
Ultraviolet cutoffs for quantum fields in cosmological spacetimes

Mauro Elías and Francisco D. Mazzitelli
Centro Atómico Bariloche and Instituto Balseiro, Comisión Nacional de Energía Atómica,

8400 Bariloche, Argentina
(Received 25 April 2015; published 16 June 2015)

We analyze critically the renormalization of quantum fields in cosmological spacetimes, using
noncovariant ultraviolet cutoffs. We compute explicitly the counterterms necessary to renormalize the
semiclassical Einstein equations, using comoving and physical ultraviolet cutoffs. In the first case,
the divergences renormalize bare conserved fluids, while in the second case it is necessary to break the
covariance of the bare theory. We point out that, in general, the renormalized equations differ from those
obtained with covariant methods, even after absorbing the infinities and choosing the renormalized
parameters to force the consistency of the renormalized theory. We repeat the analysis for the evolution
equation for the mean value of an interacting scalar field.
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I. INTRODUCTION

There is a well-defined and rigorous approach for the
renormalization of quantum fields in curved spacetimes [1].
A covariant regularization of the theory (for example point
splitting or dimensional regularization) is combined with
the Hadamard structure of the two-point function in order
to perform adequate subtractions and obtain renormalized
expressions for the effective action and the mean value of
the energy-momentum tensor (EMT), the source in the so-
called semiclassical Einstein equations (SEE). The infin-
ities of the theory are absorbed into the bare constants of the
classical gravitational action (Newton constant G, cosmo-
logical constant Λ, and dimensionless coefficients of terms
quadratic in the curvature). The whole procedure preserves
the covariance of the theory.
For different reasons, there have been attempts to

regularize the theory using ultraviolet (UV) cutoffs. For
example, in basic discussions of the cosmological constant
problem, a three-dimensional cutoff is considered in order
to obtain a naive estimation of the zero point energy of
quantum fields, which turns out to be an enormous
contribution, and would require a fine-tuning of the bare
cosmological constant of 122 orders of magnitude [2].
The use of UV cutoffs is more intuitive than dimensional

regularization but has been disregarded in semiclassical
gravity because of its clash with the covariance of the
theory [3]. However, more recently it has been argued that
it is possible, in principle, to renormalize the theory in
Friedmann-Lemaître-Robertson-Walker (FLRW) space-
times using a three-dimensional physical cutoff [4].
Being proportional to the scale factor, the time dependence
of the physical cutoff spoils the conservation of the EMT
and, in order to restore it, it would be necessary to introduce
noncovariant counterterms, whose finite parts should be
carefully chosen to maintain the consistency of the renor-
malized theory. Some relevant aspects of the proposal
have not been worked out, like the calculation of the

counterterms for general metrics and a comparison with
the usual approach. Regarding the quartic divergences that
dominate the vacuum energy, and in order to avoid an
unnatural fine-tuning, the authors proposed [4] a subtrac-
tion of the Minkowskian vacuum energy based on the
Hamiltonian formulation of general relativity.
Alternatively, it has been suggested that the use of a

comoving cutoff could provide a way to renormalize the
theory without introducing noncovariant counterterms [5].
Once more, the explicit calculations of the counterterms
have not been worked out, and in fact, as we will see, the
particular subtraction used in that work is not compatible
with a redefinition of the bare constants of the theory. The
comoving cutoff has also been considered to compute the
effective potential for interacting fields in curved back-
grounds [6]. In these works it is assumed that the Fourier
modes that effectively contribute to the vacuum energy
have a maximum frequency much lower than the UV cutoff
that sets the validity of the theory.
The use of an UV physical cutoff has also been

advocated by other authors. In Ref. [7] it was assumed
that the nonconservation of the EMT is compensated by an
additional nonconserved source in Einstein equations.
Alternatively, in Ref. [8], only the hT00i component was
computed using a cutoff, while the other nontrivial com-
ponents hTiii were determined from the SEE, in order to
force the conservation of hTμνi and therefore the consis-
tency of the SEE. In these works, there is no discussion
about subtraction: on the contrary, while the quartic
divergences are canceled due to the supersymmetry of
the theory [7], or assuming that vacuum fluctuations do not
gravitate in Minkowski spacetime [8], the quadratic diver-
gences are taken as the physical values of the EMT. UV
cutoffs have also been considered when performing
numerical calculations in the context of nonequilibrium
field theory in cosmological spacetimes [9] and when
computing loop corrections in inflationary models [10].
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In this work we will not consider other interesting
alternatives, like the use of a covariant cutoff based on
the Schwinger proper time approach [11], or models in
which the UV cutoff not only regulates the theory but
also modifies the Lagrangian, giving rise to generalized
dispersion relations for the quantum fields [12].
The aim of this paper is to discuss in detail the

renormalization procedure for quantum fields in cosmo-
logical spacetimes using as regulators comoving and
physical three-dimensional UV cutoffs. Perhaps not suffi-
ciently stressed in the recent previous works on the subject
[4–6], in addition to regularization, subtraction plays a
crucial role in the renormalization process. Indeed, in order
to absorb the infinities into the bare constants of the theory,
the quantities to be subtracted should be generic, i.e.,
should not depend on the particular metric considered. We
will show that, using adiabatic subtraction [1,3,13], it is
indeed possible to introduce counterterms and end up with
a consistent theory. However, the use of UV cutoffs makes
the choice of the counterterms rather unnatural. We will
also show that, while quartic and quadratic divergences
are strongly dependent on the regularization method, the
logarithmic part is universal, and therefore the renormal-
ization group flow of the gravitational constant is left
unchanged. We will make a comparison of the resulting
renormalized SEE and show that they depend on the
regularization scheme and differ from the renormalized
SEE obtained using the standard covariant procedure.
The paper is organized as follows. In Sec. II we describe

