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 Abstract: The inference of different kinds of relations between pathways constitutes a challenging step 

towards the analysis of biological data. In this regard, this review article aims at outlining several 

methods that analyze associations between pathways starting from different sources of information, 

namely the internet, databases, and/or gene expression data. The source used in each case constitutes a 

first criterion for the classification of the methods. In this sense, some methods are strongly supported 

by the pathway topology annotations, whereas others can infer relationships extracting free-topology 

associations. The second criterion for grouping the methods is based on the inference strategies. The 

advantages and drawbacks of each methodology are presented, as well as a taxonomy tree and summary 

table as an overview of the discussion. 
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1. INTRODUCTION 

We are living in an era that is in general characterized by 
a lot of data but little information. That is, there are 
thousands of experimental numbers, but it is hard to interpret 
them in order to obtain valuable information. This is strongly 
evidenced in the area of systems biology, where everyday 
researchers seek to achieve an understanding of different 
biological processes at the molecular level, starting from 
what is sometimes called “big data”. Fortunately, 
improvements and innovations in technology continue to 
stimulate the quality and types of biological data that can be 
obtained at the genome level. Thus, a lot of data collected 
over several years is now presented as annotations and 
databases. In this context, all this data properly combined 
and grouped has great potential for enabling novel 
discoveries which would then, finally and hopefully, lead to 
advances in biology and medicine [1]. 

The focus in this article is on outlining the methods that 
perform a special analysis of genomic data in the research 
area of bioinformatics. In this sense, the basic motivation 
consists in understanding biological phenomena that occur at 
the cellular level, so it is necessary to unravel the complex 
mechanisms of interaction between different cellular 
processes. Specifically, the objective is to review various 
strategies that address this task by identifying different kinds 
of relations between biological pathways. This involves 
detecting signaling mechanisms between biological 
processes from the coordination that takes place between 
genes underlying the different pathways [2-8]. 
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With that problem in mind, the aim of this work is to 
present a review of computational techniques for inferring 
interactions between pathways from microarray expression 
data and also from different databases with curated data. The 
strategies revised belong to different computational areas, 
such as evolutionary computation, text mining, and statistical 
analysis. 

Modelling Pathway’s Interactions 

A pathway consists of a series of actions between 
molecules in a cell that generate a certain product or change 
therein. Such a route may trigger the formation of new 
molecules, proteins for example. Biological pathways can 
also control genes, or stimulate a cell to move. Several types 
of biological pathways exist, the most common being 
involved in metabolism, signal transmission or gene 
regulation. Currently, it is known that biological pathways 
are much more complex than was once thought. Most of the 
routes do not have a start or end point; in fact, many of them 
have no real limits and often work together to perform 
certain tasks. Therefore, when multiple biological pathways 
interact with each other they form a biological network 
which is often called a pathway network [9, 10]. 

Existing methods presented in the literature use 
alternative means for inferring pathway networks; some 
propose to analyze interactions between biological pathways 
often called crosstalk, while others allude to finding 
differentially expressed routes based on the data provided. 
To achieve their results these methods work with data from 
microarray, or simply use topological information of the 
biological pathways granted by databases such as KEGG 
[11, 12]; they can also take advantage of a combination of 
both approaches. Moreover, in the methods identified in this 
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article we include some that use data mining, and others that 
are based on mathematical and statistical calculations. In the 
following section of the paper, strategies that aim at building 
pathway networks will be introduced, classified and 
analyzed. 

2. INFERENCE METHODS 

The aim of this section is to present a categorization of 
the strategies that find different kinds of relationships 
between pathways, consequently building a pathway 
network. A first approach that can be used to infer a network 
of pathways consists in evaluating when two pathways are 
differentially expressed, thus supposing that they might be 
related. Methods that detect which pathways are 
differentially expressed are reviewed in section 2.1. Next, 
methods that directly search for relations between pathways 
will be grouped in sections 2.2 and 2.3 according to whether 
or not they use microarray data. 

