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ARTICLE INFO ABSTRACT

Keywords: Two main groups of basic rocks, representative of the bimodal Ordovician magmatism of the northeast-
Northeastern Puna ern Puna (22-24°S, 66°30'-65°40'W) were revisited on the basis of new geological, petrographic and geo-
Ordovician

chemical data. One of them shows geochemical characteristics intermediate between those of MORB and
arc-type basalts common in back-arc basins. The other group is represented by low and high Ti basalts
and gabbros with an OIB-type signature. Basalts of the first group (Tremadocian-early Arenigian) along
with minor dacites are found within a sedimentary-volcanic sequence that hosts the Cobres and the Tan-
que granitic plutons (475-480 Ma). This group of basic rocks is also coeval with Cobres Granite, whereas
magmas with OIB-type signature were contemporary with the emplacement of Tanque Granite. During
the early to middle Arenigian, dacites and minor amounts of basalts with OIB-type signatures erupted
in the Escaya-Huancar ranges and were intruded as dikes in Cobres and Tanque ranges.

Two main stages are recorded in the tectono-magmatic evolution of the region. The first stage was
dominated by extension (Tremadocian-early Arenigian), and the second (until the late Arenigian) during
which extensional and contractional conditions occurred diachronously along the basin. The geochemical
characteristics of the basic magmas are attributed to a combination of factors such as variably depleted
mantle sources, continental crustal contamination and addition of subduction components, as well as
variations in the degree of melting in the sources.

These factors probably were controlled by episodical changes both in time and space in the extensional
conditions. These characteristics altogether indicate a back-arc setting for the northeastern Puna during
Early and Middle Ordovician, in which contractional episodes took place.

© 2009 Elsevier Ltd. All rights reserved.
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1. Introduction contribution to the continental crust, and to better constrain the

tectonic setting of this segment of the proto-Andean western

Petrologic investigations carried out to contribute to geody-
namic models for the Argentine Puna during the early Paleozoic
(Koukharsky et al., 1989; Coira and Koukharsky, 1991; Bahlburg,
1990; Pérez and Coira, 1998; Coira et al., 1999; Lucassen et al.,
1999; Bock et al., 2000; Lucassen et al., 2001; Zimmermann and
Bahlburg, 2003; among others) have produced an important geo-
chemical and isotopic database of igneous, metamorphic and sed-
imentary rock suites. This information has significatively
contributed to enlarge our knowledge of the nature of the crust,
and of its evolution at that in the early Paleozoic time. Basic igne-
ous rocks, however, are poorly represented in this database. This
work is focused on the petrology of the Ordovician basic rocks from
the northeastern Puna, to evaluate the degree and type of mantle
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Gondwana margin during the lower Paleozoic.

Basic magmatism was long recognized in the Puna pre-Andean
basement (Pérez and Coira, 1998; Coira et al., 1999; Coira and Kou-
kharsky, 2002; Kirschbaum et al., 2005; among others). In the
Cochinoca-Escaya range (Fig. 1), Coira et al. (1999) and Coira
et al. (2004) described lava flows, sills and basic dykes that along
with dacitic volcanic-subvolcanic units constitute the early to
middle Arenigian Cochinoca-Escaya Magmatic-Sedimentary Com-
plex. In the Tanque range, Pérez and Coira (1998) described basic
and siliceous lava flows, sills and dykes in the Early Ordovician sed-
imentary sequence that hosts the syntectonic Tanque Granite. This
granite shows mixing and mingling with gabbroic magmas.

In the southern Puna, Coira et al. (2002) recognized basic mag-
matic rocks represented by fine-grained gabbros, microgabbros
and basalts with transitional characteristics between volcanic arc
tholeiitic basalts and MORB-type, intercalated within an early
Paleozoic turbiditic clastic sequence in the Quebrada Honda range.
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Fig. 1. Map showing the distribution of lower Paleozoic magmatic and sedimentary
units in the Northern Puna. Frame localities are analyzed in the text and considered
in detail in Figs. 2 and 3a and b.