the SEE in the context of FLRW spacetimes. In Sec. III we
describe the renormalization of the SEE using comoving
and physical cutoffs. We show that, for a comoving cutoff,
it is necessary to introduce bare conserved fluids in order to
absorb the divergences of the quantum EMT. For a physical
cutoff, the divergences are a combination of nonconserved
tensors, and therefore it is necessary to include noncovar-
iant terms into the SEE to renormalize them. We discuss in
detail the relation with the usual renormalization approach
and make some comments related with the cosmological
constant problem. In Sec. IV we consider a λϕ4 theory and
discuss the renormalization of the equation for the mean
value of the field, once more using noncovariant methods.
Section V contains the conclusions of our work.

II. SEE IN FLRW SPACETIMES

In a curved spacetime with a classical background metric
gμν, the SEE read

1

8πGB
Gμν þ ΛBgμν þ α1BH

ð1Þ
μν þ α2BH

ð2Þ
μν þ α3BHμν

¼ hTμνi þ Tf
Bμν; ð1Þ

where Gμν is the Einstein tensor, H
ð1;2Þ
μν and Hμν are tensors

that come from the variation of quadratic terms in the

curvature in the gravitational action (R2; RμνRμν and
RμνρσRμνρσ, respectively), hTμνi is the expectation value

of the EMTof the quantum fields, and Tf
Bμν is the EMTof a

perfect fluid, that will be needed to renormalize the theory.
The subindex B indicates that the corresponding gravita-
tional constants, even those contained in Tf

Bμν, are the
bare ones.
The expectation value hTμνi has UV divergences, that

should be absorbed into the bare constants of the theory. In
order to make this point explicit, we assume that hTμνi
is regularized in some way and define its renormalized
value as

hTμνi ¼ hTμνi − hTμνisub þ hTμνisub ≡ hTμνiren þ hTμνisub;
ð2Þ

where we have subtracted an appropriate tensor hTμνisub
that cancels the divergences of hTμνi. Inserting Eq. (2) into
Eq. (1) we obtain

1

8πGB
Gμν þ ΛBgμν þ α1BH

ð1Þ
μν þ α2BH

ð2Þ
μν þ α3BHμν

¼ hTμνiren þ hTμνisub þ Tf
Bμν; ð3Þ

and, after absorbing the divergences of hTμνisub into the
bare gravitational constants,

1

8πGR
Gμν þ ΛRgμν þ α1RH

ð1Þ
μν þ α2RH

ð2Þ
μν þ α3RHμν

¼ hTμνiren þ ΔhTμνi þ Tf
Rμν: ð4Þ

It is important to stress that one should include in the theory
all the bare terms that are necessary to absorb the infinities
of hTμνisub. Moreover, depending on the choice of hTμνisub
and of the regulator, it may happen that only a part of
hTμνisub is absorbed into the bare terms. The remaining part
would give an additional contribution to the right-hand side
of the SEE, that we denoted by ΔhTμνi in Eq. (4).
In the rest of the paper we will consider spatially flat

FLRW background metrics:

ds2 ¼ aðτÞ2ðdτ2 − dx̄2Þ; ð5Þ

where τ is the conformal time. For these metrics, and in

four spacetime dimensions, the tensors Hð1;2Þ
μν and Hμν are

linearly dependent and can be written in terms of Hð1Þ
μν [1].

Therefore, we will set α2 ¼ α3 ¼ 0 and denote α1 ≡ α. We
stress that this is true only in four dimensions. Explicit
expressions of the geometric tensors in FLRW metrics are
presented in the Appendix.
The EMT of a classical fluid has energy density and

pressure given by
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ρ ¼ Tf
00=a

2; p ¼ Tf
ii=a

2; ð6Þ

and the conservation equation reads

ρ0 þ 3
a0

a
ðpþ ρÞ ¼ 0; ð7Þ

where a prime denotes derivative with respect to τ.
We will consider a free scalar field with classical action

given by

Smatter ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
ϕ;μϕ

;μ −
1

2
ðm2 þ ξRÞϕ2

�
; ð8Þ

so the field equation reads

ð□þm2 þ ξRÞϕ ¼ 0; ð9Þ

where ξ is the coupling to the Ricci scalar curvature.
Defining ϕ ¼ χ=a, the Fourier modes of the field satisfy

χ00k þ
�
ω2
k þ

�
ξ −

1

6

�
a2R

�
χk ¼ 0; ð10Þ

where ω2
k ¼ k2 þm2a2.

The EMT is given by [1]

Tμν ¼ ð1− 2ξÞ∂μϕ∂νϕþ
�
2ξ−

1

2

�
gμν∂μϕ∂μϕ− 2ξϕ∇∂νϕ

þ 2ξgμνϕ□ϕ− ξGμνϕ
2þ 1

2
m2gμνϕ2: ð11Þ

The vacuum expectation value of the EMT can be written
in terms of the Fourier modes of the field χk. Taking into
account the symmetries of the metric and vacuum state, the
nonvanishing components are hT00i and hT11i ¼ hT22i ¼
hT33i≡ hTiii. Therefore hTiii ¼ 1