Therefore, section 2.1 constitutes an overview, where we 
introduce four methods that do not directly find networks of 
pathways, but instead analyze pathway differentiation. They 
are included in the article as they constitute inspiration for 
some of the other methods presented. Also, even though they 
do not directly find networks of pathways, they are important 
since they could be used to infer some relations between 
pathways that are differentially expressed together. 

2.1. Pathways that are Differentially Expressed Together 

DNA microarray data are commonly used to provide a 
comparison of the expression patterns of genes under 
“control vs. affected” conditions, during the study of a given 
disease. Since this comparison usually reveals a large 
number of differentially expressed genes, it is often difficult, 
if not impossible, to analyze each gene individually. 
Therefore strategies that aim at identifying sets of 
biologically relevant genes appear in the literature; these 
groups of genes are generally called “pathway enrichment” 
or “gene set enrichment”. The detection of differentially 
expressed genes helps to associate biological phenotypes 
with their underlying molecular mechanisms, thus providing 
a vision of their biologic function. 

One of the typical applications of microarray technology 
consists in the identification of differentially expressed genes 
according to two conditions. The most common statistical 
approach for this is to quantify the relevance of each gene 
with a p-value that can be adjusted for multiple comparisons 
[13]. Then, an appropriate threshold is set and a list of 
candidate genes is created. This approach is often 
disapproved of since it ignores biological knowledge about 
how genes work together. The next three methods start from 
the premise of improving this drawback and are often used to 
find a biological explanation concerning the abundant 
amounts of data of differentially expressed genes. 

GSEA 

This review starts with the description of GSEA as it is 
very frequently mentioned in the literature. The algorithm 
owes its acronym to “Gene Set Enrichment Analysis” [2]. In 
this case, the strategy is based on a typical microarray 

experiment with samples belonging to two classes, such as 
control vs. affected or tumors resistant to drugs vs. sensitive 
to drugs. According to their differential expression values, 
genes are ordered in a ranking list called L. Then, the main 
challenging task consists in giving biological sense to that 
list. 

In order to do this GSEA requires a set of genes of 
interest, called S, to be defined prior to the execution of the 
algorithm. These genes are generally those belonging to a 
particular pathway. The aim of the GSEA is to determine 
whether the members of S are randomly distributed in L or 
are mostly at the beginning or end of the list, so as to 
conclude whether the pathway is differentially expressed. 
The algorithm follows three main steps: 

Step 1: Enrichment Score (ES) Calculation 

This score represents the degree to which the set S is 
overrepresented at the ends (top or bottom) of the list L. It is 
calculated by going over L, incrementing a statistical sum 
when a gene in S is found, and decrementing when a gene that 
is not in S is found. This measuring procedure corresponds to 
Kolmogorov-Smirnov weighted statistics [14]. 

Step 2: Estimation of ES’s Significance Level 

This factor is estimated using a procedure of permutation 
tests based on phenotype, which preserves the structure of 
complex correlations present in gene expression data. 
Specifically, phenotype labels are permuted and ES is 
recomputed for permuted data, that is, a null distribution for 
the ES is generated. Afterward, the p-value is calculated 
using this null distribution. Then, what really matters is the 
labels’ permutation rather than the genes’ permutation, so 
that the gene to gene correlations can be maintained resulting 
in a reasonable biological evaluation. 

Step 3: Adjustment for Multiple Hypotheses 

When a database of gene sets is evaluated, the 
significance level is adjusted. First, ES values for each gene 
set are normalized considering the size of the set, thus 
obtaining a normalized score called NES. Then, the 
proportion of false positives is controlled by means of a 
calculation of the False Discovery Rate [15, 16] that 
corresponds to each NES. 

