Table 1. Commutators of the operators (4).

Op. Â B̂ Ĉ D̂ Ê F̂

Â 0 0 2Ê 2F̂ −Â −B̂

B̂ 0 0 2F̂ 2Ê −B̂ −Â

Ĉ −2Ê −2F̂ 0 0 Ĉ D̂

D̂ −2F̂ −2Ê 0 0 D̂ Ĉ

Ê Â B̂ −Ĉ −D̂ 0 0

F̂ B̂ Â −D̂ −Ĉ 0 0

where we have omitted color and flavor indexes and written C†
σm(a, f) = C†

σm, keep-
ing the magnetic projection m. The commutators [Ô1, Ô2], for the set of operators
(4), are given in Table 1.

The SO(4) group turns out to be the group that satisfies this algebra, as it is
explained next.

3.1. Rising and lowering operators of the SO(4) group

The SO(4) group algebra23 is given by

[Ĵi, Ĵj] = iεijkĴk,

[Ĵi, V̂j ] = iεijkV̂k,

[V̂i, V̂j ] = iεijkĴk.

(5)

Instead of using the Cartesian components Ji, Vi, it is more convenient to use J±, J0

and V±, V0 defined by

Ĵ+ = Ĵ1 + iĴ2, Ĵ− = Ĵ1 − iĴ2, Ĵ0 = Ĵ3 (6)

and

V̂+ = V̂1 + iV̂2, V̂− = V̂1 − iV̂2, V̂0 = V̂3, (7)

respectively. With the algebra of Eq. (5) and the commutators of Table 1, the
operators defined in Eq. (4) are identified to the ones of the SO(4) group (6) and (7)
by

Â = Ĵ+, Ĉ = Ĵ−, Ê = Ĵ0,

B̂ = V̂+, D̂ = V̂−, F̂ = V̂0.
(8)

3.2. Casimir operators of SO(4)

The SO(4) group has two invariant operators, Ĉ1 and Ĉ2, which commute with all
the generators

Ĉ1 = Ĵ2 + V̂2 = Ĵ+Ĵ− + V̂+V̂− + V̂ 2
0 + Ĵ0(Ĵ0 − 2),

Ĉ2 = Ĵ · V̂ =
1
2
(Ĵ−V̂+ + Ĵ+V̂−) + Ĵ0V̂0.

(9)

1650067-6
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Having identified the SO(4) group for the algebra of the operators of Eq. (4),
and motivated by the quantized Hamiltonian of QCD, Eq. (3), it seems feasible to
grasp some relevant characteristics of QCD within a simple model based on SO(4)
group operators.

4. SO(4) Hamiltonian

In this section, we introduce the SO(4) Hamiltonian constructed from the generators
and Casimir operators introduced in the previous section. Therefore, in analogy to
the many-body problem in low energy QCD, described in Sec. 3, the Hamiltonian
acting on the space shown in Fig. 1, can be written as

H =
∑
m

ε(C†
2mC2m − C†

1mC1m) + aM(B)Ĉ1 + bM(B)Ĉ2

= 2εĴ0 + aM(B)Ĉ1 + bM(B)Ĉ2, (10)

where the subscripts M(B) indicate the meson(baryon) couplings, which in general
are expected to be different, while ε is expected to be independent of the state,
since it corresponds to the single particle term without interactions, i.e., the free
Dirac term. It is worth to remember that each particle created and/or annihilated
by the operators C†

σm, Cσm has nine possibilities associated with the combinations
of color and flavor degrees of freedom.

In Ref. 23, the SO(4) group algebra as well as its irreducible representations
(j0, η) have been analyzed. Here, we just consider the possible representations (j0, η)
that could be involved in the meson and baryon spectrum of Eq. (10) and make
a fit to the set of parameters, aM(B) and bM(B), to experimental values. A short
review of SO(4) (j0, η)-representations is shown in Appendix A.