3
ðhT00i − a2hTα

αiÞ. The
explicit expressions are [13]

hT00i¼
1

4π2a2

Z
dkk2

�
jχ0kj2þω2

kjχkj2þ
�
ξ−

1

6

��
3Dðχkχ�0k þχ�kχk

0Þ−3

2
D2χ2k

��
≡
Z

dk ~T00ðk;τÞ;

hTα
αi¼

1

2π2a4

Z
dkk2

�
a2m2jχkj2þ6

�
ξ−

1

6

��
jχ0kj2−

D
2
ðχkχ�0k þχ�kχk

0Þ−ω2
kjχkj2−

D0

2
jχkj2−3

�
ξ−

1

6

��
D0 þ1

2
D2

�
jχkj2

��

≡
Z

dk ~Tα
αðk;τÞ; ð12Þ

where D ¼ 2a0=a. The equations above have UV diver-
gences coming from the high k behavior of the Fourier
modes. In order to isolate the divergences, it is useful to
consider the adiabatic approximation to the modes. Writing

χkðτÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2WkðτÞ
p exp

�
−i

Z
τ
WkðηÞdη

�
; ð13Þ

Eq. (10) is equivalent to the nonlinear equation

W2
k ¼ ω2

k −
1

2

�
W00

k

Wk
−
3

2

W02
k

W2
k

�
: ð14Þ

In the large k limit, this equation can be solved iteratively
using the number of derivatives of the scale factor as a
small parameter. Doing this, and inserting the solution into
Eq. (12), one obtains the adiabatic approximation to the
EMT, hTμνiad, that can be written as the sum of its divergent
and convergent parts [13]:

hTμνiad ¼ hTμνidivad þ hTμνiconad ; ð15Þ

where

hT00idivad ¼ 1

8π2a2

Z
dkk2

�
2ωk −

3

2
D2

�
ξ −

1

6

��
1

ωk
þm2a2

ω3
k

�
−
ðξ − 1

6
Þ2

16ω3
k

ð72D00D − 36D02 − 27D4Þ
�
;

hTα
αidivad ¼ 1

4π2a4

Z
dkk2

�
a2m2

ωk
−
�
ξ −

1

6

��
3D0

ω
þ a2m2

ω3

�
3D0 þ 3

4
D2

��
−
ðξ − 1

6
Þ2

4ω3
k

ð18D000 − 27D0D2Þ
�
: ð16Þ

The explicit expressions for the convergent parts are written
in the Appendix. Defining the adiabatic order as the
number of derivatives of the scale factor, by power counting
it is easy to see that the zeroth adiabatic order diverges
quartically, the second adiabatic order quadratically, and

the fourth adiabatic order logarithmically. Higher adiabatic
orders are finite. From these equations we see that the
adiabatic expansion is a powerful tool to isolate the
divergences, whatever the regularization used. Moreover,
as hTμνiad can be written for any geometry in terms of time
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derivatives of the scale factor, it is the natural candidate
for hTμνisub.

III. CUTOFF REGULARIZATION OF THE SEE

A usual covariant approach to renormalize the theory in
FLRW metrics is to combine dimensional regularization
with adiabatic subtraction. Indeed, performing all calcu-
lations in an arbitrary number of dimensions n, one can
show that the divergences in hTμνiad are all proportional to
the geometric tensors gμν; Gμν, Hμν and Hð1;2Þ

μν . Therefore
they can be absorbed into the gravitational constants
ΛB; GB, and αiB. A subtle point in the renormalization
process is that the fourth adiabatic order contains diver-
gences that, as long as n ≠ 4, are proportional to geometric
tensors and diverge as 1=ðn − 4Þ, renormalizing the cou-
pling constants αB1;2. However, in the limit n → 4 they
become finite terms that modify hTμνiren, giving rise to the
well-known trace anomaly [1].
In this section we will explore the consequences of

regularizing the theory imposing UV cutoffs in the momen-
tum integrals. Our guiding principle will be that the
divergences in hTμνisub should be absorbed into appropriate
bare terms in the SEE, and this implies that the subtraction
should involve the adiabatic EMT up to the fourth adiabatic
order. The last point needs further clarification. Using an
UV cutoff, the renormalized EMT will be of the form

hTμνiren ¼
Z

kUV

0

dk ~Tμνðk; τÞ −
Z

kUV

0

dk ~Tsub
μν ðk; τÞ

¼
Z

∞

0

dkð ~Tμνðk; τÞ − ~Tsub
μν ðk; τÞÞ; ð17Þ

where we made the reasonable assumption that hTμνisub can
be written as an integral over the momentum. The sub-
traction should cancel the UV divergences and, at the same
time, should be written in terms of the scale factor and its
derivatives. The last property is crucial in order to absorb
the divergences into bare constants of the theory.
Note that when the subtraction is performed mode by

mode, as in the last equality in Eq. (17), it is possible to take
the limit kUV → ∞.
As in the high k regime the modes of the field are well

described by the WKB solutions to Eq. (10), the adiabatic
modes will cancel the divergences. Therefore, the diver-
gences of ~Tμν will be canceled by ~Tad

μν, or at least by its
divergent part. Moreover, in the adiabatic approximation
the EMT becomes a local function of the scale factor and its
derivatives, and this will allow for a redefinition of bare
constants to cancel the divergences.
A simpler procedure would be to subtract the contribu-

tion of the modes with kmax < k < kUV, as proposed in
Ref. [5]. In this case, the renormalized energy-momentum
tensor would be

hTμνiren ¼
Z

kmax

0

dk ~Tμνðk; τÞ: ð18Þ

While this is obviously a finite quantity, the divergent part
should be computed for each metric in terms of the modes
that solve Eq. (10), and the result would not be a local
function of the metric and its derivatives. Therefore, the
divergences could not be absorbed into bare constants of
the theory.

