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Recent studies reported comparatively lower heterotrophic bacteria (HB) abundances
in tropical regions, indicating that factors involved in bacterial losses could be more
relevant in the tropics. Heterotrophic nanoflagellates (HNF) are considered the main
predators of HB in aquatic ecosystems, and one should expect higher abundances
in the tropics because of differences in the food web configuration (absence of large
daphnids). However, there are no comprehensive studies comparing HB and HNF
abundances in a latitudinal gradient. We hypothesized that HB abundance would be
lower in the tropics because HNF abundance would be higher, resulting in a tighter
HNF–HB coupling. To test this hypothesis, we compiled a large dataset of HB and HNF
abundances from tropical and temperate freshwater environments. We found that both
HB and HNF abundances were lower in the tropical region, and that HNF-HB coupling
does not differ between temperate and tropical regions. The lower HNF abundance
and lack of coupling may be explained by a strong top-down control on HNF and/or
their herbivory preference. Besides, no relationship was found between bacterial specific
growth rate and either chlorophyll-a and HB abundance, indicating that bacterial losses
may have an important role in tropical freshwaters. Thus, we found that HNF is likely
not the main controllers of HB abundance, and that grazing by ciliates and cladocerans,
together with the physiological effects of higher temperatures, may explain the high
bacterial loss rates in the tropics.

Keywords: bacterioplankton, cladocera, protist, predation, latitude

INTRODUCTION

Inland aquatic ecosystems play a relevant role in the global carbon cycle (Cole et al., 2007; Tranvik
et al., 2009; Raymond et al., 2013). Low latitude freshwaters, particularly wetlands, represent
a high percentage of global CO2 evasion to the atmosphere compared to colder counterparts
located in temperate regions (Marotta et al., 2009; Aufdenkampe et al., 2011; Barros et al., 2011;
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Abril et al., 2014; Borges et al., 2015). The disproportional
importance of tropical fresh waters in CO2 net diffusion would
be due to the high input of organic terrestrial carbon and further
microbial heterotrophic respiration (Cole et al., 1994; del Giorgio
et al., 1999), together with the higher temperatures (Kosten et al.,
2010). In fact, bacterial biomass and production has been related
to CO2 lake concentrations (Tadonléké et al., 2012; Fontes et al.,
2013), evidencing the importance of bacterioplankton in CO2
emission dynamics. Thus, it is essential to identify the patterns
and drivers of bacterial abundance, production and respiration
across latitudinal gradients.

In this way, recent studies pointed out that, despite the
slightly higher bacterial production in lower latitudes (Amado
et al., 2013), the bacterial abundance found in those regions
is lower, compared to temperate environments (Roland et al.,
2010; Sarmento, 2012). This indicates that factors involved in
bacterial loss would be more important in the tropics, since
bacterial biomass does not seem to increase with increasing
bacterial production in similar rates in both regions (Billen
et al., 1990). The low bacteria:chlorophyll-a ratios found in warm
waters suggest that grazing might be an important mechanism
limiting bacterial abundance (Sarmento et al., 2008; Roland et al.,
2010; Özen et al., 2013). These differences in HB abundance
at different latitudes have been attributed, at least in part, to a
higher top–down control of rotifers, ciliates, and nanoflagellates
in warmer regions (Roland et al., 2010; Sarmento et al., 2010;
Sarmento, 2012; Vázquez-Domínguez et al., 2012; Amado et al.,
2013).

Because heterotrophic nanoflagellates (HNF) are considered
the main responsible for channeling bacterial production to
higher trophic levels (Fenchel, 1982; Sanders et al., 1989, 1992;
Berninger et al., 1991), one should expect a higher top–down
control on bacteria by the HNF in the tropics. Factors known
to exert an influence on the predator–prey relationship between
HNF and bacteria, such as temperature, bacterial, and HNF
abundance (Peters, 1994; Vaqué et al., 1994; Gasol et al., 2002),
vary widely with latitude. As temperature alters metabolic rates,
it also influences all the other factors above cited, as predicted by
the metabolic theory of ecology (MTE; Brown et al., 2004), which
might also provide some insights on differences of microbial
metabolic rates and trophic interactions between tropical and
temperate regions.