4.1. Integer spin : J = 0, 1 states

The low-energy spectrum of meson (J = 0, 1) and baryon (J = 1
2 ,

3
2 ) states can

be obtained within this model by looking at the excitations of the model and the
quantum numbers associated to them. To elucidate the occurrence of pseudo-scalar
(J = 0) and vector (J = 1) states in SO(4), the simplest way to proceed is by
direct identification. The allowed irreducible representations (irreps) are shown in
Table 2.

Table 2. SO(4) representa-
tions associated with the pseu-
do-scalar and vector states.

(J, MJ) (j0, η) (j0, η)

(0,0) (0,1) (0,2)
(1, MJ) (0,2) (±1,2)

1650067-7
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The meson-like eigenvalues of the Hamiltonian of Eq. (10), for the states
|(j0, η); JMJ〉 of Table 2, are described by the following combinations:

|(0, 1); 00〉 → E = 0,

|(0, 2); 00〉 → E = 3aM ,

|(0, 2); 1MJ〉 → E = 2εMJ + 3aM ,

|(±1, 2); 1MJ〉 → E = 2εMJ + 4aM − 2bM

= 2εMJ + 3aM + (aM − 2bM ).

(11)

By construction ε �= 0, which is related with the explicit chiral symmetry break-
ing of the quarks and it plays the role of the free Dirac term. Since we are assuming
an exact symmetry for the flavor group, i.e., the SU(3) group, all the masses of the
quarks are considered to be equal but small, so that, one can choose an average
value for the three lowest quark masses in order to assign a value for ε. In fact, here
we show that this is the case for the model and it comes out naturally by analyzing
the small splitting in the mass of the mesons with J = 0, 1, as well as in the baryon
J = 1

2 ,
3
2 sector, see Sec. 4.2. By a simple analysis of the eigenvalues, (11), it seems

natural to associate the (0, 1) SO(4) representation with the pion state. Since the
factor 3aM appears in both the pseudo-scalar and the vector states, it seems also
natural to associate the factor aM − 2bM with a mass-splitting within the J = 1
vector meson sector.

In the following calculation, we consider the pseudo-scalar and vector mesons
with masses about 1 GeV. Obviously the fit will have some discrepancies with exper-
imental masses since we are not considering the flavor symmetry breaking. Never-
theless, as it will be shown below, the meson and baryon predictions of this simple
model for energies around the 1 GeV are satisfactory, in spite of the fact of the just
mentioned lack of the flavor symmetry breaking.

The simplest relations of the couplings aM , bM with the physical states are

2ε|MJ | =
1
2
(Mρ +Mω) − 1

3
(Mη +Mη′ +MK) = 108.40 MeV,

3aM =
1
5
((Mρ +Mω) + (Mη +Mη′ +MK)) = 710.96 MeV,

aM − 2bM = Mφ − 1
3
(Mρ +Mω +MK∗) = 205.33 MeV,

(12)

which leads to ε = 54.20 MeV, aM = 236.98 MeV and bM = 15.82 MeV. The
pseudo-scalar and vector masses have been taken from Ref. 24. The comparison
of the energy eigenvalues of the SO(4) representations with the experimental data
is shown in Fig. 3.

From the results displayed in Fig. 3, it is seen that physical states (J,MJ) may
be labeled by SO(4) (j0, η)-irreps. A closer correspondence with the experimental
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0

E[GeV]

0.5

1.0

(0, 1) (1, 2) (j0, η)

JJ = 0

π

K

η

η

J = 1

K∗

ω

ρ

(0, 2)

φ

Fig. 3. Comparison of the energy spectrum for the physical pseudo-scalar and vector states
(dashed-lines) and the SO(4) representations (solid-lines). The shadowed boxes measure the
spreading of the eigenvalues due to the presence of the single-particle term 2εĴ0 in (10).

energies may require additional corrections coming from, e.g., SU(3) flavor
symmetry breaking, vacuum-correlations induced by pairs. A few words can be
added concerning the effects of color degrees of freedom on the SO(4) eigenvalues.
Since physical states contained in such representations must be colorless, and in
the absence of gluonic degrees of freedom, only the combinations GḠ,BB̄,RR̄ are
possible for the meson sector.