A. Comoving cutoff

We will first consider a comoving cutoff (kUV ¼ Λc).
After evaluating explicitly the integrals in Eq. (16) we
obtain

hT00idivad ¼ Λ4
c

16π2a2
þΛ2

cm2

16π2
− g00

m4

32π2
log½Λc=m�

−
3Λ2

c

32π2a2

�
ξ−

1

6

�
D2 þm2ðξ− 1

6
Þ

8π2
G00 log½Λc=m�

þ ðξ− 1
6
Þ2

16π2
Hð1Þ

00 log½Λc=m�;

hTiiidivad ¼ 1

3

Λ4
c

16π2a2
−
1

3

Λ2
cm2

16π2
− gii

m4

32π2
log½Λc=m�

þ Λ2
c

32π2a2

�
ξ−

1

6

�
ð4D0 −D2Þ

þm2ðξ− 1
6
Þ

8π2
Gii log½Λc=m�

þ ðξ− 1
6
Þ2

16π2
Hð1Þ

ii log½Λc=m�; ð19Þ

where we omitted finite terms.
One can readily check that the adiabatic EMT is a linear

combination of conserved tensors, each one with a different
dependence on Λc andm. For instance, the zeroth adiabatic
order corresponds to the sum of three fluids: a radiation
fluid ðp ¼ ρ=3Þ proportional to Λ4

c, a fluid with equation of
state p ¼ −ρ=3 proportional to m2Λ2

c, and a cosmological
constant (p ¼ −ρ) with a logarithmic divergence. The
quadratic divergence of the second adiabatic order corre-
sponds to a fluid with energy density proportional to
D2=a4. The logarithmic divergences of all adiabatic orders
are proportional to geometric tensors.
The main points of this calculation are that the intro-

duction of a comoving UV cutoff does not spoil the
conservation of the EMT and that it requires the introduc-
tion of nonstandard bare fluids into the SEE in order to
absorb the divergences, as anticipated in Eq. (3). Indeed,
taking into account the divergences in Eq. (19), the
appropriate EMT associated to the bare fluids is

MAURO ELÍAS AND FRANCISCO D. MAZZITELLI PHYSICAL REVIEW D 91, 124051 (2015)

124051-4



Tf
B00 ¼ −βB

1

a2
− γB þ δB

3

4

D2

a2
;

Tf
Bii ¼ −

βB
3

1

a2
þ 1

3
γB −

δB
4

ð4D0 −D2Þ
a2

; ð20Þ

where we introduced three new bare constants in the theory
(βB; γB and δB). Thus, the SEE read

1

8πGB
G00 þ ΛBg00 þ αBH

ð1Þ
00 þ βB

1

a2
þ γB − δB

3

4

D2

a2

¼ hT00iren þ hT00iad; ð21Þ

1

8πGB
Gii þΛBgii þ αBH

ð1Þ
ii þ βB

3

1

a2
−
1

3
γB þ

δB
4

ð4D0 −D2Þ
a2

¼ hTiiiren þ hTiiiad: ð22Þ

The relations between bare and renormalized constants
read, using minimal subtraction,

Λren ¼ ΛB þ m4

32π2
log½Λc=m�;

1

Gren
¼ 1

GB
−
m2ðξ − 1

6
Þ

π
log½Λc=m�;

αren ¼ αB −
ðξ − 1

6
Þ2

16π2
log½Λc=m�;

βren ¼ βB −
Λ4
c

16π2
;

γren ¼ γB −
m2Λ2

c

16π2
;

δren ¼ δB −
Λ2
cðξ − 1

6
Þ

8π2
: ð23Þ

The SEE without additional classical fluids can be obtained
by setting βren ¼ 0, γren ¼ 0 and δren ¼ 0.

B. Physical cutoff

Instead of using a comoving cutoff, one could alter-
natively use a physical cutoff kUV ¼ aðτÞΛUV, where ΛUV
is constant. The additional time dependence in the cutoff
will compromise the conservation of the adiabatic EMT,
and therefore the renormalization of the SEE will involve
noncovariant counterterms.
The divergent part of the adiabatic EMT is given by

Eq. (19) with the replacement Λc → aΛUV:

hT00iad ¼
�
Λ4
UV

16π2
þΛ2

UVm
2

16π2
−

m4

32π2
log½ΛUV=m�

�
g00

þ
�
Λ2
UV

8π2

�
ξ−

1

6

�
þm2ðξ− 1

6
Þ

8π2
log½ΛUV=m�

�
G00

þ ðξ− 1
6
Þ2

16π2
Hð1Þ

00 log½ΛUV=m�;

hTiiiad ¼
�
−
1

3

Λ4
UV

16π2
þ 1

3

Λ2
UVm

2

16π2
−

m4

32π2
log½ΛUV=m�

�
gii

þ
�
Λ2
UV

8π2

�
ξ−

1

6

�
þm2ðξ− 1

6
Þ

8π2
log½ΛUV=m�

�
Gii

þ Λ2
UV

12π2

�
ξ−

1

6

�
G00 þ

ðξ− 1
6
Þ2

16π2
Hð1Þ

ii log½ΛUV=m�;

ð24Þ
where again we omitted finite terms.
The above equations clearly show the nonconservation

of the adiabatic EMT. The quartic divergence corresponds
to a fluid with p ¼ 1=3ρ ¼ const, which is not conserved.
The same happens with the quadratic divergences of
adiabatic orders zero and two. For example, the divergences
of adiabatic order two consist of a conserved term propor-
tional to the Einstein tensor Gμν, plus a nonconserved
contribution to hTiiiad proportional to Λ2