The cornerstone of MTE is that metabolic rates, including
grazing rates (Sarmento et al., 2010) and population growth rates
(Savage et al., 2004), increase exponentially with temperature
(Brown et al., 2004). For instance, bacterial abundance and
production is thought to increase with increasing temperatures
(White et al., 1991). However, the effects of temperature are not
always straightforward, and increased temperatures may actually
lead to a decrease in the abundance of the organisms, because the
increased metabolic cost per individual means that a given supply
of energy will support a smaller number of individuals (Brown
et al., 2004; Savage et al., 2004; Sarmento et al., 2010). Yet, this
assumption does not consider the effects of trophic interactions.
For example, Jiang and Morin (2004) found that competition
between the populations of two protists changed the outcome
of temperature effects on their abundances, when compared

with the isolated temperature effect on those populations. Also,
Vasseur and McCann (2005) model states that temperature alone
would not affect resource density in the absence of predators,
implying that the effects of trophic interactions should also be
taken into account.

Temperature has also been positively correlated with feeding
rates, thereupon protist grazing rates on bacteria are expected
to be higher with raised temperatures, since more food is
required to fulfill their energy demand (Peters, 1994; Vaqué
et al., 1994; Sarmento et al., 2010). Considering that tropical
regions experience elevated temperatures throughout the year,
bacteria might suffer a higher predation pressure, so that a larger
proportion of bacterial production is taken by grazers (Sarmento
et al., 2010), outbalancing bacterial growth stimulation by
temperature. Indeed, in the few studies available for tropical
region, HNF grazing on bacteria was found to be relatively high
(Pirlot et al., 2007; Tarbe et al., 2011).

It is believed that HNF abundance in warm environments
should be higher than in colder ones, owing to consistent
differences in the food web structure along the latitudinal
gradient (Sarmento, 2012; Özen et al., 2013). This is because in
temperate environments there is a typical prevalence of large-
bodied cladocerans, which are able to suppress the abundance of
HNF (Gasol et al., 1995; Jürgens and Stolpe, 1995; Kalinowska
et al., 2015). Actually, the predation pressure of Daphnia on HNF
was found to result in a lack of coupling betweenHNF-bacteria in
temperate systems, highlighting zooplankton as crucial regulators
of bacterial abundance (Gasol and Vaqué, 1993; Jürgens et al.,
1994). Meanwhile in the tropics, both temperature (Havens
et al., 2015) and the high predation pressure exerted by the
juvenile fishes, which are almost permanently present due to
fish reproduction throughout the year (Fernando, 1994; Lazzaro,
1997; Iglesias et al., 2011), favor the development of small-
bodied zooplankton. Those, in turn, would not be as efficient
in reducing microbial abundances as their relatives of the
temperate regions, thus the assumed greater HNF abundance
would account for a tighter coupling between bacteria and
HNF in tropical environments (Sarmento, 2012). Accordingly,
elevated temperatures increasing microbial metabolism, along
with the higher abundance of HNF and lower abundance of
bacteria, all concur to the idea that HNF-bacteria coupling
should differ across latitudinal gradients, being stronger in the
tropics.

The aim of this study was to compare HNF and HB
abundances in different latitudes (temperate vs tropical), as well
as the HNF–HB coupling. Taking into account that HNF grazing
pressure is thought to be the main explanation for lower bacterial
abundance in tropical regions, and that the lack of HNF–bacterial
coupling seems to be a widespread phenomenon in the temperate
ones, we hypothesized that, in the tropics, (i) HB abundance
would be lower, because (ii) HNF abundance would be higher,
and consequently (iii) HNF–HB coupling would be stronger.
We also investigated the importance of other predators and
resources (i.e., chlorophyll-a) in explaining bacterial abundance
in tropical environments. In order to test these hypotheses, we
compiled a large dataset of HB and HNF abundances from
tropical and temperate freshwater environments and compared
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their abundances and the HNF-HB coupling, besides exploring
other possible causes involved in bacterial losses in the tropics.