GSEA is used a lot and it is widely criticized. It belongs 
to the group of Functional Class Score methods [17], since it 
basically considers a group of genes or a pathway as a class 
and applies a score. The main limitation to this method is 
that the groups of genes or the pathways are measured 
independently from one another, i.e. it does not use the 
relations between routes or gene sets for their biological 
interpretation [18]. Moreover, each gene in the group is 
measured with the same weight, without considering that 
some of them might be more important in the routes. The 
following two methods propose an improvement to this 
drawback, by taking into account the relations between sets 
of genes, thus improving the significance of the results. 

SEPEA 

SEPEA, for “Structurally Enhanced Pathway Enrichment 
Analysis”, suggests considering the significance of a given 
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gene in the pathway by means of the implementation of a 
Heavy Ends Rule (HER) [19]. This rule gives more weight to 
those genes that are at the beginning or end of the biological 
route. Moreover, it implements a Distance Rule (DR) that 
also gives more importance to the genes that are closely 
connected and that follow a flow in the pathway. In this way, 
the manner of giving the score to the pathway is modified 
with respect to that of GSEA, now adding two components 
according to the new rules: 

 A first new component, related to the HER rule, takes a 
high value when a combination of the genes that are more 
important in the route are differentially represented in the 
experiment. 

 The second component is based on the DR rule and takes 
a high value when the differentially expressed genes are 
closely connected or are located very close to each other 
in the pathway. 

These two scores are then normalized and added. 
Normalization is carried out by calculating the median and 
standard deviation. Once the final score is obtained for each 
pathway, a p-value is computed by randomizing the data. 

The study and experimentation revealed by the article 
demonstrates that SEPEA is very competitive with the 
current approaches that aim at detecting differentially 
expressed pathways, and that it also yields biologically 
relevant results. However, the analysis is performed at the 
level of one pathway, and it still does not pursue the 
objective of finding relations between several pathways in 
order to build a network. 

SPIA 

Signaling Pathway Impact Analysis [18] combines the 
evidence obtained from the classical enrichment analysis 
with a novel type of evidence, that measures the actual 
perturbation on a given pathway under a given condition. It 
proposes a new approach based on a value that is called 
Impact Factor (IF). IF is obtained for every pathway, 
incorporating other topological features. It is calculated as an 
addition to the next two terms: 

Step 1: 

A probabilistic term captures the significance of the 
pathway from the perspective of the set of genes that it 
contains. 

Step 2: 

A second term depends on the identification of the genes 
that are differentially expressed, considering the interactions 
described in the topology of the pathway. This term is, in 
essence, the sum of the perturbation factors of the genes. 
These factors include both the genetic information contained 
in the experiment and the importance of the gene in the 
pathway. The IF is then normalized according to the amount 
of differentially expressed genes. 

Even though this method manages to use the information 
of the internal topology of the pathway successfully for a 
better understanding of the experimental results, one has to 
be reminded at this point that it still does not analyze the 
relations between pathways. 

DEAP 

This method, called Differential Expression Analysis for 
Pathways [20], aims at identifying pathways that are relevant 
in a given dataset. In order to do so, it considers the 
information in KEGG about the links between genes in the 
pathways. Then, the method represents the pathways as 
directed graphs, as KEGG does, and separates each pathway 
into simple paths or simple cycles with no repeated nodes. 
These paths are calculated with the absolute maximum 
running sum score, where the edge or relation type is 
signified by a representative sign summand, positive or 
negative. Then, the objective is achieved by finding co-
regulated differential expression of their paths. 

It is important to point out that the scores given to pathways 
are not directly comparable, as they depend on the paths that 
they contain. Therefore, it can be said that the score given by 
this method is not representative. In this regard, they try to 
overcome this issue by using a self-contained approach that also 
considers the significance of each pathway. 

In comparison with the previous methods that perform 
the analysis at a gene level, DEAP and all other methods that 
use the graph structure of the pathway add a significant 
amount of information. This extra information is contained 
on the edges and is of vital importance for biologists. In most 
cases, these relations can make a result clearer for its study. 