4.2. Half-integer spin J = 1
2
, 3

2
states

The half-integer states of the low-energy baryon spectrum correspond to spin
J = 1

2 and 3
2 . The SO(4) representations that contain these states are given in

Table 3.

Table 3. SO(4) representations associated
with the half-integer states J = 1

2
, 3
2
.

(J, MJ ) (j0, η) (j0, η)

( 1
2
, MJ ) (± 1

2
, 3
2
) (± 1

2
, 5
2
)

( 3
2
, MJ ) (± 1

2
, 5
2
) (± 3

2
, 5
2
)

1650067-9
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The baryon eigenvalues of the Hamiltonian of Eq. (10), for the half-integer states
|(j0, η); JM J〉 of Table 3, are given by the following linear combinations:∣∣∣∣

(
±1

2
,
3
2

)
;
1
2
± 1

2

〉
→ E1 = ±ε+ ε1,

∣∣∣∣
(
±1

2
,
5
2

)
;
1
2
± 1

2

〉
→ E2 = E1 + ∆1,

∣∣∣∣
(
±1

2
,
5
2

)
;
3
2
MJ

〉
→ E3 = 2ε

(
MJ ∓ 1

2

)
+ E2,

∣∣∣∣
(
±3

2
,
5
2

)
;
3
2
MJ

〉
→ E4 = 2εMJ + 5ε1.

(13)

with

ε1 =
3
2

(
aB − 1

2
bB

)
,

∆1 = 4aB − 1
2
bB

(14)

and E3 − E2 = ±2ε for MJ = ± 3
2 and E3 − E2 = 0 for MJ = ± 1

2 . By fitting the
observed masses, one can now determine the parameters of the model for each of the
states. However, the task is not so simple as it was for the case of mesons, because
of the large separation between lowest and highest energy states in the SO(4) irrep.
From (13), the ratio (E4 − 2εMJ)/(E1 ∓ ε) yields a factor of the order of 5 between
the lowest and highest baryon states, regardless of their structure. By looking at
the experimental data for J = 1

2 ,
3
2 , the ratio is smaller, e.g., MΩ/Mp,n ≈ 2.

In view of this discrepancy, it seems natural to fit the lowest SO(4) rep-
resentation (± 1

2 ,
3
2 ) at the average energy of the proton and neutron masses

E1 ∓ ε = ε1 = 1
2 (Mp + Mn) and set the value of ε to fit the difference between

the closest masses of the J = 1
2 and J = 3

2 irreps, like in the pseudo-scalar mesons
case, while for the energy gap ∆1, the value is set as the difference between the
average energies of the J = 1

2 and J = 3
2 states.

2ε =
MΣ∗ +M∆

2
− MΛ0 +MΣ +MΞ

3
= 101.3 MeV,

∆1 =
MΩ +MΞ∗ +MΣ∗ +M∆

4
− MΞ +MΣ +MΛ0 +Mn +Mp

5

= 354.89 MeV,

(15)

so that ε = 50.65 MeV, aB = −90.32 MeV and bB = −1432.38 MeV.
It is worth to mention that in performing the present calculations, several com-

binations of masses where used in order to fit the factor ∆1. The results showed
that the energy E2 lies in between the energy scale of the Λ and Ω baryons. In
Fig. 4, we show the fit that better reproduces the physical states.

1650067-10
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0

E[GeV]

1.0

2.0

±1
2,

3
2

J = 3
2J = 1

2

Λ

p
n

Σ
Ξ

±1
2,

5
2

Σ∗

∆

Ξ∗
Ω

(j0, η)

J

Fig. 4. Energy spectrum for the spin 1
2

and 3
2

states belonging to the SO(4) representations.