MATERIALS AND METHODS

Data Compilation
The dataset consists of 1047 observations of heterotrophic
bacteria (HB) and HNF abundances from the literature in both
tropical (Ntrop = 381) and temperate (Ntemp = 666) freshwater
inland aquatic ecosystems. The data was gathered from some of
the vast literature found for temperate environments as well as
studies performed so far in the tropics, and encompasses a broad
range of environment types, including shallow lakes, deep lakes,
and reservoirs of various trophic status (Table 1). We also used
abundance data of ciliates, rotifers, cladocerans, and copepods
from tropical environments.

Data Analysis
HB and HNF Abundance and Relationship
To test whether HB and HNF abundances differ among
tropical and temperate freshwater environments, we used non-
parametric Mann–Whitney Rank Sum test. In addition, we also
performed non-parametric Mann–Whitney Rank Sum test to
compare median values of HB:HNF ratios between tropical and
temperate environments. To examine the relationship between
HNF and HB on tropical and temperate datasets, we performed
model II linear regression using the major axis (MA) method
(Legendre, 2014), and verified the normal distribution of the
log-transformed data. We compared the slopes and intercepts
for both regions using the “ma” function of the “smatr”
package (Warton et al., 2012), that tests hypotheses about
slope or elevation (“elev.test”) based on confidence intervals
comparison.

Bacterial Specific Growth Rate (SGR) Relationship
with Chlorophyll-a and Bacterial Abundance
We used a dataset comprehending several tropical environments
sampled in different seasons (Lobão et al., in preparation) to
verify if bacterial SGRwas more related to resources or predators.
We estimated bacterial SGR using the equation proposed by
Kirchman (2002): SGR = P/B, where P = bacterial production
(μgC L−1 h−1) and B = bacterial biomass (μgC L−1). We
performed linear regressions to test the relationship between
SGR and HB abundance, which might provide some hints
about the factors controlling their abundance. The rationale
is that, considering the density-dependent logistic growth of
bacteria, SGR is low when bacterial abundance is reaching the
carrying capacity, meaning that they are limited by resource
availability. Hence, a negative relationship between SGR and
abundance indicates bottom-up control. Conversely, SGR is high
when bacterial abundance is far from reaching the carrying
capacity. Thus, the lack of relationship between SGR and
abundance indicates top-down control, so that predators could
be consuming bacteria at rates equal to or higher than their
production (Wright and Coffin, 1984; Gasol et al., 2002).

Impact of Other Communities on HB and HNF
Abundance
We examined the effects of potential predators on HB and HNF
in the tropical region. We considered the abundances of HB and
HNF as response variables separately, and performed multiple
regressions for each one. For HB, we used the abundance of the
predators HNF, ciliates, rotifers and cladocerans as explanatory
variables, excluding copepods, which have a very low capture
efficiency of picoplankton (Wilson, 1973; Finlay and Roff, 2004;
Sommer and Sommer, 2006). For HNF, we used the abundance
of the predators known to exploit them as food, such as ciliates,
rotifers, cladocerans, and copepods.

Data was log-transformed and all analyses were performed in
R Development Core Team (2013) using the libraries “vegan”
(Oksanen et al., 2015), “lmodel2” (Legendre, 2014), and “smatr”
(Warton et al., 2012). Figures were made on SigmaPlot v.12
software (Systat Softare Inc.).

RESULTS

At first, we considered all data we gathered from the literature in
our analyses. However, some of the studies performed in highly
eutrophic environments have found extreme values of HB and
HNF abundance, never reported before on the literature (i.e.,
Fermani et al., 2013, 2015). As we did not found any equivalent
conditions in the tropical dataset, and since we noticed that the
data from those studies were outliers, we decided to disregard
those values from all our analyses. In this way, we maintained
a similar distribution of points among trophic states in the
temperate (oligotrophic: 16%,mesotrophic: 50%, eutrophic: 34%)
and tropical (oligotrophic: 19%, mesotrophic: 45%, eutrophic:
36%) regions. Nevertheless, we show them in the regression figure
(Figure 3) for comparison purposes.