2.2. Inference of networks of Pathways: From Sources 
Different from Microarray Data 

In this section, several methods that actually find 
associations between pathways from different sources, such 
as databases, annotations and the internet, are presented. 
These relations between pathways are often called crosstalk 
and they constitute a means for building pathway networks. 

2.2.1. Inference Using Statistical Analysis 

Function Based Analysis (FBA) 

In this method [21] the proposal is to identify relations 
between pathways by analyzing functional links between 
them, based on Gene Ontology (GO) [22]. The approach is 
based on functions that aim at identifying some functional 
similarity between the routes. The information used by the 
authors is obtained from the database PID [23]. 

In GO, most genes are assigned terms or annotations that 
are generally based on the biological pathways of which they 
are a part. For this reason, annotations of a route can be 
inferred from its components. The proposal of FBA mainly 
consists of two steps: 

Step 1: 

During the first step, the inference of the terms that are 
representative for each route is carried out. This is useful 
because the components can have many GO terms, and some 
of them might not be relevant for describing the function of 
the pathway. The Fischer test is used in order to identify the 
enriched terms of a set of genes in a route. 

Step 2: 

Next, the similarity between routes is calculated. In 

principle, it can be assumed that related pathways should 
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share GO annotations, but this is not the only factor 

considered by this method. It also takes into account the 

content of the shared term and the number of terms in both 

pathways. 

The main strength of this method lies in the fact that it 
does not only use statistical similarity, but also considers 
curated biological information. The main drawback, 
however, is that as in most methods it is impossible to find 
any relations between pathways that do not share any gene. 

2.2.2. Inference using Data Mining 

Alternatively, there are some algorithms that use data 
mining to find relationships between biological pathways 
and using this information they build a network of pathways. 
These algorithms aim to overcome the problem of rapid 
growth of publications and databases, which makes it 
difficult to work with updated information. The same applies 
to networks of biological pathways; each new publication 
may have found a new relationship between two or more 
biological pathways or as already mentioned, the limits of 
the pathways are not well defined, so it is really more 
valuable to work with the most modern information as 
possible. 

Arizona Relation Parser 

Arizona Relation Parser (ARP) mainly differs from other 

methods that implement data mining by using a hybrid 

syntactic-semantic grammar [24] for the inference of 

pathways. The syntactic part consists of Part of Speech 

(POS) labels with some other information. The semantic part 

is composed of specific domain words and patterns and is 

incorporated through a template. Thus, in this approach, the 

syntactic and semantic analyses are applied together, by 

using a larger number of labels or word classes to reflect the 

relevant features of the words. This implies that the rules 

must be defined specifically for each class, therefore it is 

necessary to write numerous rules in order to support all the 

labels. The parser was trained using 40 PubMed abstracts 

and then tested using 100 unseen abstracts, half for precision 

and half for recall. 

A drawback of this approach is the need of a molecular 
biology expert to describe the rules for each word class 
before the execution of the algorithm since a great amount of 
biological knowledge is necessary in order to obtain 
significant results. 

PANTex 

This approach is similar to the previous one, but it only 
performs a syntactic analysis for the inference of pathway 
networks [25]. Another difference to the former method is 
that PANTex analyses full texts instead of abstracts, and 
works over all PubMed and not on a partial corpus. 

As the starting point, PANTex uses KEGG to gather a list 
of pathways for each organism; initially, only humans and 
yeast are considered as valid organisms. On the base of this 
list, a search is performed using Entrez Utilities (NCBI 
Resource Coordinators, 2013) and PubMed for each pair of 
routes. The resulting information is stored in an intersection 
matrix called IRPM (for Intersection Results Pathway 

Matrix). Columns and rows of IRPM are pathways, and the 
numbers in each cell are those calculated in the previous 
search procedure. Also, a search of each individual route is 
performed, thus yielding the Pathway Results array, in order 
to use the values therein for normalization purposes. 

