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1 Introduction

The main motivation for heavy long-lived particle (LLP)
searches at the Large Hadron Collider (LHC) arises from
proposed solutions to the gauge hierarchy problem [1],
which typically involve previously unseen particles at the
TeV mass scale. Hadronising LLPs are anticipated in a
wide range of physics models that extend the Standard
Model (SM). For example, these particles appear in both
R-parity-conserving [2,3,4,5,6,7,8,9] andR-parity-violating
[10,11,12] supersymmetry (SUSY) and in universal extra
dimensions theories [13,14].

These particles can be stable, or metastable;1 the life-
time of these metastable particles may depend on the mass
splitting with the lightest SUSY particle or on the size of
any R-parity-violating coupling [15].

LLPs produced at the LHC are expected to be slow
(β significantly below 1) and, therefore, should have spe-
cific ionisation higher than any SM particle at high mo-
menta. The ATLAS detector [16] has a number of sub-
systems able to measure the velocity of charged particles.
The pixel detector [17] provides measurements of ionisa-
tion energy loss (dE/dx) whereas the calorimeters and
the muon spectrometer give a direct measurement of the
time of flight for particles traversing them. A search for

1 In this article, particles that do not decay in the active
detector volume are considered stable, and those that decay
inside this volume are considered metastable.

stable LLPs has been performed with the ATLAS detec-
tor [18] with 4.7 fb−1 of

√
s = 7 TeV proton–proton (pp)

collisions using both the full detector information as well
as the pixel detector information alone, and has been re-
cently updated with the entire

√
s = 8 TeV dataset [19],

but without a pixel-only analysis. The CMS Collabora-
tion has recently published [20] an analysis searching for
stable LLPs based on the measurement of dE/dx, β, and
on muon identification. In CMS, a search for metastable
LLPs has been carried out by looking for secondary ver-
tices [21], or disappearing tracks [22]. A displaced vertex
search performed by the ATLAS Collaboration [23] sets
limits on metastable particles in a number of scenarios.
Limits on chargino production, from an analysis search-
ing for disappearing tracks, have also been published by
the ATLAS Collaboration [24].

The analysis described in this article has sensitivity
to metastable particles if they have unit charge and their
track length before decay is more than 45 cm in the ra-
dial direction, so that they can be measured in the first
few layers of the ATLAS tracker. This measurement does
not depend on the way the LLP interacts in the dense
calorimeter material nor, to a first approximation, on the
LLP decay mode. It can therefore address many differ-
ent models of New Physics, especially those predicting the
production of metastable heavy particles with O(ns) life-
time at LHC energies, such as mini-split SUSY [25,26]
or anomaly-mediated supersymmetry breaking (AMSB)



2 The ATLAS Collaboration: Search for metastable heavy charged particles with large ionisation energy loss

models [27,28]. A metastable gluino with a mass of 1 TeV
would be compatible with the measured Higgs boson mass
according to mini-split SUSY models, which also predict
squark masses of 103–105 TeV, therefore making the gluino
the only observable strongly produced SUSY particle at
LHC energies. In AMSB models, SUSY breaking is caused
by loop effects and the lightest chargino can be only slightly
heavier than the lightest neutralino, resulting in a heavy
charged particle that can be measured before decaying
into very low energy SM particles and a neutralino.

Results are presented in the context of SUSY models
assuming the existence of R-hadrons [29] formed from a
long-lived coloured sparticle (squark or gluino) and light
SM quarks or gluons, and in AMSB models for the case
of long-lived charginos.

The paper is organised as follows. After a brief de-
scription of the experiment (Section 2) and of the mea-
surement strategy (Section 3), the simulation of the signal
processes is described (Section 4). The triggering strategy
is then summarised and the trigger efficiency is calculated
for R-hadrons and charginos (Section 5.1), after which the
event selection is defined and motivated (Section 5). The
data-driven background estimation is then described (Sec-
tion 6) and the systematic uncertainties are presented and
discussed (Section 7). Finally, after a brief description of
the statistical method used to extract lifetime-dependent
limits on R-hadron and chargino production cross sections
and masses, the results are reported in Section 8.

2 ATLAS detector and pixel dE/dx
measurement

The ATLAS detector2 consists of a tracker surrounded
by a solenoid magnet for measuring the trajectories of
charged particles, followed by calorimeters for measuring
the energy of particles that have electromagnetic or strong
interactions with matter, and a muon spectrometer. The
muon spectrometer is immersed in a toroidal magnetic
field and provides tracking for muons, which have typ-
ically passed through the calorimeters. The detector is
hermetic within its η acceptance and can therefore mea-
sure the missing transverse momentum (whose magnitude
is denoted by Emiss

T ) associated with each event. A com-
plete description of the ATLAS detector can be found else-
where [16]. The tracker is made of three detector systems.
Starting from the solenoid magnet and moving toward the
beam collision region one finds a ≈400-thousand-channel
transition radiation tracker [30] followed by a ≈6-million-
channel silicon microstrip detector [31], and finally a ≈80-
million-channel pixel detector. The pixel detector is cru-

2 ATLAS uses a right-handed coordinate system with its ori-
gin at the nominal interaction point in the centre of the detec-
tor and the z-axis coinciding with the axis of the beam pipe.
The x-axis points from the interaction point to the centre of
the LHC ring, and the y-axis points upward. Cylindrical co-
ordinates (r, φ) are used in the transverse plane, φ being the
azimuthal angle around the beam pipe. The pseudorapidity is
defined in terms of the polar angle θ as η = − ln tan(θ/2).

cial for this measurement and is described in more detail
below.