HB and HNF Abundance
Comparing HB and HNF abundance in tropical and temperate
freshwater environments, we found higher values in the
temperate region for both HB (logHB: p< 0.001, Mann–Whitney
U Statistic = 218964.5; Figure 1A) and HNF (logHNF: p< 0.001,
Mann–Whitney U Statistic = 189579; Figure 1B) communities.

HNF–HB Relationship
HB:HNF ratios were not significantly different between tropical
and temperate environments (HB:HNF: p = 0.3049, Mann–
Whitney U Statistic = 131703; Figure 2).

We found a significant positive relationship betweenHNF and
HB for tropical and temperate regions. Comparing the regression
models from both regions, we found no significant differences
between the slopes, besides no differences in the confidence
intervals for the intercepts (Table 2; Figure 3).

Factors Controlling HB and HNF
Abundances
Linear regressions between SGR and HB abundance
(Figure 4) were non-significant in most tropical systems
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TABLE 1 | Database from each literature data in tropical and temperate environments used in all analysis. ∗To perform the analysis of the relationship
between bacterial specific growth rates, chlorophyll-a, and bacterial abundance, we used a different dataset (see below).

Reference N HB abundance HNF abundance

Minimum Maximum Minimum Maximum

Tropical

Domingues et al., submitted 46 5.93 × 105 6.17 × 106 1.80 × 103 2.75 × 104

Meira et al., in preparation 21 3.03 × 105 2.50 × 106 6.52 × 100 2.02 × 102

Morana et al., 2014 21 1.82 × 106 4.58 × 106 2.07 × 102 1.11 × 103

Velho et al., in preparation 36 1.46 × 105 7.54 × 105 1.10 × 102 2.35 × 103

Pereira et al., 2014 58 1.18 × 106 8.48 × 106 9.22 × 101 1.56 × 104

Pirlot et al., 2005 21 1.66 × 106 5.63 × 106 2.99 × 102 4.08 × 103

Segovia et al., 2014 72 1.46 × 105 1.26 × 106 1.09 × 102 1.21 × 104

Segovia et al., in preparation 106 4.18 × 104 2.33 × 106 1.78 × 101 1.53 × 103

Total 381

Temperate

Bennett et al., 1990 32 2.31 × 106 8.73 × 106 1.12 × 103 5.61 × 103

Berninger et al., 1993 81 7.33 × 106 2.21 × 107 8.07 × 103 7.14 × 104

Bird and Kalff, 1989 12 2.55 × 106 1.34 × 107 2.80 × 102 6.20 × 103

Bloem and Bär-Gilissen, 1989 34 4.00 × 106 1.00 × 107 2.00 × 102 3.40 × 104

Bloem et al., 1989 12 5.42 × 106 1.45 × 107 5.40 × 102 1.05 × 104

Christoffersen et al., 1990 10 4.13 × 106 5.91 × 106 8.75 × 101 1.08 × 103

Fermani et al., 2013∗ 41 2.34 × 107 1.08 × 108 9.40 × 103 1.12 × 105

Fermani et al., 2015∗ 36 1.39 × 106 2.87 × 108 1.47 × 102 3.89 × 105

Finlay et al., 1988 6 8.70 × 106 2.10 × 107 5.00 × 104 1.80 × 105

Güde, 1986 7 4.10 × 106 9.40 × 106 2.30 × 103 7.20 × 103

Güde, 1988 9 3.80 × 106 9.95 × 106 1.40 × 102 7.67 × 103

Jürgens and Güde, 1991 19 4.10 × 106 1.24 × 107 1.40 × 103 2.50 × 104

Jürgens and Jeppesen, 2000 10 4.76 × 106 1.56 × 107 2.29 × 103 1.29 × 104

Munawar and Weisse, 1989 72 3.90 × 105 3.35 × 106 4.40 × 102 5.79 × 103

Nakano et al., 1998 16 1.23 × 107 4.87 × 107 3.06 × 103 1.42 × 105

Pace et al., 1990 5 3.10 × 106 7.83 × 106 4.40 × 102 1.05 × 103

Pick and Caron, 1987 22 6.90 × 105 6.20 × 106 4.92 × 102 6.65 × 103

Šimek and Fuksa, 1989 12 1.98 × 106 4.89 × 106 9.20 × 101 1.39 × 103

Šimek et al., 1990 17 1.34 × 106 3.99 × 106 8.60 × 101 1.29 × 103

Šimek et al., 1997 32 2.05 × 106 4.60 × 106 1.35 × 103 4.45 × 103

Sommaruga, 1995 36 1.70 × 106 2.03 × 107 1.14 × 103 2.97 × 104

Vaqué and Pace, 1992 64 2.90 × 106 8.76 × 106 1.69 × 102 1.92 × 103

Weisse, 1990 24 5.69 × 105 6.56 × 106 5.40 × 102 8.11 × 103