The method is validated using the data reported by 
Alexeyenko and Sonnhammer [26]. As a conclusion from the 
experiments presented, it can be said that the quality of the 
results strongly depends on the consulted corpus. Moreover, 
a major problem that distorts the inference process in these 
kinds of strategies is the lack of standardization of the names 
of the pathways. 

2.3. Inference of Networks of Pathways: From 
Microarray Data 

There are some methods that not only seek topological 
links between biological pathways but also benefit from the 
information in a microarray experiment to be used when 
modeling those connections. The approaches referred to in 
this section try to tackle these problems together. 

Significance Analysis of Links (SAL) 

In this study, the authors [27] aimed to overcome the 
problems of significance analysis at the single gene level. In 
order to do that, they propose a method that allows the 
significance threshold applied to genes to be relaxed which 
leads to better biological knowledge. The first step consists 
in the selection of significant genes from a microarray 
experiment, using ANOVA; then they assemble a pathway 
network for reporting the results, so the noise of the data is 
reduced. 

For the network, they use a single pathway as a node 
with an associated feature that indicates the over or under-
representation according to the significance analysis gene-
wise. The same classification is used for crosstalk between 
pathways, indicating the over or under-representation of the 
link by taking account of the shared genes between the 
respective pathways. In doing this, they show that groups of 
genes at the interface between different pathways can be 
considered as relevant, even if the pathways they belong to 
are not significant on their own. 

The main problem with this method is that it relies on the 
existence of a link when the pathways have genes in 
common, and those genes are used to determine the 
significance of the link. 

Method based on Protein Network 

This method [28] initially builds a protein network and 
then, it is mapped to a pathway network. The protein 
network is built based on KEGG data, and it constructs the 
protein-protein network with microarray data by weighting 
the links between pathways. The proposal has 2 main steps: 

Step 1: 

The method first assembles the pathway network given a 
protein-protein network and pathway information available 
in KEGG. The protein-protein network is mapped to a 
pathway network in the following way: if a pair of pathways 
shares genes, then those pathways are linked. 
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Step 2: 

Subsequently, those links are weighted by the expression 
and co-expression of genes in a microarray experiment, thus 
giving significance to the link. In this manner, the 
significance of a link is measured by the expression of the 
overlapping genes between the pathways. 

The pathways and proteins used in this study have a well-
known connection with Alzheimer’s disease (AD) [29-31]. 
They use AD microarray data in six regions of the brain, as 
seen in the methods below. The authors also assembled a 
similarity matrix between pathways in order to apply 
clustering for further analysis. However, the method of Liu 
et al. has an important drawback as in the previous method, 
as the strategy is only capable of finding links between 
pathways if they have genes in common. 

PathNet 

This approach [9] uses topological information to 
identify associations between pathways. The main difference 
with the previous methods is that PathNet (Pathway-based 
Networks) can also find connections on pathways that do not 
have any genes in common. The authors also use microarray 
data to enrich the network with biological information. The 
method takes advantage of topological information 
(available in KEGG) and microarray data simultaneously in 
two principal steps: 

Step 1: Pathway Network 

PathNet starts by creating a set of graphs, each one 
representing a pathway. Each graph is a directed graph built 
using the information available in KEGG. The nodes of the 
graphs are genes and the edges are interactions in the 
corresponding pathway. Directed and bidirectional edges 
represent processes and binding events, respectively. 

PathNet builds a structure named Pooled Pathway based 
on the pathway graphs which is reorganized for only taking 
into account those genes that are included in the 
experimental data. The information in this structure is used 
to create an adjacency matrix. The adjacency matrix has as 
many rows (and columns) as genes that are present in the 
pooled pathway, and stores a 1 for cell ij if there is a 
connection from gene i to gene j (for all i≠j) and a 0 
otherwise, as well as for all the diagonal elements. Before 
using the adjacency matrix on the next step, the matrix is 
rebuilt by deleting the rows (and columns) corresponding to 
genes that were not taken into account in the experimental 
phase (they are absent on the corresponding chipset). 