As the innermost sub-detector in ATLAS, the silicon
pixel detector provides at least three precision measure-
ments for each track in the region |η| < 2.5 at radial dis-
tances of 5 to 13 cm from the LHC beam line. At nor-
mal incidence, the average charge released by a minimum-
ionising particle (MIP) in a pixel sensor is ≈ 20000 e− and
the charge threshold is set to 3500±40 e− for each pixel.
Signals above this threshold are time-stamped within one
beam crossing; the hit efficiency under these conditions
exceeds 99%. When detector data are read out, the time
over threshold (ToT), i.e. the length of time for which
the signal is above the threshold, is digitised with 8 bits.
The ToT is proportional to the ionisation charge [32] and
its maximum value corresponds to 8.5 times the average
charge released by a MIP track normal to the silicon de-
tectors and leaving all of its ionisation charge on a single
pixel. If this value is exceeded, the signal is lost.

The charge released by a track crossing a layer of the
pixel detector is rarely contained within just one pixel.
Neighbouring pixels are thus joined together to form clus-
ters and the charge of a cluster is calculated by summing
up the charges of all pixels after calibration corrections.
The specific energy loss (dE/dx) is defined as an average
of the individual cluster ionisation measurements (charge
collected in the cluster, corrected for the track length in
the sensor), for the clusters associated with the track. To
reduce the Landau tails, the average is evaluated after
having removed the highest dE/dx cluster and amounts
to 1.24 ± 0.19 MeV/g cm2 for a MIP [33]. The minimum
measurable βγ with the dE/dx method is ≈0.3 for parti-
cles with unit charge and is determined by the ToT over-
flow in any of the pixels in a cluster.

3 Measurement strategy

Charged massive LLPs are expected to interact with mat-
ter following the Bethe–Bloch distribution according to
their βγ. The mass of the LLPs can be obtained by fit-
ting their specific energy loss and momentum to an em-
pirical Bethe–Bloch distribution in the range 0.3 < βγ <
1.5. This range overlaps with the expected average βγ
of LLPs produced at the LHC, which decreases from 2.0
to 0.5 for an increase in particle mass from 100 GeV to
1600 GeV. The parametric function describing the rela-
tionship between the most probable value of the energy
loss (dE/dxMPV) and βγ is [33]:

dE/dxMPV(βγ) =
p1
β p3

ln[1 + (|p2|βγ)p5 ]− p4. (1)

The pi calibration constants have been measured [33] us-
ing low-momentum pions, kaons and protons reconstructed
in ATLAS and their values are monitored by checking the
stability of the proton mass measurement as a function of
time. The calibration is found to be stable at the 1% level
for all data-taking conditions and detector settings.

Given a measured value of dE/dx, the mass estimate
m is obtained from Eq. (1) by numerically solving the
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Fig. 1. Ratio of the reconstructed mass, computed as the most
probable value of a fit to a Landau distribution convolved with
a Gaussian, to the generated mass, as a function of the gener-
ated mass for stable gluino R-hadrons. The yellow band is the
half-width at half maximum of the reconstructed mass distri-
bution normalised to the generated mass.

equation dE/dxMPV(p/m) = dE/dx for the unknown m.
Figure 1 shows the ratio of the reconstructed mass to the
generated mass for simulated R-hadrons with masses up to
1600 GeV. The overestimation of the reconstructed mass
for heavy particles is due to the pion scattering model
assumed in the track reconstruction and momentum mea-
surement. A ≈3% rescaling of the measured mass is then
applied in the analysis. The half-width at half maximum
of the reconstructed mass distribution increases with the
mass value. This is due to the momentum measurement
uncertainty dominating the mass resolution above masses
of 200 GeV.

The measurement strategy consists of looking for an
excess of events, compatible with the expected measure-
ment resolution, in the mass distribution for particles that
are selected as LLP candidates. These should appear as
high transverse momentum (pT) isolated particles with
large dE/dx. Since there is no trigger based on these ob-
servables, events of interest were selected using the lowest-
threshold unprescaled calorimetric Emiss

T trigger. For sig-
nal events, the Emiss

T originates from jets from QCD initial-
state radiation (ISR) and, whenever relevant, by the LLP
decays to undetected neutralinos. The trigger efficiency
for all the LLPs searched for with this analysis is shown
in Section 5.1.

4 Simulation of signal

A number of Monte Carlo (MC) simulated signal samples
are used in this analysis to determine the expected ef-
ficiencies and to estimate the systematic uncertainties. A
description of the simulation techniques is presented below
for both stable and metastable R-hadrons and charginos.
All simulated events are processed through the Geant4

[34] standard ATLAS simulation [35] and digitisation, fol-
lowed by event reconstruction. This includes a realistic
description of additional pp interactions in the same or
neighbouring bunch crossings (pile-up). In order to take
into account residual discrepancies with data, the simu-
lated pile-up distribution is scaled to that observed during
the 2012 data-taking period.

4.1 Stable R-hadrons

Pair production of gluinos with masses between 100 and
1700 GeV is simulated in Pythia 6.4.27 [36] with the
AUET2B [37] set of MC tuneable parameters and the
CTEQ6L1 [38] parton distribution function (PDF) set, in-
corporating dedicated hadronisation routines [39] to pro-
duce final states containing R-hadrons. Additional sam-
ples of gluinos with some representative mass values are
generated using MadGraph5 [40] 1.3.33. Since the Mad-
Graph samples are generated with an additional outgoing
parton in the matrix element they provide a more accu-
rate description of ISR and thus a more accurate distri-
bution of the transverse momentum of the gluino–gluino
system. The gluino samples simulated with Pythia6 are
reweighted to match this gluino–gluino system pT dis-
tribution obtained from the MadGraph samples. The
cross sections are calculated to next-to-leading order in the
strong coupling constant (NLO), including the resumma-
tion of soft-gluon emission at next-to-leading-logarithmic
accuracy (NLO+ NLL) [41,42,43,44,45]. The nominal cross
section is calculated assuming a squark mass of 10 TeV.
The uncertainty is taken from an envelope of cross-section
predictions using different PDF sets and factorisation and
renormalisation scales, as described in Ref. [46].