UVG00. Note
however that all logarithmic divergences are proportional
to conserved geometric tensors.
In order to compute the counterterms, the SEE should be

generalized introducing nonconserved bare terms (that can
be thought as coming from the variation of noncovariant
terms in the classical gravitational action [4]). Thus, in the
ii-semiclassical equation we split the Newton and cosmo-
logical constants in two different constants, as follows:

1

8πGB
G00 þ ΛBg00 þ αBH

ð1Þ
00 ¼ hT00iren þ hT00iad; ð25Þ

1

8πGB
Gii þ

1

8π ~GB

G00 þ ðΛB þ ~ΛBÞgii þ αBH
ð1Þ
ii

¼ hTiiiren þ hTiiiad: ð26Þ
Inserting Eq. (24) into Eqs. (25) and (26) we obtain

Λren ¼ ΛB −
Λ4
UV

16π2
−
m2ΛUV

16π2
þ m4

32π2
log½ΛUV=m�;

1

Gren
¼ 1

GB
−
Λ2
UVðξ − 1

6
Þ

π
−
m2ðξ − 1

6
Þ

π
log½ΛUV=m�;

αren ¼ αB −
ðξ − 1

6
Þ2

16π2
log½ΛUV=m�;

~Λren ¼ ~ΛB þ Λ4
UV

12π2
þm2Λ2

UV

24π2
;

1

~Gren

¼ 1

~GB

−
2Λ2

UV

3π

�
ξ −

1

6

�
: ð27Þ
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The covariance of the SEE is restored by setting to zero
the renormalized values of the extra constants 1= ~Gren ¼ 0

and ~Λren ¼ 0.

C. Comparison with covariant regularization

In the usual covariant approach (dimensional regulari-
zation plus adiabatic subtraction) one subtracts
hTμνisub ¼ hTμνiad, where the adiabatic EMT contains all
divergent and finite terms up to the fourth adiabatic order.
The calculations should be entirely performed in n dimen-
sions from the beginning, and in this case it can be shown
that both the finite and divergent terms of hTμνiad can be
absorbed into the gravitational constants of the theory [14].
Moreover, when calculating hTμνiren as the difference of
two divergent integrals, the regulator can be removed
performing the subtraction mode by mode. One of the
consequences of this procedure is the appearance of the
trace anomaly, which is produced by the finite terms in
hTμνiad subtracted from hTμνi. Indeed, the trace of the
renormalized EMT reads, for m2 ¼ 0 and ξ ¼ 1=6 [1,13],

hTμ
μiren ¼

1

960π2a4
ðD000 −D0D2Þ; ð28Þ

while vanishes at the classical level.
The situation in the presence of UV cutoff has some

subtle points that deserve clarification. Up to now, we have
not specified whether we subtracted the full adiabatic EMT
or only its divergent part. In order to make contact with the
covariant renormalization, we will subtract the full adia-
batic tensor [15]. In this case, as the cutoff can be removed
in the expression of hTμνiren [see Eq. (17)], all regulariza-
tion methods, covariant or not, give the same answer for
hTμνiren. This does not mean, however, that the SEE are all
equivalent. Indeed, in the covariant approach, the complete
hTμνiad is absorbed into the gravitational bare constants.
Therefore, hTμνiren is the only quantum contribution to the
SEE. When using UV cutoffs, only the divergent terms are
canceled by counterterms, and there are additional con-
tributions coming from the finite parts of hTμνiad, that we
denoted by ΔhTμνi in Eq. (4).
For a comoving cutoff we have

ΔhT00i ¼
m4a2

128π2
ð1þ 4 logða=2ÞÞ − ðξ − 1

6
Þm2

16π2
ð3þ 2 logða=2ÞÞG00 −

ðξ − 1
6
Þ2

16π2
ð1þ logða=2ÞÞHð1Þ

00 −
m2

288π2
G00

−
1

15360π2a2
D4 þ 1

17280π2
Hð1Þ

00 −
ðξ − 1

6
Þ

288π2
Hð1Þ

00 þ ðξ − 1
6
Þ2

64π2a2
ð18D0D2 þ 9D4Þ;

ΔhTiii ¼ −
m4a2

384π2
ð7þ 12 logða=2ÞÞ −m2ðξ − 1

6
Þ

16π2
ð1þ 2 logða=2ÞÞGii −

ðξ − 1
6
Þ2

16π2
ð1þ logða=2ÞÞHð1Þ

ii −
m2

288π2
Gii

−
m2ðξ − 1

6
Þ

8π2
Gii −

m2ðξ − 1
6
Þ

32π2
D2 þ 1

5760π2a2

�
D0D2 −

1

8
D4

�
þ 1

17280π2
Hð1Þ

ii −
ðξ − 1

6
Þ

288π2
Hð1Þ

ii

−
ðξ − 1

6
Þ2

192π2a2

�
72D00Dþ 54D02 þ 54D0D2 −

45

2
D4

�
: ð29Þ

We stress that to compute ΔhTμνi one should take into
account not only the convergent part of the adiabatic EMT
(see the Appendix), but also the finite terms coming from
hTμνidivad . One can check that ΔhTμνi is a conserved tensor
and that the contributions proportional to logðaÞ are crucial
for the conservation.
Unless the finite extra terms described in Eq. (29) are

artificially canceled out by new counterterms, the resulting
SEE differ from the usual ones, since the quantum effects

are described by the effective EMT TðeffÞ
μν ¼ hTμνirenþ

ΔhTμνi. For example, in the conformal limit (m2 ¼ 0 and
ξ ¼ 1=6), this effectiveEMTis traceless. Indeed, hTμνiren has

the anomalous trace Eq. (28), which is exactly canceled by
ΔhTμ

μi. This can be readily checked by an explicit calcu-
lation, but it is to be expected because, while the full hTμνiad
is absorbed into the bare constants when using a covariant
regularization, this is not the case for an UV cutoff.
The analysis can be repeated using a physical cutoff. The

expression for ΔhTμνi would be still given by Eq. (29),
omitting all terms proportional to logðaÞ. Therefore, the
effective energy-momentum tensor would not conserved.
For consistency of the SEE, the nonconserved terms must
be canceled by additional finite counterterms. The remain-
ing conserved terms read