Step 2: Pathway Enrichment Analysis 

For the enrichment analysis step, PathNet calculates two 
types of information values: the “direct evidence”, 
determined by the differentially expressed values when gene 
i is evaluated for two experimental conditions, and the 
“indirect evidence”, which is obtained for all i from the 
values of the neighbors in the pooled pathway of gene i. A 
new piece of information called “combined evidence” is then 
generated by combining the previous ones. It is represented 
by a p-value that is used in order to determine pathway 
enrichment, which is done by applying the hypergeometric 

test to discover differentially expressed pathways and their 
corresponding connections. 

The main contribution of this method is that it succeeds 
in finding connections between pathways that do not have 
any genes in common. 

PANA 

Ponzoni et al. have proposed another important method 
[10]. The approach, called PANA (from PAthway Network 
Analysis), uses pathway annotations in order to identify the 
set of genes that belongs to each pathway. Then, this method 
applies principal component analysis to gene expression 
experiment data for extracting an activity profile for each 
pathway. Finally, PANA infers the relationships between 
those profiles by using a machine learning method based on 
a rule-associations inference strategy. The ultimate result is a 
pathway network describing the functional transcriptional 
connections within it. To reach this result, PANA goes 
through two main steps: 

Step 1: Pathway Compression 

PANA builds a sub-matrix for each pathway by using the 
information available on a pathway database (in this case 
KEGG) and gene expression data. The method uses the 
database to find out which genes belong to each pathway and 
the expression data to obtain the expressed values for the 
corresponding annotated genes. When N genes are measured, 
only those associated with the current pathway are 
considered. Once this information has been collected, PANA 
uses bootstrapping to obtain pathway signature submatrices 
and reduces the profiles’ dimensionality of the submatrices 
by applying the Principal Component Analysis (PCA) 
method, thus keeping the most relevant profiles (genes) that 
best outline the changes in the gene expression experimental 
data. Throughout a number of repetitions of different 
samples of the same data, the PCA method selects different 
sets of Principal Components (PCs) for each pathway. From 
the sum of these sets, a subset of the most frequently selected 
PCs is used to form a pathway signature matrix for each 
pathway. Finally, before going to the next step, PANA 
creates a Pathway Level Matrix (PLM) by concatenating the 
PCA score component of all the pathway signature matrices 
with at least one signature. 

Step 2: Inference of Association Rules 

Once the PLM has been built, PANA transforms its 
values into two possible states and obtains a discretization of 
the PLM matrix, named 𝛅PLM. This discretization is 
calculated at a row level (i.e. on the pathway signature 
dimension). When discretizing row j, PANA considers all 
the values of the pathway signature k (k#j) as feasible 
threshold discretization values to find which one minimizes 
the partition entropy metric. This metric is used to evaluate 
how good a threshold value is when comparing the 
discretized k row, PLMk that results from using a candidate 
value, and the discretized j row, PLMj, calculated by using 
its mean value. Finally, PANA uses the 𝛅PLM matrix to 
infer pathway-pathway association rules. During this step, 
the algorithm establishes the pathway-pathway covariation 
for each pair of pathways, together with an accuracy level. 
The pathway-pathway covariation allows the identification 
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of pathways that are related to each other. This task is carried 
out by means of a combinatorial optimization learning 
method, named GRNCOP [32], while the accuracy rule is 
measured by using sensitivity and specificity metrics. The 
final selected rules are those with an accuracy level higher 
than a predefined threshold. Then a network model is 
assembled using these rules. 