Simulated R-hadron events are passed through a full
detector simulation, where interactions with matter are
handled by dedicated Geant4 routines based on differ-
ent scattering models. The model described in Refs. [39,
47], and hereafter referred to as the generic model, im-
poses few constraints on the allowed stable states. This is
the only model where doubly charged R-hadrons are pre-
dicted, with a production probability of 0.1%. Hadronic
scattering is described through a purely phase-space-driven
approach. A second model, referred to as the Regge model
in the following, employs a triple-Regge formalism to de-
scribe hadronic scattering and describes R-hadrons con-
taining gluinos according to Ref. [48]. More recent models
for the hadronic scattering of gluino R-hadrons predict
that the majority would be electrically neutral after just
a few hadronic interactions. The third scenario considered
here belongs to this family and is based on bag-model
calculations presented in Ref. [49]. This is referred to as
the intermediate model. The probability for a gluino to
form a gluon–gluino bound state, based on a colour-octet
model, is assumed to be 10% [2]. Results are presented for
the generic (Regge) model for gluino (squark) R-hadrons.
Variations resulting from the use of a model different from
the nominal one are taken into account as systematic un-
certainties on the signal efficiency.
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4.2 Metastable R-hadrons

The simulation of metastable gluino-based R-hadron sam-
ples is performed in a similar way to that of the stable R-
hadrons, as described in Section 4.1. The gluinos within
R-hadrons are required to decay via the radiative process
g̃ → gχ̃0

1 or g̃ → qq̄χ̃0
1, using Pythia6. Decays involv-

ing tt̄ pairs are treated separately. Gluino masses between
400 GeV and 1400 GeV are simulated, with the neutralino
mass either fixed to 100 GeV or set to m(g̃) − 100 GeV
(or m(g̃) − 480 GeV for tt̄ channels). The gluino lifetime
is varied from 0.1 ns to 10 ns.

Results of this search are presented as a function of
the R-hadron lifetime. Signal MC samples with different
lifetimes are obtained, starting from those simulated with
a fixed value of the lifetime, by applying event weights,
such that the distribution of the proper lifetime in the
modified sample corresponds to the chosen new value of
the mean lifetime. The event weight w is given by:

w(τRH) =

nRH∏
i

τ0
τRH

exp

[
− ti

(
1

τRH
− 1

τ0

)]
, (2)

where nRH , τ0 and ti are the number of R-hadrons in
the event, the R-hadron mean lifetime as set by the sim-
ulation, and the proper lifetime of the ith R-hadron, re-
spectively. The modified mean lifetime obtained after the
reweighting procedure is indicated by τRH .

4.3 Stable charginos

A chargino may be stable in a simplified scenario where
the mass difference between the chargino and neutralino
is less than 140 MeV so that the chargino decay to a
pion and a neutralino is kinematically suppressed. Sam-
ples with long-lived charginos are generated using Her-
wig++ 2.6.3 [50] along with the UEEE3 [51] tune and
the CTEQ6L1 PDF set. The chargino mass is varied be-
tween 100 GeV and 800 GeV. The chargino is forced to
remain stable and the other particles in the model are
set to be too heavy to be produced in

√
s = 8 TeV pp

collisions. Signal cross sections are calculated to NLO us-
ing PROSPINO2 [52]. They are in agreement with the
NLO+NLL calculations within ∼2% [53,54,55]. The total
cross section is dominated by direct production of χ̃0

1χ̃
±
1

pairs (∼ 67%), and by χ̃+
1 χ̃

−
1 pairs (∼ 30%). The rela-

tive proportion of these two production mechanisms was
checked and found to be constant at the 1% level over the
considered chargino mass range.

4.4 Metastable charginos

Samples with metastable charginos are produced similarly
to the samples of stable charginos. The mean lifetime of
the chargino is set to a given value (τχ̃±

1
), and charginos

are forced to decay into χ̃0
1 + π± in the Geant4 simu-

lation following an exponential decay with lifetime τχ̃±
1
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Fig. 2. Efficiency for the calorimetric Emiss
T > 80 GeV trigger

as a function of the R-hadron mass or of the chargino mass.
Separate curves are also shown for the stable and metastable
cases. Only statistical uncertainties are shown, which are too
small to be visible on these graphs.

in the chargino rest frame. The chargino–neutralino mass
splitting is set to 140 MeV. Samples with τχ̃±

1
= 1, 5, 15

and 30 ns are generated for different mass points. To re-
duce the use of simulation resources, all the samples were
generated with a jet filter requiring at least one generator-
level jet with pT > 70 GeV and |η| < 5. This choice was
optimised for the first metastable chargino search [24]. The
present analysis does not make any explicit requirement
on the energy of the jets, while it requires missing trans-
verse momentum in the event. There is a strong correlation
between these two requirements. The residual bias due to
the jet filter is evaluated and assigned as a systematic un-
certainty.