Coira and Darren (2002) identified alkaline lamprophyres con-
formably intercalated within an early Arenigian clastic sequence
in the Sierra range (Jujuy province). Gabbros and microgabbros
were also found in the Cobres range (Kirschbaum et al., 2005).

Regional isotopic and geochemical studies on lower Paleozoic
volcanic and sedimentary rocks from the Puna (Bahlburg, 1990;
Bock et al., 2000; Lucassen et al., 2000 have been interpreted to
indicate that input from juvenile magmatic sources was minor.
These authors concluded that there was not any significant crustal
growth during the early Paleozoic. Bock et al. (2000) restrict the in-
put of juvenile material to a short time during the Arenigian.

Analysis of the tectono-magmatic evolution of northeastern
Puna during the early Paleozoic, especially in the Ordovician, has
shown that extensional, contractional and strike-slip regimes over-
lapped each other, leading to a complex kinematic evolution (Bahl-
burg, 1990; Hongn, 1994; Hongn and Mon, 1999). Because the
studied basic rocks were recorded in different tectonics frame-
works and at different times they are useful to unravel the Ordovi-
cian geodynamic evolution of the Puna.

Representative sequences of Ordovician basic igneous rocks
from northeastern Puna were selected for petrography and geo-
chemistry along cross-sections between 22° and 24°S (Fig. 1).
The new data along with previous results allow us to better con-
strain the magma sources and evolution, and to adjust the geody-
namic scenario for the Puna during the Ordovician.

2. Geological setting

An extensive Ordovician magmatism began in the Puna in the
early Tremadocian, and it reached the climax in the middle Areni-
gian. The basic rocks occur in two submeridian magmatic belts
known as the Western Eruptive Belt (Palma et al., 1986) and East-
ern Eruptive Belt (Méndez et al., 1973). Ordovician magmatic rocks
in the northern Eastern Puna Eruptive Belt (Fig. 1) occur in a bimo-
dal volcanic and plutonic magmatic suite of Early Ordovician age.
These syn-sedimentary volcanic and subvolcanic rocks (dacites
and minor (5-10%) basalts and microgabbros) associated with clas-
tic sequences are affected by green-schist facies metamorphism. In
the Cochinoca-Escaya region these units constitute the Cochinoca-
Escaya Magmatic-Sedimentary Complex (Coira et al., 1999; Coira
et al., 2004) that contains a graptolite fauna of late Tremadocian
to early-middle Arenigian age (Bahlburg 1990; Martinez et al.,
1999; Benedetto et al., 2002). This complex records Ordovician
folding, which shows a well-defined lithological control; so tight
folds are common in pelite-dominated successions whereas open
folds develop in volcanic intercalations. Folds strike NE-SW in
the Queta and Quichagua ranges, and their axial surfaces dip to-
wards the NW. In the Cochinoca-Escaya range, the structures
strike approximately north-south. Axial lines plunge smoothly.
Relations between fold axes and stretching lineation indicate vari-
ations in the strike-slip component (Hongn, 1994).

In the Huancar, Sey and Taique regions (Fig. 1), the volcano-sed-
imentary sequence represented by dacitic and minor (<2%) basic
lavas, domes and sills syn-depositional with thick turbidites were
attributed to the Chiquero Formation (Schwab, 1973; emend Coira
et al., 2005). They were assigned to late Tremadocian according to
their fossil content (Benedetto et al., 2002).