The main strength of this method is that it finds relations 
between pathways even when they do not have any genes in 
common. Another important feature is that the method is not 
attached to any kind of topological information. It simply 
considers the activation of a pathway as a coordinated and 
relevant change in the expression of some of the genes and in 
this way they define the pathway profile. 

PET 

PANA and PathNet are two methodologies that detect 
connections between pathways even when they do not have 
any genes in common. PET (from crosstalk Pathway 
inference by using gene Expression data biclustering and 
Topological information) [33] is a method that also detects 
connections under the same circumstances, but as an 
additional feature, it also includes information about the 
synchronization between differentially expressed genes as 
part of the inference process. In the paper, the authors 
propose the use of the biclustering of gene expression data, 
in combination with topological analysis, in order to extract 
synchronized pathway associations. The method is built 
combining the topological information available in KEGG as 
a matrix with each topological link between pathways, and 
an enrichment analysis at the gene level given by microarray 
data; this analysis is used to determine whether a pathway is 
being active or not in the experimental data. Whenever a 
pathway is not active, the links associated with it are not 
considered. The information from both sources, active genes 
and pathways from the enrichment analysis, is combined 
using topological links as a starting point and is poured into 
a biclustering algorithm called BiHEA [34] in a final phase. 
From this algorithm, a score is computed that indicates how 
strong a relation between pathways is. The final result is a 
network at the pathway level with weighted edges. 

When this algorithm is compared with the previous ones 
(PANA and PathNet), improvements in the amounts of 
relations are found. Moreover, PET provides more 
information about the links being found by forming 
biclusters that might explain synchronization between the 
genes that are involved within. 

3. KEY REMARKS 

In this article different methodologies currently used for 
inferring biological networks of pathways are presented, 
which either discover some knowledge from the 
overwhelming amount of biological data or attempt to find 
interconnections between these routes. The first three 
methods that were presented do not find any networks of 
pathways directly, but they might well be used for that aim 
as they detect routes that are differentially expressed 
simultaneously. A common disadvantage of those methods is 
that they treat all the genes in the pathway equally, 
independently of the importance of the genes in the process. 

On the other hand, most of the methods that are used to 
find some kind of relation between pathways share one 
characteristic: they only consider the genes in common 
between pathways in order to infer the relations. This feature 
is common to most of the methods here presented, except for 
PathNet and PANA. Likewise, methods were classified 
according to whether or not they start from information from 
microarray experiments and some of them also combine this 
data with topological material. So, considering all these 
factors, we present a chart of the main characteristics of the 
methods presented in sections 2.2 and 2.3 in Fig. 1. 

 
Fig. (1). Categorization of the inference methods presented that are 

used to build pathway networks. 

Furthermore, in Table 1, we list all the methods and 
associate them with their sources of information. The first 
column indicates the name of the method as cited above; the 
following columns are the different materials used in each 
method. If a method uses more than one source, all of them 
are marked in the corresponding column of the table. 

4. DISCUSSION AND CONCLUSIONS 

During the last decade, pathway analysis has become a 
key strategy for understanding the biological meaning of a 
gene set in high throughput experiments. For the majority of 
complex cellular phenomena, explanation at the gene level is 
hard to achieve. In order to overcome this difficulty, many 
methods have been proposed for identifying pathways that 
are enriched or differentially expressed under some specific 
condition. 

Yet, some of the existing methods consider pathways as 
isolated entities in a cell, without contemplating crosstalk 
between them. In this context, a crosstalk refers to a situation 
in which one or more components of a pathway affect 
another, thus resulting in coordination between different 
biological processes. So, the methods explained in this paper 
overcome this limitation and explore the concept of 
associations between pathways using microarray 
experimental data and/or topological or curated information. 
The approaches also differ in the manner in which they 
deduce a crosstalk between pathways: in most cases, they 
only consider a link between two pathways when they have 
genes in common. However, there are some methods that 
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search the crosstalk between pathways in a more complex 
way. We decided to arrange the most important methods for 
pathway networks inference according to the data they use as 
well as the findings they provide. 