5. Generalization to a More Physical Hamiltonian

By taking the Casimir structure of Eq. (10) as the starting point, we have con-
structed a more general Hamiltonian for the space of Fig. 1, and calculated its
spectrum by applying the TD many-body method to write linear combinations of
particle–hole pairs as physical states. This allows us to get some insights on the
matrix elements of the effective QCD Hamiltonian (3). In this section, we shall
compare the solutions of the TD method with those of the SO(4) Casimir of the
previous section.

The Hamiltonian has the structure

H = 2εĴ0 +
a1

2
(Ĵ+Ĵ− + V̂+V̂−) + a2V̂

2
0 + a3Ĵ

2
0 − 2a4Ĵ0

+
a5

2
(Ĵ+V̂− + V̂+Ĵ−) + a6V̂0Ĵ0 − a7V̂0, (16)

where we have explicitly requested H† = H just by using [Ĵ−, V̂+] = −2V̂0. Thus,
the TD matrix method applied to the Hamiltonian (16) yields

Aab,a′b′ = 〈0̃|[γa′,b′ , [H, γ
†
a,b]]|0̃〉, (17)

with γ†a,b = C†
2ma

C1mb
. Therefore, the TD matrix to be diagonalized is defined by

Aa′b′,ab =
(
2ε− 2a4 + a1 +

a3

2

)
δma′ ,maδmb′ ,mb

+
(a2

4
− a6

2
− a7

)
δma′ ,maδmb′ ,−mb

+
(a2

4
+ a5 − a7

)
δma′ ,−maδmb′ ,mb

,

(18)
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as shown in Appendix B. The eigenvalues are given by

E1 =
1
2
(2a1 + a3 − 4a4 − 2a5 − a6 + 4ε),

E2 =
1
2
(2a1 + a3 − 4a4 + 2a5 + a6 + 4ε),

E3 =
1
2
(2a1 + a2 + a3 − 4a4 + 2a5 − a6 − 4a7 + 4ε),

E4 =
1
2
(2a1 − a2 + a3 − 4a4 − 2a5 + a6 + 4a7 + 4ε).

(19)

The correct order of the energies may then be determined by fixing the values of
the parameters {ε, a1, a2, a3, a4, a5, a6}, such that the energies Ei > 0 and the gaps
between them are constrained to the desired accuracy. In Table 4, we show two
sets of parameters which yield very good agreement with the experimental data. In
Fig. 5, we show the solutions obtained with the first set of parameters of Table 4
and compare the results with the available data.

Table 4. Parameters and TD energies Ei [MeV].

Set ε a1 a2 a3 a4 a5 a6 a7 E1 E2 E3 E4

1 60 300 −100 200 −50 200 −100 −100 470 770 1020 220
2 120 200 100 300 −50 300 100 100 340 1040 790 590

0

E[GeV]

0.5

1.0

π

K

η

η

K∗

ω

ρ

φ

(0, 1) (1, 2) (j0, η)

JJ = 0 J = 1

(0, 2)

E4

E1

E2

E3

ETD
i

TD

Fig. 5. Comparison of the SO(4) (solid-line), TD (dotted-line) and experimental (dashed-line)
energies.
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6. Summary

In this work, we have explored some of the symmetries exhibited by the QCD
Hamiltonian, written in the canonical Coulomb gauge representation. We found that
the SO(4) group structure seems to host a significant number of features associated
to the lowest QCD energy meson and baryon states. The generators of the SO(4)
group, and the associate Casimir operators, seems to represent rather satisfactorily
the structure of J = 1

2 ,
3
2 , 1, 2 states as well as the pion state. The analysis based on

the SO(4) group structure was extended to include particle–hole-like correlations, by
means of the TD approach. The inclusion of these correlations improves significantly
the agreement with data. We may then conclude our analysis by stressing the value
of the use of standard many-body techniques to explore the extremely rich, and
complicated, structure of QCD in the nonperturbative regime. As shown here, we
have started from a rigorously-formulated QCD Hamiltonian, mapped it onto a
group representation and found that, under the assumption of flavor conservation,
the masses of physical colorless states below 2 GeV are in correspondence with the
eigenvalues predicted by the SO(4) group. Then, we have shown that the results
are improved by adding correlations. The use of these concepts may allow us to
better understand, gradually, the structure of physical states belonging to the QCD
scheme. Work is in progress concerning the use of other bosonization methods.25
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Appendix A. A Review of the SO(4) Group (Ref. 23)