Intrusive rocks crop out in Cobres and Tanque ranges (Figs. 2
and 3a). The Cobres Plutonic Complex consists of two main plu-
tons: granodiorite (476 £+ 1 Ma U/Pb age on monazite, Lork and
Bahlburg, 1993) and monzogranite (478.4 +3.5 Ma zircon U/Pb
age; Haschke et al., 2005), a leucogranite stock, acid dikes and
small bodies of microgabbros and gabbros (2-3%). The country
rock corresponds to sandstones and pelites with intercalations of
basic volcanic rocks. Thermal metamorphism transformed the
country rock to spotted phyllite-schist and to schist and gneiss
(Fig. 2). High-T ductile deformation zones concentrate around the
contact between granodiorite and host rock recording higher
metamorphic grade (Hongn et al,, 2006). The shallow-plunging
stretching lineation (Fig. 2) and some steep-plunging fold axes
point to strike-slip components in the kinematics of the Ordovician
deformation (Bahlburg, 1990; Hongn and Mon 1999).

The Tanque Plutonic Complex (Fig. 3a) consists mainly of gran-
ular syntectonic monzogranite with minor porphyritic fabric,
which shows mixing and mingling relations with gabbro rocks
(10%). Granite as well as gabbro shows a heterogeneously devel-
oped foliation. As described in Cobres, the country rock shows
thermal metamorphism spatially related to the intrusion. How-
ever, as observed in other areas with Ordovician intrusions, meta-
morphism seems to be related to a rather regional thermal
anomaly extended along the southeastern border of the Puna and
northern Pampen ranges (e.g. Lucassen and Becchio, 2003). Never-
theless, the sub-vertical foliation and lineation observed in high
temperature deformation belts suggest dominantly contractional
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Fig. 2. Geological map of Cobres range with details of the magmatic Ordovician
units discussed in text. Map modified from Hongn et al. (2006).

kinematics, with no strike-slip component being detected as in Co-
bres. The Tanque pluton yielded a monazite U/Pb age of
479 + 1.7 Ma (Coira, unpublished). Similar lithologies and ages, as
well as high-T deformation in plutonic and host rocks and their
similar fabric orientation, strongly suggest that Cobres and Tanque
plutons are related to a syntectonic magmatism that took place be-
tween 480 and 475 Ma.

The Western Eruptive Belt includes the Tremadocian-Arenigian
magmatism recorded in western Puna and north of Chile. The first
cycle in this belt started with basaltic—andesitic lavas, some of
them showing pillow structures, intercalated within a shallow
marine sedimentary sequence (Niemeyer, 1989). These lavas show
a composite geochemical signature of MORB and tholeiitic arc bas-
alts, characteristic of a supra-subduction setting (Breitkreuz et al.,
1989; Coira et al., 2002). They were followed by dacitic-rhyolitic
pyroclastic sequences ending under subaerial conditions (Koukhar-

sky et al., 1996). This first cycle ended with the intrusion of plutons
during upper Tremadocian-early Arenigian (Blasco et al., 1996;
Koukharsky et al., 2002; Kleine et al., 2004). The second cycle dur-
ing Arenigian is represented by basaltic-andesites to andesites
with arc to back-arc geochemical signature (Coira et al., 1999)
developed in a shallow marine environment. During this time, a
back-arc basin evolved in north-eastern Puna, along with the bi-
modal magmatism recorded in the Eastern Eruptive Belt.

3. Basic magmatism in Cobres range

Ordovician basic rocks in the Cobres range show variable rela-
tionships with the siliceous plutonic rocks of the Cobres Complex
(Fig. 2). They are gabbro and microgabbro bodies that range be-
tween a few centimeters to tens of meters in width, dark grey to
black in color, sometimes greenish, due to alteration processes.
Field relationships among basic rocks and granitic plutons permit
us to distinguish them into three groups:

3.1. Pre-granite basic rocks

These are greenish lensoidal bodies, concordant with and folded
along with bedding of the metasedimentary country rock. Lensoi-
dal shape results from boudinage because of competent behavior.
These bodies correspond to volcanic intercalations whose primary
features were obliterated by regional metamorphism (deformation
and recrystallization along with weak cataclasis). Tremolite-actin-
olite, the main component is observed surrounding plagioclase,
opaque minerals, titanite and epidote. Biotite in small crystals
and in strips indicates a secondary foliation.