As has been said before, there are approaches that only 
find the enriched pathways, meaning that they map the 
information given by the expressed genes to a pathway level, 
in order to better understand the results by knowing which 
biological processes are activated under a specific condition. 
These methods are different in the way in which they 
consider whether the pathway is enriched or not. For 
instance GSEA determines statistically if the majority of the 
genes in the given pathway are differentially expressed or 
not; while SEPEA and SPIA give more importance to some 
genes within the pathway: SEPEA does it with the use of 
HER, in order to determine if a pathway is activated by the 
genes that drive its behavior, while SPIA does it by the use 
of an IF calculated for the pathway, the importance of each 
gene in each pathway depends on its role and its connections. 
On the other hand, DEAP uses directed graphs to separate 
each pathway into simple cycles with no repeated nodes, and 
then calculates the absolute maximum running sum score. 

Regarding the motivation of this paper, the most 
interesting strategies are those that find crosstalk or links 
between pathways. Among these approaches, there are some 
that do not use microarray data, which means that they do 
not find any enriched pathways or links, they only assemble 
a pathway network. The FBA is an example of this case, the 
authors only use information from GO to assemble 
annotations at a pathway level according to the genes within, 
and if the pathways share a statistically important annotation, 
then a link between them is made. On the other hand, there 
are methods that use data mining in order to find links or 
crosstalks between pathways; these approaches try to 
overcome the huge amount of information available and 
want to take advantage of that. On this matter, we show two 
different methods in this paper: the Arizona Parser and 
PANTex. The first one provides a hybrid syntactic-semantic 

grammar that allows the creation of gene networks through a 
training corpus in order to redefine pathways or find 
connections between them. PANTex, on the other hand, is 
proposed for finding connections between pathways 
according to the appearances and co-appearances in a given 
corpus. 

Lastly, there are methods that find crosstalk using 
microarray data, which means that they find relevant cross-
talks or enriched links and pathways under a given condition. 
Among these methods are those that only find links between 
pathways if they have genes in common, such as in the SAL 
approach where the importance of the link is given by the 
differential significance of the genes shared by the pathways. 
Other approaches, such as PANA, PathNet and PET, do not 
rely on the premise that pathways have to share genes in 
order to be coordinated or to have a cross-talk; these 
methods find links between pathways that do not have any 
genes in common. PathNet does it through topology 
information from KEGG, assuming that a pair of pathways 
has a link if they share genes or the genes in one of them 
have a topological connection with the genes on the second 
pathway. On the other hand, PANA uses a machine learning 
method to find connections between the profiles of the 
pathways. For its part, PET finds more relations and provides 
extra information by yielding biclusters, which explain some 
kind of synchronization between the genes. In all cases, 
PANA, PET and PathNet achieve a pathway network that is 
enriched with microarray data. 

At this point, an issue that should be carefully taken into 
account is related to the use of KEGG and similarly defined 
pathways in some of the cited methods. It is important to 
consider and have in mind that these methods can suffer 
from some drawbacks as their knowledge coverage on 
pathways is far from being complete since they “can see” 
only what is available and therefore they may miss some 
remaining information (usually the majority of differentially 
expressed genes). 

Table 1. Sources of information used by each method. 

METHOD Gene Set GO KEGG PubMed Microarray 

data 

GSEA X     

SEPEA X  X   

SPIA X  X   

DEAP   X  X 

FBA  X    

Arizona Parser    X  

PANTex   X X  

SAL   X  X 

PP Network   X  X 

PathNet   X  X 

PANA   X  X 

PET   X  X 
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In summary, the identification of different kinds of 
associations between pathways is playing a central role in 
systems biology, revealing information which is undetectable 
at a gene level. Therefore, a comprehensible understanding 
of the benefits and limitations of these approaches could be 
the key to the development of new computational strategies 
for genome-wide analysis. 
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