ΔhT00i ¼ −
m2

288π2
G00 þ

1

17280π2
Hð1Þ

00 −
ðξ − 1

6
Þ

288π2
Hð1Þ

00 −
1

15360π2a2
D4;

ΔhTiii ¼ −
m2

288π2
Gii þ

1

17280π2
Hð1Þ

ii −
ðξ − 1

6
Þ

288π2
Hð0Þ

ii þ 1

5760π2a2

�
D0D2 −

1

8
D4

�
: ð30Þ
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Note that the additional counterterms should cancel all
terms proportional to m4; m2ðξ − 1=6Þ and ðξ − 1=6Þ2,
since they produce nonconserved contributions to ΔhTμνi
[16]. Note also that while the terms proportional toGμν and

Hð1Þ
μν can be absorbed into a finite redefinition of the

gravitational constants, the remaining contributions
to ΔhTμνi are nontrivial. The effective EMT for a
physical cutoff does not have a trace anomaly and differs
from the one computed using a comoving cutoff by
local terms.

D. A comment on the cosmological constant problem

The zero point energy of the quantum fields gives an
enormous contribution to the cosmological constant [2].
A naive estimation in Minkowski spacetime consists in
considering the sum of the ground state energy of each
mode of the field. The sum is performed with a three-
dimensional cutoff to be of the order of Planck mass.
Taking this naive estimation as the value of the cosmo-
logical constant, it gives a disagreement of 122 orders of
magnitude with respect to the observed value. However,
as pointed out in Ref. [17], the three-dimensional cutoff
does not respect Lorentz invariance, and the problem is
alleviated when considering dimensional regularization,
since this regularization kills the power law divergences
and keeps only the logarithmic ones. Moreover, with a
three-dimensional cutoff in Minkowski spacetime, the
vacuum expectation value of the EMT does not corre-
spond to a cosmological constant but to that of a
radiation fluid.
The results presented in this section show similar

characteristics, generalized to curved spacetimes. When
using a comoving cutoff, the renormalization of the
cosmological constant involves only a logarithmic diver-
gence. However, it is necessary to introduce into the theory
three new bare fluids, whose renormalized values should be
fine-tuned to zero. The quartic divergences usually advo-
cated as contributions to the cosmological constant now
give naive estimations to the amplitude of the bare fluids.
On the other hand, when using a physical cutoff, in addition
to the usual quartic contribution to both cosmological
constants ΛR and ~ΛR, it is necessary to fine-tune the
renormalized value of the new constants ( ~ΛR and 1= ~GR)
to zero in order to respect the covariance of the theory at the
renormalized level.
These results reinforce the idea [18] that the power law

divergences should not be taken seriously as estimations
of the zero point energy contribution to the cosmological
constant. After absorbing the infinities into the bare
constants, a finite piece coming from the logarithmic
divergence remains and is of order m4 log½m=μ�, where μ
is an arbitrary scale (this is still enormous compared with
the observed value of the cosmological constant, even for
the electron mass).

IV. MEAN VALUE EQUATION FOR
SELF-INTERACTING FIELDS

We will now consider a scalar field with self-interaction
λϕ4. The classical action is

Smatter ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
ϕ;μϕ

;μ−
1

2
ðm2

BþξBRÞϕ2−
λB
4!
ϕ4

�
;

ð31Þ

and the field equation

□ϕþ ðm2
B þ ξBRÞϕþ λB

3!
ϕ3 ¼ 0: ð32Þ

We have written the action in terms of the bare constants of
the theory.
We will be concerned with the renormalization of the

equation for the mean value of the field ϕ0 ¼ hϕi. Writing
ϕ ¼ ϕ0 þ ϕ̂, the equations for the mean value and the
fluctuations of the field read [19]

□ϕ0 þ ðm2
B þ ξBRÞϕ0 þ

λB
3!

ϕ3
0 þ

λR
2
ϕ0hϕ̂2i ¼ 0; ð33Þ

□ϕ̂þ
�
m2

R þ ξRRþ λR
2
ϕ2
0

�
ϕ̂ ¼ 0: ð34Þ

The quantity hϕ̂2i is divergent and the infinities must be
absorbed into the bare constants. Note that, as hϕ̂2i is
already OðℏÞ, we replaced the bare constants by the
renormalized ones in the equation for the fluctuations
and in the last term of the mean value equation.
As for the EMT, in order to absorb the infinities into bare

constants we will subtract the adiabatic expansion of hϕ̂2i.
We will insert the definition

hϕ̂2iren ¼ hϕ̂2i − hϕ̂2iad ð35Þ

into the field equation

□ϕ0 þ ðm2
B þ ξBRÞϕ0 þ

λB
3!

