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We obtain for the two-phase Lame-Clapeyron-Stefan problem for a semi-infinite 
material an equivalence between the temperature and convective boundary con-
ditions at the fixed face in the case that an inequality for the convective transfer 
coefficient is satisfied. Moreover, an inequality for the coefficient which character-
izes the solid-liquid interface of the classical Neumann solution is also obtained. 
This inequality must be satisfied for data of any phase-change material, and as a 
consequence the result given in our previous paper is also recovered when a heat 
flux condition was imposed at the fixed face.
Key words: Lame-Clapeyron-Stefan Problem, PCM, free boundary problem, 

explicit solutions, similarity solutions, Neumann solution,  
convective boundary condition.

Introduction

Heat transfer problems with a phase-change such as melting and freezing have been 
studied in the last century due to their wide scientific and technological applications [1-10]. A 
review of a long bibliography on moving and free boundary problems for PCM for the heat 
equation is shown in [11]. 

We consider an homogeneous semi-infinite material which has an initial constant tem-
perature, Ti , and at time t = 0 on the fixed boundary x = 0 we impose a constant temperature  
T0 (< Tf < Ti) where Tf is the phase-change temperature. These two initial and boundary con-
ditions imply an instantaneous phase-change process. The two-phase Lame-Clapeyron-Stefan 
problem [3, 12-14] is formulated in the following way: find the free boundary x = s(t), defined 
for t > 0, and the temperature T = T(x,t) defined by: 
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for x > 0 and t > 0, such that the following equations and conditions are satisfied, problem (P1):

	 0, 0 ( ), 0
t xxs s s sc T k T x s t tρ − = < < > 	 (2)
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The solution of the free boundary problem (P1) is the classical Neumann explicit solu-
tion [3, 13, 14] given by:
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and the dimensionless coefficient ξ > 0 is the unique solution of the following equation:

	 ( ) , 0G x x x= > 	 (13)
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and the dimensionless parameters:
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Explicit solutions for Stefan-like problems can be found in [15-19]. A review of avail-
able analytical solutions, for a wide range of alternative boundary conditions and properties, 
are provided in [9]. 

The goal of this paper is to obtain the explicit solution of a similarity type for the 
solidification process for a semi-infinite PCM with a convective boundary condition at the 
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fixed face x = 0 and the relationship with the Neumann solution (10)-(12) corresponding to the 
solidification process with a temperature boundary condition at the fixed face x = 0. We remark 
that the results obtained in this paper are theoretical and they are valid for all PCM which can 
be verified experimentally.

In Section Two-phase solidification process with a convective boundary condition at 
the fixed face x = 0, we consider the instantaneous solidification process corresponding to the 
equations and conditions (2)-(8) and (18), and we show the equivalence with the solidifica-
tion process (2)-(9) when the inequality (19) is satisfied for the positive coefficient h0 which 
characterizes the transient heat transfer coefficient h(t) = h0t –1/2 in the boundary condition (18). 
Moreover, an inequality for the dimensionless coefficient ξ which characterizes the solid-liq-
uid interface s(t), given by (12), is also obtained. These results complement those obtained in  
[13, 20, 21].

Two-phase solidification process with a convective boundary  
condition at the fixed face x = 0

In order to solve the phase-change process with a convective condition at the fixed 
face x = 0 approximate method were used, for example in [22-31]. In [32, 33] a convective 
condition is considered after a transformation in order to solve a free boundary problem for a 
non-linear absorption model of mixed saturated-unsaturated flow with a non-linear soil water 
diffusivity. In [21] the problem was analysed and a closed-form expression for the solid-liquid 
interface and both temperatures were found when the heat transfer coefficient is time-dependent 
and proportional to t –1/2. The solution is obtained graphically and it is incorrect particularly for 
sufficiently small heat transfer coefficient, see Corollary 2.

The goal of this paper is to give the mathematical analysis of this heat transfer prob-
lem, that is the solidification of a semi-infinite material which is initially at the liquid phase at 
the constant temperature, Ti, and a convective cooling condition is imposed at the fixed bound-
ary x = 0 for a time-dependent heat transfer coefficient of the type given in the condition (18). 

Now, we consider the following free boundary problem with a convective boundary 
condition at the fixed face x = 0, problem (P2): find the free boundary x = s(t), defined for t > 0, 
and the temperature T = T(x,t) defined as in (1) for x > 0 and t > 0, such that the equations and 
boundary conditions (2)-(8) and the convective boundary condition at the fixed face:

	 0
0(0, ) [ (0, ) ], 0 ( 0)∞= − > >

xs s s
hk T t T t T t h

t
	 (18)

are satisfied where T∞ is the bulk temperature at a large distance from the fixed face x = 0, h0 – 
the coefficient which characterizes the transfer heat coefficient at the fixed face x = 0, and we 
suppose T∞ < Tf < Ti in order to guarantee a solidification process. 