Weisse, 1991 103 4.21 × 105 7.99 × 106 3.14 × 102 7.97 × 103

Wieltschnig et al., 2001 31 2.91 × 106 6.66 × 106 5.59 × 102 2.34 × 103

Total 743

∗Data from those references were considered outliers and were not used in our analysis.

(six out of eight systems), pointing toward a regulation of
bacterial numbers by predation for most systems. Taking
all systems together, this relationship was not significant
either.

We performed multiple regressions to evaluate the
effects of potential predators on HB abundance. The
regression model explained 28% of the variation in HB
abundance of the tropical data and included the abundances
of HNF, ciliates, rotifers and cladocerans (Table 3). The
standardized regression coefficients of both HNF and
rotifers were positive, thus an increase in HNF and

rotifer abundance was associated with an increase in HB
abundance, suggesting a bottom-up effect. As for the
ciliates and cladocerans, we found a negative relationship,
suggesting a top down effect, since an increase in ciliate and
cladoceran abundance was associated with a reduction in HB
abundance.

The best multiple regression model for HNF abundance
included only ciliates and cladocerans and explained 32% of the
HNF abundance variation. The standard regression coefficient
of ciliates was positive, indicating a simultaneously increase in
both variables. As for the cladocerans, we found a negative
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FIGURE 1 | Comparison of heterotrophic bacteria (A) and
heterotrophic flagellates (B) among tropical and temperate freshwater
environments. The central full line indicates the median value, the dotted line
indicates the arithmetic mean value, the boxes indicate the lower and upper
quartiles, the vertical lines indicate the 10th and 90th percentiles, and the dots
represent the 5th and 95th percentiles. Tropical and temperate data were
significantly different (non-parametric Mann-Whitney Rank Sum test) in the
two variables (HB and HNF with p < 0.001, see text for details).

relationship, indicating a top–down effect of this group on HNF
(Table 3).

DISCUSSION

We compiled for the first time a consistent HNF and HB
abundance database for tropical freshwaters, and compared
the abundances of those communities with the ones from the
temperate environments, as well as explored probable causes of
lower bacterial abundance in the tropics. We found that both
HNF and HB abundances were lower in the tropics and that
there is no difference in the HNF-HB coupling between those

FIGURE 2 | Comparison of HB:HNF ratios among tropical and
temperate freshwater environments. The central full line indicates the
median value, the dotted line indicates the arithmetic mean value, the boxes
indicate the lower and upper quartiles, the vertical lines indicate the 10th and
90th percentiles, and the dots represent the 5th and 95th percentiles.
HB:HNF ratios were not significantly different between tropical and temperate
environments (see text).

FIGURE 3 | Model II linear regressions between HNF and HB for
tropical (red dots and red line; r2 = 0.14; p < 0.0001) and temperate
(blue dots and blue line; r2 = 0.30; p < 0.0001) freshwater
environments (see Table 2 for confidence intervals). Outliers disregarded
from our analyses (blank dots) and model II linear regressions for temperate
freshwater environments including those outliers (black line) are also shown
(see Materials and Methods).

regions. Besides, HB abundances were apparently more regulated
by predation, especially from ciliates and cladocerans.