ϕ3
0 þ

λR
2
ϕ0hϕ̂2iren

þ λR
2
ϕ0hϕ̂2iad ¼ 0 ð36Þ

and will analyze the divergences of hϕ̂2iad. For the same
reasons as before, we choose the adiabatic expansion to
perform the subtraction and renormalize hϕ̂2i. A complete
analysis using a covariant approach and for general metrics
can be found in Ref. [19]. Here we will restrict ourselves to
the case of FLRW metrics, we will consider a time-
dependent mean value ϕ0ðtÞ and will regularize the theory
using UV cutoffs.
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The fluctuation field ϕ̂ is a free field with a variable mass
M2 ¼ m2

R þ λRϕ
2
0=2. As we are assuming that the mean

value depends only on time, we can describe the field in
terms its Fourier modes, that satisfy Eq. (10) with
ω2
k ¼ k2 þM2a2. From Eq. (13) we have

hϕ̂2i ¼ 1

4π2a2

Z
dk

k2

Wk
: ð37Þ

The function Wk satisfies Eq. (14) and can be solved using
the adiabatic approximation. Although now not only the
scale factor but also ϕ0 depends on time, in principle one
should include in the adiabatic expansion terms with
derivatives of ϕ0. However, it can be shown that these
terms give finite contributions to hϕ̂2i, and therefore they
can be omitted when discussing the renormalization of the
mean value equation in the one-loop approximation [19]
(there is no wave function renormalization for λϕ4 theory in
the one-loop approximation).
Inserting the adiabatic approximation for Wk into

Eq. (37) we obtain [13]

hϕ̂2idivad ¼ 1

4π2a2

Z
dkk2

�
1

ωk
−
ðξR − 1

6
ÞRa2

2ω3
k

�
: ð38Þ

In order to see explicitly the differences between the
different regularization methods, we quote the result
obtained within dimensional regularization. Replacing
k2 → kn−2 in the integrand of Eq. (38) and performing
the integrations we obtain

hϕ̂2idivad ¼ 1

8π2ðn − 4Þ
�
m2

R þ λR
2
ϕ2
0 þ

�
ξR −

1

6

�
R

�
; ð39Þ

where we omitted finite contributions. The first term
renormalizes the bare mass mB, the second term the
coupling constant λB, and the third one the coupling to
the curvature ξB.
On the other hand, when using an UV cutoff kUV

hϕ̂2idivad ¼ 1

8π2

�
k2UV
a2

−
�
m2

R þ λR
2
ϕ2
0 þ

�
ξR −

1

6

�
R

�

× log

�
kUV
aμ

��
; ð40Þ

where μ is an arbitrary scale and we omitted finite
terms.
Let us first consider a physical cutoff kUV ¼ aΛUV. From

Eq. (40) we see that the quadratic divergence renormalizes
the mass, while the logarithmic divergence gives an
additional term to the renormalization of the mass and
renormalizes the other bare constants of the theory. The
counterterms are, explicitly,

m2
R ¼ m2

B þ λR
16π2

½Λ2
UV −m2

R logðΛUV=μÞ�; ð41Þ

ξR ¼ ξB −
λRðξR − 1

6
Þ

16π2
logðΛUV=μÞ; ð42Þ

λR ¼ λB −
3

16
λ2R logðΛUV=μÞ: ð43Þ

There are some similarities with the situation in the
renormalization of the SEE. With an UV cutoff, the bare
mass contains a quadratic divergence that is independent of
the mass of the field. The logarithmic divergences has the
same structure than in dimensional regularization.
On the other hand, for a comoving cutoff we set

kUV ¼ Λc in Eq. (40). We see that this choice presents
an additional complication. The quadratic divergence
depends on the scale factor and therefore cannot be
absorbed into a redefinition of the mass [20]. It is necessary
to introduce an additional, noncovariant term in the
classical action of the interacting field

Smatter ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

2
ϕ;μϕ

;μ −
1

2
ðm2

B þ ξBRÞϕ2

−
σB
a2

ϕ2 −
λ

4!
ϕ4

�
: ð44Þ

Assuming that the renormalized value of the new bare
constant σB is zero, that is, choosing

σR ¼ 0 ¼ σB þ λRΛ2
c

16π2
; ð45Þ

we obtain

m2
R ¼ m2

B −
λRm2

R

16π2
logðΛc=μÞ; ð46Þ

ξR ¼ ξB −
λRðξR − 1

6
Þ

16π2
logðΛc=μÞ; ð47Þ

λR ¼ λB −
3

16
λ2R logðΛc=μÞ; ð48Þ

which are similar to the counterterms obtained within
dimensional regularization.
It is interesting to remark that, as in the case of the SEE,

the logarithmic divergences have always the same struc-
ture. As a consequence, the β functions of the theory will
not depend on the regularization. On the contrary, the
renormalized equation for the mean value (and therefore
the effective potential for the scalar field) does depend on
the regularization. Indeed, the analysis can be performed
along the lines of Sec. III C, to check explicitly that the
mean value equations in different regularizations will differ
by local terms.
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It is also worth to note that the presence of the term
proportional to σB=a2 in Eq. (44) introduces an ambiguity
in the SEE and could complicate its renormalization.
Indeed, in order to obtain the SEE in FLRW spacetimes,
one should write the action in terms of the scale factor and
the lapse function N, and the extra factor 1=a2 can be
written in different ways in terms of a and N.

V. CONCLUSIONS

In this paper we have analyzed the renormalization
process for a scalar field FLRW spacetimes, using UV
cutoffs. Our main findings are the following:

(i) If one assumes that the infinities of the theory should
be absorbed into bare constants of the theory, the
subtraction is crucial and involves the adiabatic EMT.