3.2. Syn-granite basic rocks

These correspond to gabbros that crop out as partially dismem-
bered and brecciated bodies with tabular to lensoidal shapes and
4-6 m in thickness. These gabbroic rocks are always parallel and
concordant to the contact between the granodiorite and the meta-
morphic country rock or to the contact between different granodi-
oritic sheets (Fig. 2). Gabbros in contact with the granodiorite show
a narrow external zone of finer grain. This feature along with well-
defined magmatic orientation of K-feldspar crystals in granodiorite
indicates that gabbros and granodiorite are contemporaneous.
Within this group of basic rocks there are porphyritic and granular
ones. The former exhibit phenocrysts of plagioclase (1.6-2.8 mm)
intensely replaced by sericite and epidote and of pyroxene entirely
converted to calcite and argillic minerals, in a coarse grained
groundmass (0.20-0.25 mm) composed by hornblende and plagio-
clase with titanite and opaque minerals. Granular gabbros are
equigranular, fine grained (0.5-0.6 mm), melanocratic, composed
by hornblende and andesine with opaque minerals, apatite, zircon
and as secondary minerals, chlorite, epidote and sericite.

3.3. Post-granite basic rocks

These correspond to microgabbro bodies that intrude discor-
dantly into the country rock and the granodiorite. The microgabb-
ros are fine grained (0.6-0.8 mm) to scarcely porphyritic,
composed by plagioclase, hornblende, relictic clinopyroxene, tit-
ano-ilmenite, apatite, zircon and as secondary minerals chlorite,
sericite and argillic minerals. Although, this group of basic rocks
shows similar field relationships to alkaline Cretaceous dikes (bas-
alts, trachybasalts and tephrites), which are not considered here.
Those Cretaceous rocks can be distinguished by their alkaline min-
eralogy, such as ferro-edenite, and their geochemical alkaline sig-
nature (Kirschbaum et al 2006).
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Fig. 3. (a) Geological map of Tanque and (b) of Escaya-Cochinoca ranges showing the magmatic units analyzed.

4. Basic magmatism in the Tanque range

Basic sills and dikes (basalts and microgabbros) occur in the
Early Ordovician sedimentary sequence that hosts the syntectonic
Tanque Granite (Fig. 3a). They form generally concordant bodies
with the sedimentary rocks that range from 2 to 6 m in thickness.
Folding of Ordovician age affects both the basic and sedimentary
rocks. The generally altered spilitic basalts have vesicular, apha-
nitic to scarcely porphyritic textures. They are made up of fine chl-
oritized or albitized plagioclase laths in a clinochlore and calcitic
mesostasis groundmass that are associated with partially chlori-
tized amphibole that shows a sub-ophitic relation with plagioclase
and opaque minerals. The vesicles, 0.5-3 mm in diameter, are filled
with chlorite and carbonate aggregates. The fine granular micro-
gabbros generally have ophitic textures and are mainly composed

of plagioclase and clinopyroxene associated with tremolite, chlo-
rite, titanite, apatite and opaque minerals. As in the Cobres area,
these basic rocks are deformed along with the metasedimentary
host rocks. They are boudinaged to variable degrees, depending
on the thickness of the basic rock. The gabbros of the plutonic com-
plex that constitutes the core of the Tanque range form small
bodies (<20 m lengthwise). They are usually foliated and elongated
in concordance with the foliation of the granite (Fig. 3a) and show
evidence for mingling and mixing relations with the granite. Both
the granite and the gabbro rocks exhibit high temperature defor-
mation fabrics, documented by “granitic striped gneisses” in which
K-feldspar shows dynamic recrystallization and quartz develops
chessboard fabric. The gabbros essentially consist of plagioclase
and titanaugite replaced by hornblende along with abundant titan-
ite and acicular apatite. They show variable foliation that is marked
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by segregations of plagioclase-rich stripes and subparallel bands
with plagioclase, hornblende and opaque minerals.