TABLE 2 | Model II Linear Regression parameters between HNF and HB for tropical and temperate regions.

LogHNF vs. LogHB Slope 95% (ci) Intercept 95% (ci) n r2 p

Tropical 2.49 (1.98:3.29) –12.12 (–16.92:–9.04) 381 0.14 <0.0001

Temperate 2.48 (2.22:2.81) –13.13 (–15.28:–11.38) 666 0.3 <0.0001
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FIGURE 4 | Relationship between bacterial SGR and HB abundance in several tropical freshwater environments. Most linear regressions (six out of eight)
were non-significant, suggesting regulation by predation. One regression was positive (β = 0.13; r2 = 0.30) and only one was negative suggesting resource limitation,
although not a very strong one (β = –0.18; r2 = 0.49).

TABLE 3 | Regression analyses for HB and HNF abundance of the tropical region.

Models β (±SE)

r2 HNF Cili Rot Clad Cop

HB HNF, Cili, Rot, Clad 0.28 0.55 (±0.05) − 0.36 (±0.05) 0.31 ( ± 0.05) − 0.13 (±0.06) −
HNF Cili, Clad 0.32 − 0.60 ( ± 0.05) − 0.17 (±0.06) −
β, standard regression coefficient; SE, standard error; HB, heterotrophic bacteria; HNF, heterotrophic nanoflagellates; Cili, ciliates; Rot, rotifers; Clad, cladocerans; Cop,
copepods. Bold values are the negative β values.

Weak Evidence of Resource Limitation
Evidence found in the literature suggests that bacterial growth
dependence on phytoplankton derived dissolved organic carbon
(DOC) supply might not always be that relevant in low latitudes.
Although there is evidence that phytoplankton derived DOC
would be important for the bacterioplankton of large African
tropical lakes (Stenuite et al., 2009; Morana et al., 2014), low
HB:phytoplankton biomass ratios have been found (Sarmento
et al., 2008). In a comparative analysis using different types
of Brazilian freshwater ecosystems, Roland et al. (2010) found
a much weaker HB:chlorophyll-a correlation in tropical when
compared to the non-tropical environments. In this way, the
bacteria–phytoplankton uncoupling seems to be a recurrent
situation in south-American lowland lakes (e.g., Carvalho et al.,
2003; Gocke et al., 2004; Rejas et al., 2005; Petrucio et al., 2006;
Teixeira et al., 2011; Almeida et al., 2015), which are generally
smaller and shallower, comparing to the East-African Great

Lakes. White et al. (1991) reported a rather weak correlation
between SGR and chlorophyll-a in freshwaters, and suggested
that variations in the importance of grazing pressure may have
contributed to this finding.

However, as allochthonous DOC may also constitute an
important resource for HB (Tranvik, 1992), a regulation of HB
by those carbon sources could also explain the weak dependency
of bacteria on phytoplankton. Unfortunately, we do not have data
concerning those variables, which would allow us to elucidate this
point. Nonetheless, our results of non-significant relationships
between bacterial SGR and HB abundance in most of the tropical
systems analyzed (Figure 4), reinforce the idea that predation
might be more relevant than resource limitation, whatever that
resource could be. If HB abundance and SGR were not related,
grazing was likely consuming HB at such a rate that it was limited
by a small range of possible growth rates (Wright and Coffin,
1984; Gasol et al., 2002). Thus, we could infer that resource
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FIGURE 5 | Schematic representation showing possible impacts of
predators and resources on HB and HNF in tropical regions. Dashed
arrows indicate no relationship, blue arrows indicate positive and red arrows
indicate negative relationships. The thickness of the arrows is proportional to
the strength of the interaction.

limitation was not likely to restrain HB abundance in most
tropical freshwater environments, and that a top-down control
might prevail in these systems.

HNF Abundance is Also Lower in
Tropical Environments
The assumption of a higher abundance of HNF in tropical,
relative to temperate environments, was not corroborated in
our study. Although large-bodied cladocerans are relatively low
abundant in the tropics, the typical small bodied cladocerans,
seem to exert a strong predation pressure on HNF, as evidenced
by the negative standard coefficient multiple regression model
(Table 3).