5 Candidate selection

5.1 Trigger

Events are selected by the Emiss
T > 80 GeV trigger, the

lowest-threshold Emiss
T trigger that remained unprescaled

throughout the 2012 data taking. This is based uniquely
on the energy deposited in the calorimeters. Figure 2 shows
the efficiency of this trigger as a function of the R-hadron
or chargino mass.

The decay of each LLP to jets and a neutralino oc-
curring within the ATLAS active volume contributes to
the transverse momentum imbalance and leads to higher
trigger efficiency in the metastable cases. In the case of
metastable R-hadrons, the Emiss

T also depends on the mass
of the neutralino produced in the decay itself. The two R-
hadrons tend to be emitted back-to-back and the same
holds for the two heavy neutralinos, which therefore ap-
proximately balance Emiss

T . If neutralinos are light, high-
pT jets coming from R-hadron decay also contribute to
the transverse momentum inbalance. For this reason, the
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calorimetric Emiss
T is significantly larger when the neu-

tralino is light. The Emiss
T also depends on the lifetime

of the parent particle as this defines the fraction that de-
cay before the calorimeter and therefore affects Emiss

T . If
the lifetime is shorter than 1 ns, the decay happens very
close to the primary vertex and the calorimetric Emiss

T
does not depend very much on the lifetime. On the other
hand, if the lifetime is long enough, the decay may happen
beyond the calorimeter region and, therefore, the calori-
metric Emiss

T is close to the stable case. The 10 ns lifetime
is an intermediate case, as decays happen mainly, but not
exclusively, in the tracker region.

5.2 Offline selection

This search is based on a sample of well-measured high-
pT isolated tracks in events with large missing transverse
momentum. The data sample considered in this analysis
was collected with tracking detectors, calorimeters, muon
chambers and magnets fully operational and corresponds
to a total integrated luminosity of 18.4 fb−1 with an un-
certainty of ±2.8% measured using beam separation scans
following the technique described in Ref. [56].

The first step in the selection is the confirmation that
the event has sufficient Emiss

T . The Emiss
T variable com-

puted using the offline reconstruction [57,58], which uses
refined calorimetric information and includes the contri-
butions of the energy of the muons, must exceed 100 GeV.
Candidate events are then required to have at least one
primary vertex with a minimum of five tracks with pT >
0.4 GeV. There must be at least one track associated with
this primary vertex,3 with at least three pixel hits, mea-
sured over 45 cm in the radial direction, and with trans-
verse momentum pT > 80 GeV and |η| ≤ 2.5. The set
of requirements described above, including the trigger re-
quirement, defines the preselection entry in Tables 1 and 2.

The following additional requirements must be satis-
fied by at least one of the preselected candidate tracks in
order to select the event.

The track must be isolated. A track is considered iso-
lated if its distance ∆R =

√
(∆η)2 + (∆φ)2 to any other

track associated with the primary vertex and with pT ≥
1 GeV is greater than 0.25. About 70% of these isolated
tracks are high-pT leptons originating from W boson pro-
duction.

The track must not be identified as an electron [59]
as LLPs can very rarely (<1%) be identified as electrons.
The selected tracks are required not to match any recon-
structed electron within ∆R ≤ 0.01.

The track must have momentum p > 150 GeV and
the relative uncertainty on the momentum σp/p < 50%.
The first requirement improves the signal-to-background
ratio, while the second ensures good mass resolution.

3 A track is associated with the primary vertex if its longitu-
dinal and transverse impact parameters are less than 1.5 mm.
The primary vertex is chosen as that with the highest sum of
p2T associated with it.

The track must not be a muon originating from a W
boson decay. Muons cannot be simply identified and re-
jected at this stage, as hypothetical very long-lived par-
ticles would often be mis-identified as muons in the de-
tector. Therefore, to reject muons from a W boson de-
cay, a requirement on transverse mass4 (mT >130 GeV)
is applied. According to simulation, this requirement re-
duces the fraction of W boson events in the data sample
to ∼ 40%.

The selected track is required to have specific ionisa-
tion measured by the pixel detector larger than 1.800 −
0.034|η| + 0.101η2 − 0.029|η|3 MeV/g cm2. This require-
ment corrects the slight |η| dependence [60] of the dE/dx
variable and selects ∼ 1.3% of the tracks in the data in-
dependently of the pseudorapidity region. The selection
cut chosen is the lowest with mass-discriminating power
(below this, the dE/dx values of all particles are too close
to the MIP value, irrespective of their masses).

The above requirements complete the selection for the
stable particle search. One additional requirement is ap-
plied to improve the sensitivity for the metastable case.
The highly ionising particles can be matched with recon-
structed jets [61] or muons [62]. Out of 85 candidates, 57
are geometrically matched to muons (∆R ≤ 0.01) and
26 are ∆R ≤ 0.07 from a jet. The other two candidates
have no signals in the calorimeters or muon system in the
vicinity of the LLP. If the LLPs are stable, they are usu-
ally reconstructed as muons. If the heavy particles are not
stable, the matching with muons becomes much more rare,
in particular for particles with a lifetime of O(ns). In the
search for metastable particles a muon veto is applied, and
tracks that are matched with a muon are rejected.

Finally, if more than one track per event passes all
requirements, the highest-pT candidate is chosen, in order
not to bias the distribution of the variables and to allow
for proper normalisation in the background estimate.

Table 1 shows the number of events in data and for an
example gluino R-hadron signal for the different selection
criteria. In data 85 events are selected before and 28 after
the muon veto. None of the events has more than one
selected track per event.