Theorem 1. [20] If the coefficient h0 satisfies the inequality:

	 0 α ∞

−
>

−π


i fl

f

T Tkh
T T

	 (19)

then there exists an instantaneous solidification process and the free boundary problem (P2) has 
the unique solution of a similarity type given by:
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and the dimensionless coefficient λ > 0 satisfies the following equation:

	 ( ) , 0F x x x= > 	 (23)

where the function F and the parameters bi are given by:

	
2

1 3 1
2

exp( )( ) ( )
1 erf( )

bxF x b b F x
b x b

−
= −

+
	 (24)

	 0 0
1 2

( )
0, 0f

s
s

h T T hb b
k

α
ρ α

∞−
= > = π >





	 (25)

Remark 1. If the coefficient h0 satisfies the inequality (19) then for the solid and liquid 
temperatures, given by (20) and (21), respectively, we have the following properties:

	 ( , ) , 0 ( ), 0s fT T x t T x s t t∞ < < < < > 	 (26)

	 ( , ) , ( ), 0f iT T x t T x s t t< < > >


	 (27)

Corollary 2. If the coefficient h0 satisfies the following inequalities:
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then the free boundary problem (P2) is a classical heat transfer problem for the initial liquid 
phase whose solution is given by:
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Moreover, the temperature (29) solves the heat transfer problem without a phase-
change process given by the following equation, and initial and boundary conditions:
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Proof. The temperature, given by eq. (29), verifies easily the heat eq. (30) and the 
conditions (31)-(32) and it has the following properties:
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Moreover, the temperature at the boundary x = 0 is given by:
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and it satisfies the following inequalities:
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Therefore, the temperature, given by eq. (29), verifies the following properties:
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and
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Remark 2. For sufficiently small heat transfer coefficient, (28), we have only a heat 
transfer problem and we can not obtain a phase-change process.

Theorem 3. Let it be T∞ < T0 < Tf < Ti . If the coefficient h0 satisfies the inequality (19) 
then the free boundary problems (P1) and (P2) are equivalents. Moreover, we have:
(a) the relationship between the datum T0 of problem (P1) with the data T∞ and h0 of the problem 
(P2) is given by:
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(b) the relationship between the data h0 and T∞ (<T0) of problem (P2) with the datum T0 of the 
problem (P1) is given by:
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Proof. (a) If we compute the temperature at the fixed face x = 0 of the solution (20)-(22) 
of the free boundary problem (P2) we obtain that:
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that is (33). As T0 < Tf we can consider the free boundary problem (P1) whose solution is given 
by (10)-(12) with T0 defined by (39). In order to obtain the relationship between problems (P1) 
and (P2) it is sufficient to show that λ = ξ. Then, we have:
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and by the uniqueness of the solution of the eq. (13) we get λ = ξ. Then, the temperatures and 
solid-liquid interfaces of both problems (P1) and (P2) are equals.

(b) Conversely, if we consider the solution of the problem (P1), we compute Ts(0,t) 
and Tsx

(0,t), then the positive coefficient, h0, which satisfies the boundary condition (18), can be 
defined by eq. (40). As h0 > 0 we can consider the free boundary problem (P2) whose solution is 
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given by eqs. (20)-(22) with h0 defined by eq. (40) and T∞ < T0. In order to obtain the relation-
ship between problems (P1) and (P2) it is sufficient to show that ξ = λ. Then, we have:
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and by the uniqueness of the solution of the eq. (23) we get ξ = λ. Then, the temperatures and 
solid-liquid interfaces of both problems (P1) and (P2) are equals.

Therefore, the two problems (P1) and (P2) are equivalents and the thesis holds.
Remark 3. Owing to the equivalence proved in Theorem 3, when we impose the two 

conditions (5) and (9) to a PCM we have an instantaneous phase-change process and then the 
corresponding heat transfer coefficent at the fixed face x = 0 is time-dependent and proportional 
to t–1/2 of the type (18) and the coefficient h0 must verify the inequality (19).

Theorem 4. Let it be T∞ < T0 < Tf < Ti . The coefficient ξ = ξT0
 which characterizes the 

free boundary (12) of the Neumann solution of the problem (P1) (with datum T0 (< Tf) at the 
fixed face x = 0) satisfies the following inequality:
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Proof. By Theorem 3, we have that h0, defined by eq. (40), must satisfy the inequality 
(19) and therefore the coefficient ξ of the solid-liquid interface of the Neumann solution of the 
problem (P1) must also satisfy the inequality (44).

Remark 4. The inequality (44) has a physical meaning for the classical Neumann 
solution (10)-(12) when the parameters of the problem (P1) verify the inequality:
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Corollary 5. The coefficient ξ = ξT0
 which characterizes the free boundary (12) of the 

Neumann solution of the problem (P1) (with T0 (< Tf < Ti) at the fixed face x = 0) also satisfies 
the following inequality: 
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Proof. The function of the right hand side in eq. (44) is a strictly increasing function 
of the variable T∞. Then, the inequality (46) is obtained by taking in the inequality (44) the limit 
when T∞ → –∞.