The impact of small-bodied cladocerans on HNF is somewhat
unexpected, since in the tropics there is usually a smaller
proportion of Daphniidae, which is replaced by Bosminids,
Sidids, and Moinids (Dumont, 1994; Elmoor-Loureiro, 2000).
However, the influence of cladocerans on the abundance of HNF
was already verified in the bottom layer a tropical floodplain
lake where those predators were more abundant, specially
represented by Bosmina hagmanni and Ceriodaphnia cornuta
(Segovia et al., 2014). In fact, the small-bodied cladocerans
Bosmina, Ceriodaphnia, and Diaphanosoma were found to
achieve higher weight-specific clearance rates on HNF than that
of Daphnia species (Jürgens et al., 1996). Specifically, Bosmina
have a particular foraging mode, different from filter-feeding,
which allows certain selectivity and consequently more efficient
removal of small flagellates compared to Daphnia (DeMott
and Kerfoot, 1982), even at low food concentrations (DeMott,
1982). Thus, even though Daphnids are recognized as the main
responsible for hampering the development of HNF in temperate
ecosystems (Pace and Vaqué, 1994; Gasol et al., 1995; Jürgens
and Stolpe, 1995), their low abundance in the tropics would
not result in a weaker predation pressure of cladocerans on

HNF, since other small-bodied cladocerans such as the Bosminids
may replace Daphnia, in the sense that they would also be able
to suppress HNF effectively. As for the ciliates, we found a
positive relationship with HNF, indicating that both variables are
increasing. It is possible that this could be the result of the control
of both HNF and ciliates by variables related to their shared
resources and predators (Auer et al., 2004; Segovia et al., 2014;
Domingues et al., submitted).

HNF–HB coupling in the tropics does not seem to differ
from that of the temperate regions. A top–down control by
cladocerans on HNF may be keeping them from reaching the
high abundances they presumably would have in the tropics,
blurring their effects on bacteria (Gasol and Vaqué, 1993; Gasol,
1994; Wieltschnig et al., 2001; Segovia et al., 2014; Kalinowska
et al., 2015). Another possible cause for the lack of HNF–HB
coupling is the use of an alternative food resource by the HNF,
such as the picophytoplankton (PPP). Herbivory preference by
nanoflagellates, rather than bacterivory, was verified in the large
tropical Lake Tanganyika (Tarbe et al., 2011). The preference
of HNF for PPP was also found in shallow floodplain lakes in
the tropical region (Meira et al., in preparation). In addition,
the biomass of HNF was negatively related to PPP in tropical
reservoirs of different trophic states, pointing out the importance
of this interaction on these environments as well (Domingues
et al., submitted). To sum up, the lower HNF abundance found,
together with the similar HNF-HB coupling, suggests that HNF
is probably not related to the lower HB abundance in the tropics.

Grazing by Ciliates and Cladocerans May
Explain the Lower HB Abundance in the
Tropics
The variables associated with HB abundance in the tropics
were HNF, ciliates, rotifers, and cladocerans. HNF and rotifers
were positively related with HB abundance, which means that
they are likely feeding on bacteria but are not able to suppress
their abundance. On the contrary, both ciliates and cladocerans
showed a negative relationship, suggesting a top–down control
on HB abundance. As stated before, resource limitation or
predation by HNF are unlikely to be the reason why bacterial
abundance is lower in the tropics. Thus, the negative effect of both
ciliates and cladocerans could be part of the explanation for such
a pattern.