Table 2 shows the yields for the same event selec-
tion as in Table 1, but applied to simulated signal events
with 1000 GeV gluino R-hadrons that are either stable,
or otherwise decay to g/qq̄ plus a light neutralino of mass
m(χ̃0

1) = 100 GeV, and with a 1 ns lifetime.
Figure 3 shows the overall signal efficiencies for a rep-

resentative set of simulated signal samples to which the
full selection procedure is applied.

When the LLPs decay inside the ATLAS active vol-
ume, Emiss

T increases and trigger and offline Emiss
T selection

becomes more efficient than for the stable case. However,
as the lifetime decreases, the probability to reconstruct a
track segment in the silicon detectors decreases dramat-
ically. At a mass of 1000 GeV, these two effects give a
total efficiency of ≈15% for the 10 ns lifetime samples and
≈1% for the 1 ns samples, while for stable particles the
efficiency has intermediate values of ≈7%.

4 mT =
√

2pTEmiss
T (1− cos(∆φ(Emiss

T , track))
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Table 1. Observed data event yields at different steps of the
selection procedure compared with the expected number of
events for 1000 GeV R-hadrons decaying, with a 10 ns lifetime,
to g/qq̄ plus a light neutralino of mass m(χ̃0

1) = 100 GeV. The
simulated yields are normalised to a total integrated luminos-
ity of 18.4 fb−1 and their statistical uncertainty is also shown.
See text for details.

Selected events Expected events
Requirement (data) (τ = 10 ns)
Preselection 543692 112±3
Isolation 88431 102±3
Electron veto 60450 102±3
High-p 35684 91±3
High-mT 6589 75±2
Ionisation 85 68±2
Muon veto 28 62±2

Table 2. Expected number of events at different steps of
the selection procedure for 1000 GeV gluino R-hadrons de-
caying, with a 1 ns lifetime, to g/qq̄ plus a light neutralino of
mass m(χ̃0

1) = 100 GeV, and for stable R-hadrons. The simu-
lated yields are normalised to a total integrated luminosity of
18.4 fb−1 and their statistical uncertainty is also shown. See
text for details.

Expected events Expected events
Requirement (τ = 1 ns) (stable)
Preselection 19.5±1.1 62±2
Isolation 9.3±0.7 55±2
Electron veto 9.3±0.7 54±2
High-p 4.4±0.5 52±2
High-mT 3.9±0.4 43±1
Ionisation 3.0±0.4 37±1
Muon veto 2.9±0.4 −
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Fig. 3. Total selection efficiencies for some MC samples as a
function of the R-hadron mass or of the chargino mass. Both
stable and some metastable cases are shown. Only statistical
uncertainties are included.

6 Background estimation

In order to estimate the background, a data-driven ap-
proach is used. The method uses data to fit the distri-
butions of key variables, taking into account their inter-
dependence, and then to generate a large random sample
of background events based on the same distributions. The
choice of the control samples takes into account the mea-
sured correlations between the variables used: p, dE/dx
and η. The dE/dx dependence on the path length in the
sensor is not linear [60], but depends on η, increasing by
∼10% from central to high |η|. The dE/dx also depends
on the particle βγ via the Bethe–Bloch formula and there-
fore on its momentum, until the Fermi plateau is reached.
Finally p and η depend on event kinematics, as high-
momentum tracks are more likely to be produced at high
|η| values.

Two samples are constructed to describe the distribu-
tions of the key variables. Both selections use the full data
sample, but with requirements minimising the possible
contamination by signal events. These control region sam-
ples are the same for the searches for stable and metastable
particles, except for the rejection of track candidates geo-
metrically matched with spectrometer muons in the latter
case.

A first sample (CR1 ) is selected by applying all the
selections described in Section 5 except for the high ion-
isation requirement, which is instead inverted to ensure
orthogonality with the search sample. Otherwise, the kine-
matic properties and overall event characteristics are ex-
pected to be similar to the signal region. With this se-
lection, ∼6000 background events are kept in CR1 with
signal contamination of less than 0.6%.

A second sample (CR2 ) is used to obtain the dE/dx
templates and is selected by inverting the Emiss

T require-
ment (Emiss

T <100 GeV), while keeping all the other se-
lection requirements unchanged. This procedure ensures a
negligible signal content in the sample (signal contamina-
tion of less than 0.02%), and that the selected tracks are
in the same kinematic ranges of momentum and pseudora-
pidity as the search sample. With this selection, ∼ 440000
background events are kept in CR2, the majority (≈ 96%)
being matched with muons. The ionisation of all the CR2
tracks and of the subset with the muon veto applied is
shown in Figure 4. In their bulk the distributions are
very similar, thus the larger CR2 sample is also used for
the metastable search with the muon veto. Nevertheless
a larger tail, likely due to e+e− pair production, is seen
at high dE/dx for the tracks with muon veto, and this
difference is accounted for in the systematic uncertainty
evaluation.