Post-granite basic dikes (1-2 m thick) discordantly intrude the
sedimentary-magmatic sequence and the granite. They are repre-
sented by microgabbros to microdiorites of fine grain (1-4 mm) to
scarcely porphyritic, mainly composed of plagioclase (andesine-
labradorite) partially altered to sericite and epidote and horn-
blende with apatite and opaque minerals as accessories. As in the
Cobres area, mineralogy permits us to distinguish these Paleozoic
basic rocks from those of Cretaceous age showing similar discor-
dant field relationships.

5. Basic magmatism in Cochinoca-Escaya range

Basic rocks in the Cochinoca-Escaya range are represented by
lava flows, sills and laccoliths up to 30 m thick, syn-depositional
with thick psamitic-pelitic sequences (Fig. 3b), altogether de-
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formed. In some cases they present peperites at their bases and/
or roofs, indicating their interaction with water-saturated hosting
sedimentary rocks. Within them, moderately to intensely altered
basalts (spilites) and microgabbros are recognized.

The spilitic basalts are usually arranged as sills and lavas, locally
with pillow structures (Coira and Koukharsky, 1991). They are con-
stituted by non-oriented plagioclase laths 0.3-0.5 mm in diameter,
albitized and replaced by sericite-chlorite and carbonates, among
which chlorite aggregates, abundant titanite, apatite, and skeletal
opaque minerals turning into leucoxene are distributed. In a few
cases it is possible to recognize pyroxene relictic crystals. A
remarkable NNE to N-striking foliation that overprints at variable
degrees the volcanic textures develops in the thinnest (3-5 ms)
and most altered basalts.

The microgabbros constitute sills and laccoliths, and in a few
cases dikes that discordantly cut the clastic sequence. They are dis-
tinguished from the basalts by their greater grain size and lower
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alteration stage. They are constituted by clinopyroxene (augite—
titanaugite) in crystals 5-8 mm in diameter and plagioclase in
ophitic relation distributed inside a chloritic matrix, accompanied
by abundant titanite, apatite and opaque minerals. Along with
chlorite, they usually show epidote and calcite aggregates that
pseudomorphically replace the plagioclase and clinopyroxene
crystals or irregularly and/or in the shape of veins replace the
whole of the sample.

6. Geochemistry

In the study area, Ordovician basic rocks have been modified by
superimposed hydrothermal alteration and/or metamorphism. The
HFSE elements, including Hf, Ti, Nb, Ta, Zr, Sc, Y are considered to
be immobile during these processes, as has been confirmed by
numerous studies of fresh, altered and metamorphosed basic rocks
(Cann, 1970; Pearce and Cann, 1973;Winchester and Floyd, 1977;
Pearce and Norry, 1979; Pearce, 1996). The degree of geochemical
modification of the analyzed rocks may be illustrated in Fig. 4,
where K30, SiO,, Ti and Th are plotted against Zr. Ti and Th show
strong positive correlation while the mobile elements Si and K

Table 1

379

have a great dispersion (Fig. 4a-d). It can thus be inferred that Ti
and Th were almost unaffected by weathering and metamorphism.

The basic rocks that are pre- and syn-granite in age in the Co-
bres range and pre-granite in the Tanque range (48-52% SiO,) have
low TiO, (0.2-0.9%) and P,05 (0.01-0.15%) contents, Nb/Y ratios of
less than 0.4, and low Zr and Nb contents (Table 1). On the Zr/4-
2Nb-Y discrimination diagram, they plot in the MORB and IAB
fields (Fig. 4e). On an extended trace element diagram normalized
to MORB (Fig. 5b), these basic rocks (Cobres pre- and syn-granite
and Tanque pre-granite) have E-MORB-like patterns showing Th
and LREE enrichment (La/Th =2.2-6) and at the same time Nb
depletion relative to Th and La (e.g. La/Nb = 1.2-2.7), which is dis-
tinctive of arc basalts. This geochemical signature is commonly ob-
served in back-arc basin basalts (BABB) reflecting the contribution
of LIL-enriched hydrous fluids related to the subduction compo-
nent and the HFSE depletion relative to the mantle (Hawkins,
1970; Fryer et al., 1990; Saunders and Tarney, 1984; Hawkins,
1995).