The eigenvalues of the SO(4) Casimir operators are given by

Ĉ1|(j0, η); jm〉 = (j20 + η2 − 1)|(j0, η); jm〉,
Ĉ2|(j0, η); jm〉 = −j0η|(j0, η); jm〉,

(A.1)

where

2j0 ∈ Z, η = |j0| + 1, |j0| + 2, . . . (A.2)

and the space that contain all the allowed values of j is

R(jo, η) = {|(j0, η); jm〉; j = |j0|, |j0| + 1, . . . , η − 1;

m = −j,−j + 1, . . . , j − 1, j}. (A.3)

The dimension of the (j0, η) representations is

dim(R(jo, η)) = η2 − |j0|2. (A.4)
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Appendix B. The TD Approximation

The TD method defines collective pairs Γ†
n as a linear combination of the elementary

pairs. In this model, an elementary pair is constructed by C†
2mC1m′ acting on the

vacuum |0̃〉. The collective pair is given by

Γ†
n =

∑
mamb

Xn
ma,mb

C†
2ma

C1mb
. (B.1)

The index n labels the collective state, it runs from one to the number of elementary
pairs. The diagonalization in the basis of pairs of the matrix equation∑

ma,mb

Mma′mb′ ,ma,mb
Xn

mamb
= ETD

n Xn
ma′mb′ , (B.2)

with

Mma′mb′ ,mamb
= 〈0̃|[C†

1mb′
C2ma′ , [H,C

†
2ma

C1mb
]]|0̃〉, (B.3)

is equivalent to the equation of motion

〈0̃|[Γ̂n′ , [H, Γ̂†
n]]|0̃〉 = ETD

n δnn′ , (B.4)

which yields a linear expression for the Hamiltonian in the basis of correlated pairs.

B.1. Relevant commutators

So that, first we calculate the commutator [H,Γ†
n] using the results

[Ĵ0,Γ†
n] = Γ†

n,

[Ĵ+,Γ†
n] = 0,

[Ĵ−,Γ†
n] =

∑
mamb

Xn
mamb

(C†
1ma

C1mb
− C†

2ma
C2mb

),

[V̂0,Γ†
n] =

∑
mm′

Xn
mamb

1
2
(C†

2−ma
C1mb

+ C†
2ma

C1−mb
),

[V̂+,Γ†
n] = 0

[V̂−,Γ†
n] =

∑
mamb

Xn
mamb

(C†
1−ma

C1mb
− C†

2ma
C2−mb

).

(B.5)

Then for the Hamiltonian of Eq. (16), we have

[H,Γ†
n] = 2(ε− a4)[Ĵ0, Γ̂†

n] +
a1

2
[Ĵ+Ĵ− + V̂+V̂−, Γ̂†

n] + a2[V̂ 2
0 , Γ̂

†
n] + a3[Ĵ2

0 , Γ̂
†
n]

+
a5

2
[Ĵ+V̂− + Ĵ−V̂+, Γ̂†

n] + a6[V̂0Ĵ0, Γ̂†
n] − a7[V̂0, Γ̂†

n], (B.6)

leading to

〈0̃|[Γ̂n′ , [H,Γ†
n]]|0̃〉 =

∑
{m′s}

(Xn′
ma′ ,mb′ )

†{· · ·}Xn
ma,mb

, (B.7)
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with

{· · ·} =
(
2ε− 2a4 + a1 +

a3

2

)
δma′ ,maδmb′ ,mb

+
(a2

4
− a6

2
− a7

)
δma′ ,maδmb′ ,−mb

+
(a2

4
+ a5 − a7

)
δma′ ,−maδmb′ ,mb

. (B.8)
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