A large background sample consisting of five million
{p, η, dE/dx} triplets is randomly generated according
to the following procedure: the momentum is generated
according to a binned function based on selected tracks
in CR1 ; the pseudorapidity is generated according to the
η-binned (where η depends on p) functions based on tracks
in CR1 and the ionisation is generated according to dE/dx-
binned (where dE/dx depends on η) functions based on
all tracks in CR2.
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For the ∼50000 random combinations in which dE/dx
is larger than the selection requirement, both in the sta-
ble and the metastable scenario, the particle mass m is
obtained given the {dE/dx, p} generated values, using
the technique explained in Section 3. The normalisation
of the generated background distribution to the selected
data is obtained by scaling the background distribution to
the data in the low-mass region of the mass distribution
(40 < m < 160 GeV) where a possible signal has already
been excluded [18,24]. The normalisation is performed on
the samples before the ionisation requirement, and its un-
certainty is dominated by the statistical uncertainty in the
data. The complete procedure, from the key variables de-
scription, to the random generation, to the normalisation,
is tested on signal-depleted regions. These regions are the
same as CR1 and CR2 except for requiring tracks with
100 < p < 150 GeV instead of p > 150 GeV. Applied to
these validation samples and the stable scenario, the pro-
cedure described above yields a predicted background of
48.9 ± 0.2 (stat.) ± 0.6 (norm.) events, while the num-
ber of events in the data sample is 49, for m > 160 GeV.
The same procedure applied to the metastable scenario
yields a predicted background of 16.9 ± 0.1 (stat.) ± 0.4
(norm.) events, compared to 20 observed in the data, for
m > 160 GeV.

7 Systematic uncertainties

Systematic uncertainties from several sources affecting the
background estimate and the signal yield have been eval-
uated. The uncertainties are quoted as the maximum de-
viation from the nominal expectation for the background
or for the signal in the probed mass range. The actual
systematic uncertainties are calculated and assigned per
mass bin.

The uncertainties in the background estimation can be
divided into three categories: those related to the partic-

ular choices made for the binning, intervals, and fitting
functions; those related to the different description of the
key variables for control samples with different composi-
tions than the search region sample; and those related to
the stability as a function of pile-up. The uncertainty on
the background estimate due to each of these sources is
evaluated by changing the description of the key variables,
repeating the entire generation procedure, and comparing
the resulting mass distribution with the nominal one. The
uncertainties are estimated separately for the searches for
stable and metastable particles. In each iteration, five mil-
lion events are generated as explained in Sect. 6. The re-
sulting uncertainties are summarised in Table 3.

Table 3. Summary table of the systematic uncertainties that
affect the background estimations. All the sources are common
to searches for stable and metastable particles, unless explic-
itly indicated. The uncertainties depend on the mass, and the
maximum values are reported. In the limit calculations the ac-
tual value of the uncertainty for a given mass is used.

Source of uncertainty: [%]

Modification of:
- Binning in p 5
- Binning in η 5
- Momentum intervals in η 2
- Binning in dE/dx 4
- Analytical description of dE/dx 2
Different fractions of:
- Non-leptons in CR2 (metastable only) 2
- Tracks with more than 3 pixel clusters in CR2 1.5
- Non-leptons in CR1 (stable only) 4
- W decays in CR1 and CR2 3
Pile-up dependence 4

Total background systematic uncertainty:
Stable particle search 11
Metastable particle search 10

The uncertainties on the signal yield are summarised
in Table 4 and can be divided into three categories: those
on the phenomenological modelling of the signal process
with Monte Carlo generators; those on the modelling of
the detector efficiency or calibration; and those affecting
the overall signal yield.

The uncertainty on QCD radiation is evaluated for
stable and metastable R-hadrons as the difference in ef-
ficiency between the Madgraph and Pythia6 samples.
This uncertainty is large for the benchmark channels in
which the Emiss

T is dominated by the ISR contribution,
such as the stable R-hadrons or the gluino R-hadrons de-
caying into g/qq̄ plus a heavy neutralino of mass m(χ̃0

1) =
m(g̃) − 100 GeV. The uncertainty on QCD radiation is
evaluated for metastable charginos using the same proce-
dure as described in Ref. [24], while for stable charginos
the same uncertainty used for the stable R-hadrons is
used, as the Emiss

T distributions are very similar. For theR-
hadrons there is an uncertainty on how they interact with
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the detector material, and this is evaluated by comparing
the efficiencies obtained from generating events according
to the three scattering models described in Section 4.1. Ef-
ficiencies for chargino events generated with and without
the jet filter (see Section 4.4) are compared, and their dif-
ference is accounted for as a systematic uncertainty. A sys-
tematic uncertainty is assigned to the lifetime reweighting
procedure, and is estimated as the discrepancy between
the efficiencies obtained for the same reweighted lifetime
starting from different samples.

Table 4. Summary table for the sources of systematic un-
certainty considered for R-hadrons and charginos. The values
are separately indicated for metastable and stable cases when
these are different. The uncertainty depends on the mass and
on the decay model, and the maximum negative and positive
values are reported. In the limit calculations the actual value
of the uncertainty for a given mass is used.

Source of uncertainty −[%] +[%]

R-hadron
QCD radiation modelling (stable) −28 28
QCD radiation modelling (metastable) −12 12
Scattering models −9.9 6.6
Lifetime reweighting (metastable) −10 10
chargino
QCD radiation modelling (stable) −27 27
QCD radiation modelling (metastable) −21 30
Generator jet filter −8.3 0
Lifetime reweighting (metastable) −10 10
Trigger efficiency modelling −4.5 4.5
Emiss

T scale −3.8 3.5
Pile-up −1.7 1.7
Ionisation parameterisation −5.8 0
Momentum parameterisation (stable) −1.0 1.0
Momentum parameterisation (metastable) −2.0 2.0
Track Efficiency parameterisation −2.0 2.0
Electron identification −1.0 1.0
Muon identification (metastable only) −1.0 1.0
Total systematic uncertainty
Stable R-hadron −30 29
Metastable R-hadron −18 15
Stable chargino −30 28
Metastable chargino −24 31
Uncertainties on signal yield
Luminosity −2.8 2.8
Cross section uncertainty (R-hadron) −56 56
Cross section uncertainty (chargino) −8.5 8.5

The systematic uncertainties on the detector modelling
are dominated by the trigger efficiency modelling, by the
Emiss