In contrast with the previous rocks (group A), the Cobres and
Tanque post-granite basic rocks together with the Tanque syn-
granite gabbros (46-52% SiO,) show an OIB-like signature

Analysis of basic selected rocks of the northeastern Puna. Major elements (wt%), trace elements (ppm). Analytical methods: geochemical analyses of major elements and some
trace elements (Rb, Ba, Sr, Y, Zr, Hf, Nb, Th, U, Co, Cr, Ni, and V) were carried out in the FRX laboratory of the Instituto de Geologia y Mineria (UNJu) with a Rigaku FX2000
spectrometer, with Rh tube, operating at 50 kV and 45 mA, under USGS and Japan Geological Survey standards. Rare earths analysis of REE, Sc, Th, U, Hf, Cs, and Ta were
determined by INAA at LAAN, Centro Atémico Bariloche, using the absolute parametric method. Irradiations were performed in the RA-6 reactor, the gamma spectra were
measured with an HPGe detector of 12.3% relative efficiency at 1.33 MeV and data collection was performed with a multi-channel ND76 analyzer bearing 4096 channels, applying

the GAMANAL routine of the GANAAS (IAEA/CMS/3, 1991) package.

Lithology Cobres range Tanque range Queta range
Gabbro-microgabbro Basalt Gabbro Basalt  Microgabbro
A O [ ] [ J A + X

Sample C03-5a (CO3-5b (CO3-8 (CO1-15 CO1-9 CO3-14a (CO3-23a CO1-11 CO3-25a (CO03-25b BT34 JE-31 Va-6 BC32A BC35

Si0, 47.15 47.54 47.98 51.36 51.04 49.61 52.13 48.31 48.57 50.11 4929 5081 48.6 4898  49.86

TiO, 243 2.81 2.50 0.90 0.64 0.84 0.73 0.13 0.39 0.74 1.18 241 2.70 1.70 2.89

Al,05 16.92 16.02 16.54 15.23 15.00 14.02 16.43 18.08 12.68 14.03 16.09 13.97 14.08 16.75 16.79

Fe,05 10.54 11.01 1024  9.69 9.68 10.18 8.18 6.58 6.89 10.04 1035 9.15 9.65 9.83 12.53

MnO 0.13 0.15 0.16 0.08 0.18 0.17 0.17 0.11 0.18 0.18 0.19 0.16 0.17 0.16 0.22

MgO 6.76 6.90 7.30 7.82 8.12 8.01 7.15 10.49 18.47 9.48 9.28 8.09 7.15 6.69 5.82

Cao 9.08 8.76 9.88 9.57 1149 10.49 10.89 12.31 9.94 11.24 9.68 8.22 10.82 12.09 6.97

Na,0 2.73 3.05 2.62 2.61 1.89 2.01 2.67 0.82 0.27 1.68 1.88 2.92 3.24 1.20 4.45

K>,0 1.95 1.45 1.40 1.23 0.89 0.65 1.18 1.13 0.08 0.32 0.56 1.96 1.96 1.07 0.13

P,0s5 0.42 0.39 0.37 0.06 0.05 0.07 0.07 0.01 0.04 0.06 0.15 0.44 0.49 0.22 0.35

LOI 1.25 1.85 1.29 0.69 0.82 1.14 0.88 2.26 1.05 2.56 2.65 1.17 0.60 1.40 2.94

Total 99.35 99.93 100.26  99.24 99.79  97.19 100.48 100.23  98.56 100.44 98.65 99.30 99.46 100.19 100.01