(ii) The divergences that result in the case of a comoving
cutoff are conserved tensors and can be absorbed into
the gravitational constants and additional bare fluids
that should be introduced ad hoc into the theory.

(iii) For a physical cutoff, the adiabatic EMT is not
conserved, and it is necessary to introduce non-
covariant counterterms. Fine-tuning of the finite
parts of the counterterms is needed to restore
covariance at the renormalized level.

(iv) All the regularizations give different answers for the
effective EMT that appears in the SEE, even using
the same subtraction. In particular, both the comov-
ing and physical cutoffs do not produce an anoma-
lous trace in the effective EMT.

(v) The logarithmic divergences are always proportional
to geometric tensors.

(vi) In contrast with what happens in the SEE for free
fields, when considering the mean value equation for
interacting fields, the use of a comoving cutoff needs
the introduction of noncovariant counterterms to
renormalize the theory.

Regarding previous works on the subject, we have
showed explicitly that the renormalization suggested in
Refs. [4,5] can indeed be pursued. However, we have
described important aspects that have been overlooked
before: on the one hand, adiabatic subtraction is crucial to
absorb the infinities into the bare constants of the theory.
One cannot make a subtraction based on each particular
metric considered [5,6]. Moreover, even after renormaliza-
tion, the final SEE are different than those coming from the
usual approach and different for comoving and physical
cutoffs. On the other hand, there is no reason to take the
bare value of the EMT as its physical value, even after
discarding the quartic divergences, as done in Refs. [7,8].
In summary, the use of UV cutoffs, although at first sight

more physical than dimensional regularization, presents
additional complications and arbitrariness and in our
opinion does not shed additional light on the cosmological
constant and dark energy problems.

We would like to end the paper with a comment related
to the use of infrared (IR) cutoffs. Present knowledge
establishes that the seeds for the inhomogeneities in the
Universe are quantum fluctuations that become classical
when their wavelengths become larger than the horizon
[21]. It is therefore natural to consider an effective field
theory for the long wavelength modes of the field,
integrating out the short wavelengths. Therefore, the
quantum part of the field is restricted to modes with k >
HaðtÞ and one has to face the problem of renormalizing the
UV divergences in the presence of a time-dependent IR
cutoff. This is of course not restricted to cosmological
applications. The same issue is present in the study of phase
transitions, where the long wavelength part of the field
associated to the order parameter of the transition becomes
classical and nonhomogeneous, giving rise to the formation
of domains [22]. A naive generalization of the usual
adiabatic renormalization to the case of a time-dependent
IR cutoff gives of course a nonconserved EMT, even for
free fields and using a covariant regularization. The non-
conservation is in this case physical, since during time
evolution new modes enter into the classical field, and
therefore there is energy exchange between the quantum
and classical parts of the field. Only the full EMT, including
the quantum, classical and stochastic parts, should be
conserved. Alternatively, one could consider comoving
IR cutoffs [23]. In both cases, dimensional regularization
can be used to deal with the UV divergences.
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APPENDIX SOME USEFUL FORMULAS

In this Appendix we collect some useful formulas used in
the calculations.
The explicit expressions for the geometric tensors in

FLRW metrics are

R¼ 3

a2

�
D0 þ1

2
D2

�
;

G00¼−
3

4
D2;

Gii ¼D0 þD2

4
;

Hð1Þ
00 ¼ 9

a2

�1
2
D02−D00Dþ3

8
D4

�
;

Hð1Þ
ii ¼ 3

a2

�
2D000−D00Dþ1

2
D02−3D0D2þ3

8
D4

�
; ðA1Þ

where D ¼ 2a0=a.
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The convergent part of the adiabatic stress tensor mentioned in Eq. (15) is given by [13]

hT00iconvad ¼ 1

8π2a2

Z
dkk2

�
a4m4D2

16ω5
−
a4m4

64ω7
ð2D00D −D02 þ 4D0D2 þD4Þ þ 7a6m6

64ω9
ðD0D2 þD4Þ − 105a8m8D4

1024ω11

þ
�
ξ −

1

6

��
a2m2

8ω5
ð6D00D − 3D02 þ 6D0D2Þ − a4m4

64ω7
ð120D0D2 þ 105D4Þ þ 105a6m6D4

64ω9

�

þ ðξ − 1
6
Þ2a2m2

8ω5
ð54D0D2 þ 27D4Þ

�
;

hTα
αiconvad ¼ 1

4π2a4

Z
dkk2

�
a4m4

8ω5
ðD0 þD2Þ − 5a6m6D2

32ω7
−
a4m4

32ω7
ðD000 þ 4D00Dþ 3D02 þ 6D0D2 þD4Þ

þ a6m6

128ω9
ð28D00Dþ 21D02 þ 126D0D2 þ 49D4Þ − 231a8m8

256ω11
ðD0D2 þD4Þ þ 1155a10m10D4

2048ω13

þ
�
ξ −

1

6

��
9a4m4D2

4ω5
þ a2m2

4ω5

�
3D000 þ 6D00Dþ 9

2
D02 þ 3D0D2

�

−
a4m2

32ω7
ð120D00Dþ 90D02 þ 390D0D2 þ 105D4Þ þ a6m6

128ω9
ð1680D0D2 þ 1365D4Þ − 945a8m8D4

128ω11

�

þ
�
ξ −

1

6

�
2
�
a2m2

32ω5
ð432D00Dþ 324D02 þ 648D0D2 þ 27D4Þ − a4m4

16ω7
ð270D0D2 þ 135D4Þ

��
: ðA2Þ
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