T scale, and by the parameterisation of the ionisation.
Systematic uncertainties related to the trigger are evalu-
ated by varying the threshold and resolution parameters
of the calorimetric Emiss

T trigger efficiency modelling curve
and then looking at the efficiency difference between data
and MC simulated Z → µ+µ− events. Systematic uncer-
tainties of the Emiss

T measurement are evaluated with the
methods described in Refs. [57,63] and are propagated to

the uncertainty of the efficiency. Since the pile-up distribu-
tion is different in data and MC simulation, the simulated
samples are reweighted to match the data, and a system-
atic uncertainty is calculated by varying the weighting fac-
tors. The systematic uncertainty on the pixel ionisation is
evaluated by comparing the ionisation of simulated and
real tracks. These tracks are compatible with MIPs, se-
lected with the same requirements as those used for the
search. Other smaller uncertainties are due to momen-
tum [18] and track efficiency [64] parameterisation, and
electron [65] and muon [66] identification.

The uncertainty on the signal cross section is calcu-
lated as described in Section 4. The uncertainty ranges
from 15% (at 100 GeV) to 56% (at 1700 GeV) for R-
hadrons, and is ≈8.5% for the charginos, slightly depen-
dent on the mass.

8 Results

The mass distribution is shown in Figure 5 for the selection
of stable and metastable particles. The data, 85 events
for the stable selection and 28 events for the metastable
selection, are compared to the background estimate. In
addition, mass distributions for examples of gluino and
chargino signals are shown.

No evidence of a signal above the expected background
is observed. The largest deviation has a local p-value of
4.3% and occurs at a mass of 700 GeV for metastable
gluino R-hadrons with lifetime τ = 10 ns.

Upper limits at 95% confidence level (CL) on R-hadron
or chargino production cross sections (and, therefore, given
a model cross section, a lower limit on their masses) are
extracted using the CLS method [67] by scanning the
signal strength over a suitable range and using the pro-
file likelihood ratio as a test statistic. In the procedure for
setting the limit, the systematic uncertainties on the sig-
nal and background yields, as evaluated in Section 7, are
treated as Gaussian-distributed nuisance parameters. The
statistical uncertainty on the background distribution also
takes into account the uncertainty due to the normalisa-
tion. Signal, background and data events are counted in a
mass window of ±1.4σ around the signal peak, where the
signal peak and the width are estimated by a Gaussian
fit to the mass distribution in simulated signal MC sam-
ples. Lower limits on the mass are derived by comparing
the measured cross-section limits to the lower edge of the
±1σ band around the theoretically predicted cross section
for each process. The resulting lower limits set on the mass
of the stable and metastable particles are summarised in
Table 5 for the different searches.

Figure 6 shows the upper limits on the production
cross section for the gluino R-hadron with a lifetime of
10 ns decaying into g/qq̄ plus a light neutralino of mass
m(χ̃0

1) = 100 GeV, or a heavy neutralino of mass m(χ̃0
1) =

m(g̃) − 100 GeV. Figure 7 shows the excluded range of
lifetimes for the same R-hadron decays versus the par-
ticle mass. Figure 8 shows the upper limits on the pro-
duction cross section for the gluino R-hadron with a life-
time of 10 ns decaying into tt̄ plus a light neutralino of
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Fig. 5. Distribution of the mass of selected candidates, derived
from the specific ionisation loss, for data, background, and ex-
amples of gluinoR-hadron and chargino signals, for searches for
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background is shown with its total uncertainty (sum in quadra-
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shape to be seen more clearly. The number of signal events is
that expected according to the theoretical cross sections. For
both distributions, the bin-per-bin ratio of data to expected
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mass m(χ̃0
1) = 100 GeV, or a heavy neutralino of mass

m(χ̃0
1) = m(g̃) − 480 GeV. Figure 9 shows the excluded

range of lifetimes for the same R-hadron decays as a func-
tion of the particle mass. As shown in Figures 7 and 9
the sensitivity of the measurement for R-hadrons is maxi-
mal for lifetimes around 10 ns. Figure 10 shows the upper
limits on the production cross section for charginos with
lifetime of 1 ns decaying into χ̃0

1+π± and Figure 11 shows
the excluded range of lifetimes as a function of the particle
mass for the same chargino decay.

Table 5. The 95% CL lower limit on the relevant LLP mass
for the different models considered. Other relevant parameters
(decay mode, neutralino mass, lifetime if metastable) are also
shown.

Particle Decay m(χ̃0
1) [GeV] τ [ns] m > [GeV]

g̃ R-hadron stable – – 1115

b̃ R-hadron stable – – 751
t̃ R-hadron stable – – 766

chargino stable – – 534
g̃ R-hadron g/qq̄ 100 10 1185
g̃ R-hadron g/qq̄ m(g̃)− 100 10 1099
g̃ R-hadron tt̄ 100 10 1182
g̃ R-hadron tt̄ m(g̃)− 480 10 1157
g̃ R-hadron g/qq̄ 100 1.0 869
g̃ R-hadron g/qq̄ m(g̃)− 100 1.0 821
g̃ R-hadron tt̄ 100 1.0 836
g̃ R-hadron tt̄ m(g̃)− 480 1.0 836

chargino χ̃0
1 + π± m(χ̃±

1 )− 0.14 1.0 239
chargino χ̃0

1 + π± m(χ̃±
1 )− 0.14 15 482
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Fig. 6. Upper limits on the production cross section as a
function of mass for metastable gluino R-hadrons, with life-
time τ = 10 ns, decaying into g/qq̄ plus a light neutralino of
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1) = 100 GeV (top) or a heavy neutralino of mass
m(χ̃0