\% 280 - 277 - - 302 244 - - - 3 240 308 210 343

Cr 11 84 108 242 317 183 164 245 366 354 5 443 227 1260 27

Co 48 49 47 41 44 56 51 46 69 55 76 42 37 30 57

Ni 73 55 78 80 61 75 46 171 559 149 115 120 66 125 4

Rb 161 55 104 80 56 41 133 65 9 21 31 74 84 58 11

Sr 451 299 425 116 90 200 208 118 4 70 163 348 428 430 290

Y 23 25 24 34 18 24 20 9 16 21 23 24 23 14 27

Zr 278 158 255 33 17 100 29 4 3 21 43 164 171 58 136

Cs 16 - 9 - - 2 4 - - - 3 18 16 2 -

Ba 309 624 184 183 105 199 45 49 39 86 96 516 565 485 238

Nb 26 29 23 2 1 2 4 1 2 2 6 41 46 22 24

Hf 5 4 5 2 1 2 1 1 2 2 2 6 6 3 5

Ta 2 - 1.8 - - <1 <1 - - - <1 3.7 3.8 2 -

Th 3 3 3 2 2 1 <1 2 2 1 <1 6 7 2 3

u 1 1 1 1 1 1 1 1 1 1 1 3 3 1 1

Sc 19 - 30 - - 41 39 - - - 3 25 32 42 -

La 29 - 26 - - 5 3 - - - 5 38 46 15

Ce 62 - 55 - - 12 9 - - - 13 76 93 33 -

Nd 36 - 34 - - 13 6 - - - Nd 37 41 15 -

Sm 7 - 7 - - 2 2 - - - 2 7 9 4 -

Eu 2 - 2 - - 1 1 - - - 1 2 3 1 -

Tb 1 - 1 - - 1 1 - - - 1 1 1 1 -

Dy 6 - 6 - - 5 4 - - - 4 6 7 - -

Yb 2 - 2 - - 3 2 - - - 3 2 2 2 -

Lu <1 - <1 - - <1 <1 - - - <1 <1 <1 <1 -
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Fig. 5. (a-c) Extended trace element spider-diagrams of pre-, syn- and post-granite basic rocks from northeastern Puna. N-MORB normalization values after Hofmann (1988).
Data from Table 1. Symbols as Fig. 4d) Th/Yb-Nb/Yb diagram. The alkaline group of basic rocks (A) plot apart from the subalkaline group (B) within a mantle array (shaded

field) between N MORB and OIB basalts.

(Fig. 5¢). These rocks (group B) are enriched in TiO, (1.8-2.8%),
P,05 (0.35-0.65%), Nb (Table 1) and have Nb/Yb=8-11 and La/
Ta = 10-13; they also exhibit a notable enrichment in Th, Ta, Nb,
as well as steep REE patterns (La/Yb=11-21). In the extended
trace element diagrams in Fig. 5b, this group is clearly differenti-
ated from group A, characterized by MORB affinities.

The Cochinoca-Escaya basic group of rocks (46-52% SiO, con-
tent) are characterized by high Nb/Yb (8-30) and Th/Yb (1-2)
and low La/Ta (10-15) ratios indicating also an OIB signature. As
discussed by Coira et al. (1999), this can be divided into low-Ti
and high-Ti types. The low-Ti type is light REE enriched, has TiO,
contents of 1.1-2.1%, low K;0 (<0.6%) and La/Th ratios from 6.5
to 11. The high-Ti type has lower SiO, (42-51%), higher TiO,
(>2.1%) and K,0 (up to 2.2%) concentrations. They have steeper
REE patterns with similar low La/Ta ratios = 10-13 (Fig. 5a).

In the Th/Yb-Nb/Yb diagram (Fig. 5d) samples of group A plot
between the N-MORB field on the mantle array and the Th/
Nb =1 line, whereas samples of group B fall near the OIB field,
but at higher Nb/Yb ratios. In both cases, but more strongly in
group A, the samples plot above the mantle array. Their higher
Th/ND ratios are indicative of a continental crust addition and/or
fluid-dominated subduction component added to the mantle
source (Pearce et al., 1984).