Remark 5. The inequality (46) is the same inequality as obtained in [13, 34] where a 
two-phase Lame-Clapeyron-Stefan free boundary problem with a heat flux of the type:

	 0
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at the fixed face x = 0 is imposed instead of the temperature boundary condition (9).
Theorem 6. Let it be T∞ < T0 < Tf < Ti . The coefficient λ = λ(h0 ) of the free 

boundary eq. (22) is a strictly increasing function of the variable h0, defined in the interval 
1 1/2( )( ) ( ) ,i f fk T T T T α− −
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, and it satisfies the following properties:
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where λT∞ is the coefficient which characterizes the Neumann solution of the free boundary prob-
lem (2)-(8) and the following temperature boundary condition at the fixed face x = 0 given by:

	 (0, ) , 0sT t T t∞= > 	 (49)

instead of the boundary condition (9).
Proof. The positive coefficient, λ, is defined as the unique solution of the eq. (23). If 

we consider λ = λ(h0) as a function of the parameter h0 which must verify the inequality (19), 
we can obtain that b1 = b1(h0) and b2 = b2(h0), and then F = F(h0) are strictly increasing functions 
of the parameter h0, therefore λ = λ(h0) is also a strictly increasing function of the variable h0.

If
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then b1 = b3 and so we have:
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By the other part, when we consider the limit h0 → ∞ in eq. (23) we obtain that:

	 ( ) Tλ λ
∞
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where λT∞ is the solution of the eq. (13) when we impose the boundary condition (49) at the 
fixed face x = 0 instead of the boundary condition (9).

Remark 6. In [35] an equivalence of two problems for the one-phase fractional 
Lame-Clapeyron-Stefan problems has been considered. For the classical one-phase problems 
the equivalence is trivial because Ti = Tf and therefore the inequality (19) is always verified:
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Following [35, 36] we can also generalize the inequality (19) for the two-phase frac-
tional Lame-Clapeyron-Stefan problem in a forthcoming paper [37].

Remark 7. At the last, for a suggestion of an anonymous referee, we will transform the 
problem (P2), given by the equations and conditions (2)-(8) and (18), and the inequality (19) in 
a dimensionless form. We define the following dimensionless change of variables:
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where L is a characteristic length. Therefore, the equations and conditions (2)-(8) and (18) are 
transformed as:

	 0, 0 ( ), 0s s r
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θ θ η τ τ− = < < > 	 (53)
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B

η
θ τ θ τ θ τ

τ ∞= + > 	 (60)

where Ste is the Stefan number and B/τ1/2 is the Biot number defined by the following expres-
sions:

	
( )

Ste 0s i fc T T−
= >



	 (61)

	 0 0s

s

h
B

k
α

= > 	 (62)

and

	 0f

i f

T T
T T

θ ∞
∞

−
= >

−
	 (63)

Moreover, the inequality (19) for the coefficient h0, which characterized the heat trans-
fer coefficient in the boundary condition (18), is transformed in the following way: 

	
1 i fl s l s

s s f

T Tk kB
k k T T

α α
α θ α∞ ∞

−
> =

π π −
 

	 (64)

In the case we define the dimensionless time as τ = (αℓt)/L2 we can obtain similar 
results as before but with small differences in the eqs. (53) and (54), and conditions and defini-
tions (59), (61), (62), and (64), respectively.

Conclusion

An equivalence between two Lame-Clapeyron-Stefan problems with a temperature 
and a convective boundary conditions at the fixed face of a semi-infinite PCM is obtained for 
sufficiently large heat transfer coefficient. Then, an inequality for the coefficient which charac-
terizes the solid-liquid interface of the classical Neumann solution is also obtained.
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Nomenclature

b, bi	–	 parameters defined in eqs. (17) and (25)  
	 (i = 1, 2, 3, 4), [–]

c	 –	 specific heat, [Jkg–1K–1]
h	 –	 transient heat transfer coefficient  

	 at x = 0, [kgK–1s–3] 

ho	 –	 coefficient that characterizes the heat transfer  
	 coefficient at x = 0, [kgK–1s5/2] 

k	 –	 thermal conductivity, [Wm–1K–1] 

ℓ	 –	 latent heat of fusion by unit of mass, [Jkg–1]
q	 –	 transient heat flux at x = 0, [kgs–3] 

qo	 –	 coefficient that characterizes the transient  
	 heat flux at x = 0, [kgs5/2] 

s	 –	 position of the solid-liquid interface, [m]
T	 –	 temperature, [ºC]
T0	 –	 constant temperature, [ºC]
Tf	 –	 phase-change temperature (T0 < Tf < Ti), [ºC]
Ti	 –	 initial constant temperature, [ºC]

T∞	 –	 bulk temperature at the fixed  
	 face x = 0 (T∞ < Tf < Ti),[ºC] 

t	 –	 time, [s]
x	 –	 spatial co-ordinate, [m]

Greek symbols

α	 –	 diffusivity coefficient, [= k(ρc)–1], [m2s–1] 

λ	 –	 coefficient that characterizes the free  
	 boundary in eq. (22), [–]

ρ	 –	 density, [kgm–3] 

ξ	 –	 coefficient that characterizes the free  
	 boundary in eq. (12), [–]

Subscripts

	 –	 liquid phase
s	 –	 solid phase
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