1) = m(g̃)− 100 GeV (bottom). Theoretical values for the
cross section are shown with their uncertainty. The expected
upper limit in the background-only case is shown as a solid
black line, with its ±1σ and ±2σ bands, green and yellow, re-
spectively. The observed 95% CL upper limit is shown as a
solid red line.
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Fig. 8. Upper limits on the production cross section as a
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spectively. The observed 95% CL upper limit is shown as a
solid red line.
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9 Summary

A search has been performed for stable and metastable
non-relativistic long-lived charged particles identified through
their anomalous specific ionisation energy loss in the AT-
LAS pixel detector. The search uses 18.4 fb−1 of pp colli-
sion data at

√
s = 8 TeV collected by the ATLAS detector

at the LHC. In the scenario considered, stable charginos
with masses smaller than 534 GeV are excluded at 95%
confidence level, and so are stable R-hadrons with masses
smaller than 1115 GeV for gluinos, 751 GeV for bottom
squarks and 766 GeV for top squarks. For metastable par-
ticles the maximum sensitivity is reached at 10 ns life-
time for R-hadrons, where masses below 1185 GeV are
excluded, and at 15 ns lifetime for charginos, where masses
up to 482 GeV are excluded. Compared to previous searches
this search provides the best sensitivity for gluinos with
lifetimes between 3 and 20ns.
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F. Fiedler83, A. Filipčič75, M. Filipuzzi42, F. Filthaut106, M. Fincke-Keeler169, K.D. Finelli150,
M.C.N. Fiolhais126a,126c, L. Fiorini167, A. Firan40, A. Fischer2, C. Fischer12, J. Fischer175, W.C. Fisher90,
E.A. Fitzgerald23, N. Flaschel42, I. Fleck141, P. Fleischmann89, S. Fleischmann175, G.T. Fletcher139, G. Fletcher76,
R.R.M. Fletcher122, T. Flick175, A. Floderus81, L.R. Flores Castillo60a, M.J. Flowerdew101, A. Formica136,
A. Forti84, D. Fournier117, H. Fox72, S. Fracchia12, P. Francavilla80, M. Franchini20a,20b, D. Francis30, L. Franconi119,
M. Franklin57, M. Frate163, M. Fraternali121a,121b, D. Freeborn78, S.T. French28, F. Friedrich44, D. Froidevaux30,



The ATLAS Collaboration: Search for metastable heavy charged particles with large ionisation energy loss 17

J.A. Frost120, C. Fukunaga156, E. Fullana Torregrosa83, B.G. Fulsom143, T. Fusayasu102, J. Fuster167,
C. Gabaldon55, O. Gabizon175, A. Gabrielli20a,20b, A. Gabrielli132a,132b, G.P. Gach38a, S. Gadatsch107,
S. Gadomski49, G. Gagliardi50a,50b, P. Gagnon61, C. Galea106, B. Galhardo126a,126c, E.J. Gallas120, B.J. Gallop131,
P. Gallus128, G. Galster36, K.K. Gan111, J. Gao33b,85, Y. Gao46, Y.S. Gao143,e, F.M. Garay Walls46,
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France
56 Department of Physics, Hampton University, Hampton VA, United States of America
57 Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge MA, United States of America
58 (a) Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg; (b) Physikalisches Institut,
Ruprecht-Karls-Universität Heidelberg, Heidelberg; (c) ZITI Institut für technische Informatik,
Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany
59 Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan
60 (a) Department of Physics, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; (b) Department of
Physics, The University of Hong Kong, Hong Kong; (c) Department of Physics, The Hong Kong University of Science
and Technology, Clear Water Bay, Kowloon, Hong Kong, China
61 Department of Physics, Indiana University, Bloomington IN, United States of America
62 Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria
63 University of Iowa, Iowa City IA, United States of America
64 Department of Physics and Astronomy, Iowa State University, Ames IA, United States of America
65 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
66 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
67 Graduate School of Science, Kobe University, Kobe, Japan
68 Faculty of Science, Kyoto University, Kyoto, Japan
69 Kyoto University of Education, Kyoto, Japan
70 Department of Physics, Kyushu University, Fukuoka, Japan
71 Instituto de F́ısica La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
72 Physics Department, Lancaster University, Lancaster, United Kingdom
73 (a) INFN Sezione di Lecce; (b) Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
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126 (a) Laboratório de Instrumentação e F́ısica Experimental de Part́ıculas - LIP, Lisboa; (b) Faculdade de Ciências,
Universidade de Lisboa, Lisboa; (c) Department of Physics, University of Coimbra, Coimbra; (d) Centro de F́ısica
Nuclear da Universidade de Lisboa, Lisboa; (e) Departamento de Fisica, Universidade do Minho, Braga; (f)

Departamento de Fisica Teorica y del Cosmos and CAFPE, Universidad de Granada, Granada (Spain); (g) Dep
Fisica and CEFITEC of Faculdade de Ciencias e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
127 Institute of Physics, Academy of Sciences of the Czech Republic, Praha, Czech Republic
128 Czech Technical University in Prague, Praha, Czech Republic
129 Faculty of Mathematics and Physics, Charles University in Prague, Praha, Czech Republic
130 State Research Center Institute for High Energy Physics, Protvino, Russia
131 Particle Physics Department, Rutherford Appleton Laboratory, Didcot, United Kingdom
132 (a) INFN Sezione di Roma; (b) Dipartimento di Fisica, Sapienza Università di Roma, Roma, Italy
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