Although there is a vast literature relating the prevalence
of HNF as the major bacterivores (Fenchel, 1982; Sanders
et al., 1989, 1992; Berninger et al., 1991), the relatively
higher importance of ciliates as predators of bacteria was also
documented. The dominance of ciliates as grazers of bacteria has
been reported in occasions where HNF abundance is rather low
(Kisand and Zingel, 2000; Tadonléké et al., 2005; Zingel et al.,
2007). Also, ciliate community structure in the tropics may differ
from that of the temperate regions. It is known that bacterivory
is predominant among the small oligotrich ciliates (Stabell,
1996; Šimek et al., 2000), thus perhaps features such as ciliate
community composition might be playing a role on the impact
of ciliates in tropical environments, where there could be a larger
proportion of those bacterivorous taxa. However, more studies
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are necessary to draw such a conclusion. Another overlooked
aspect would be the influence of temperature on the ciliate
feeding rates. It has been shown that ciliate feeding rates increase
considerably with the raise of temperature (Sherr et al., 1988;
Rychert, 2011). Therefore, it is plausible to infer that the higher
temperatures of the tropics may be a relevant factor.

Similarly to the impact on HNF, weight-specific filtering
rates on bacteria were found to be higher for Ceriodaphnia
and Bosmina than for the large Daphnia magna (Porter et al.,
1983). Vaqué and Pace (1992) found that lakes dominated by
large populations of Bosmina longirostris showed even slightly
higher maximum values of grazing on bacteria (35 × 106 bacteria
L−1 h−1) than Daphnia pulex (30 × 106 bacteria L−1 h−1), and
concluded that, when in large numbers, populations of small
cladocerans compensate for the lack of large Daphnids. Thus,
if tropical environments are dominated by those small-bodied
cladocerans, then their impact on bacterioplankton could be
higher than in temperate environments. In addition, a positive
relationship has been found between cladoceran filtering rate
and temperature (Burns, 1969). For example, Mourelatos and
Lacroix (1990) found that at a temperature of 20◦C, a Daphnia
of 0.5 mm size filtered as much as one twice its size but at
a 10◦C temperature, suggesting that at higher temperatures
those small-bodied cladocerans should have an even greater
impact. Moreover, a recent study found that pelagic cladocerans
significantly explained the variation in bacterial community
composition in tropical South American shallow lakes (Souffreau
et al., 2015), demonstrating that the predation pressure of
those microcrustaceans might also be responsible for changes in
bacterial community structure.

Thus, ciliates and small cladocerans seem to play a
central role in the pelagic food webs of tropical freshwater
environments, and the fundamental differences in the food web
structure of freshwater environments in temperate and tropical
environments, together with the higher temperatures of the
tropical ones, likely dictate the fate of bacterial production
(Figure 5).

It is worth noting that virus lysis is also recognized as a major
source of bacterial losses (Fuhrman and Noble, 1995), however,
few studies concerning this topic were performed in the tropics.
Low virus-to-bacterium ratios and frequency of visible infected
cells were found in Amazonian floodplain lakes (Barros et al.,
2010; Almeida et al., 2015) and African lakes (Bettarel et al.,
2006). Barros et al. (2010) suggested that these low values could be
related to the registered low bacterial abundances, which restrain
the rates of encounter between the virus and the bacterial host
cell, resulting in a low level of viral predation. As a corollary for

this explanation, the comparable lower abundances of bacteria
in the tropics should result in lower loss rates by viral attack
than in the temperate systems. Nonetheless, relatively high values
of virus-to-bacterium ratios were found in tropical reservoirs
(Peduzzi and Schiemer, 2004) and in a tropical lake (Araújo and
Godinho, 2009). Thus, bacterial mortality caused by virus should
be taken into account when studying mechanisms controlling
bacterial abundance in tropical freshwaters in the future to
elucidate this issue.

CONCLUSION

Comparing tropical against temperate data reinforced the
previous findings that bacterial abundance is lower in the tropics.
Moreover, bacterial specific growth rate was not related to either
chlorophyll-a and HB abundance, pointing to an important role
of bacterial losses in the tropics. Besides, we found that HNF
abundance is also lower in the tropics and that HNF-HB coupling
is not different across latitudes. A top–down control on HNF and
their herbivory preference may help explain the lack of HNF–HB
coupling, and suggests that HNF is likely not the main cause for
bacterial loss. It is possible that grazing by ciliates and cladocerans
play a large role in controlling bacterial abundance in the warmer
regions. However, this issue should bemore investigated in future
studies concerning tropical freshwater environments.
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