Nd isotopic data for spilitic basalts and microgabbros from
Cochinoca-Escaya ranges have initial eNd values at 475 Ma that
range from 4 to 7.6 (Bierlein et al., 2006) and the Cobres post-granite
basic rocks have a value of 4 (Kirschbaum et al., unpublished data),
indicating a juvenile input at that time in those regions. Conversely,
the samples from group A (Cobres syn-granite gabbro and Tanque
pre-granite basalt) have initial éNd values at 475 Ma from 4 to 0.4.
Taking into account the crustal eNd initial —5 to —10 and TDM model
ages between 1.6 and 1.8 Ga determined for the basement rocks in

the region (Bock et al., 2000; Lucassen et al., 2000), the less radio-
genic Nd isotope values of these samples could be attributed to a lar-
ger crustal contamination with early Proterozoic felsic crust, a
characteristic that was previously pointed out in Fig. 5d.

7. Discussion and conclusions

The basic rocks with MORB-arc (group A) and OIB signature
(group B), together with the voluminous mesosilicic volcanic
rocks with crustal affinities, record a bimodal magmatic episode
that occurred during the Tremadocian-Arenigian in the studied
region. The oldest basic magmatic rocks that preceded the
emplacement of the late Tremadocian Cobres and Tanque grani-
toids show a signature that is intermediate between MORB and
arc basalts. These are features typical of back-arc basin basalts
(BABB, Pearce et al., 1984). In the Tanque and Huancar ranges
those basic rocks coexist with dacitic sills and laccoliths that
have crustal signatures and are syn-depositional with sedimen-
tary sequences of late Tremadocian-Arenigian age (Coira et al.,
1999). The basic rocks associated with the granitoids show two
affinities: MORB-arc in the Cobres range and OIB in the Tanque
region. The thermal peak represented by this plutonic event at
the Tremadocian-Arenigian boundary was contemporary with
the first emplacement of OIB-like basic rocks in the region, as
in the case of the Tanque granitoid. The last post-Cobres and
Tanque granite basic rocks and the volcanic-subvolcanic basic
rocks in the Escaya-Cochinoca ranges all show OIB signatures.
The Cochinoca-Escaya basic alkaline rocks are also contempora-
neous, as in Tanque and Huancar regions, with dacitic rocks that
have crustal affinities (Coira et al., 1999) and are associated with
early-middle Arenigian clastic sequences. The temporal variation
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between the volcano-sedimentary records in the Tanque and
Huancar ranges in the south, and in the Cochinoca-Escaya region
in the north, denotes diachronism in those events along the
northeastern Puna, accompanied by compositional differences
in the basic rocks.

The spider diagrams (Fig. 5a, b and c), Th/Yb vs. Nb/Yb plot
(Fig. 5d) and isotopic data presented support a MORB signature
for basic rocks of group A and OIB affiliation for group B, as well
as a variable degree of contamination with early Proterozoic felsic
crust, and a possible contribution of fluid-dominated subduction
component added to the mantle sources.

On other hand, variations of the chemistry of the younger high
and low Ti OIB rocks can be interpreted as indicating a different
percentage of melting of chemically similar spinel and garnet-
bearing peridotite sources.

Coira et al. (1999) suggested that the Ordovician magmatism in
the northern Puna took place in a transpressive setting in which
the strike-slip component gave way to dilation zones in which
magmas ascended and emplaced, whereas Kirschbaum et al.
(2006) suggested that the bimodality could result from an exten-
sional tectonic regime in which short periods of contractional
deformation can occur following the model of extensional accre-
tionary orogens (Collins, 2002). The integration of these two pro-
posals with our new data allows a tectonic model that explains
our observations.

The alternate and diachronic distribution of magmatic events
with different crustal and mantle affinities suggests that the evolu-
tion of the Ordovician basins included periods and areas of exten-
sional and contractional deformation.

A model that integrates published information (Bahlburg and
Hervé, 1997; Coira et al, 1999; Zimmermann and Bahlburg,
2003) with the magmatic data summarized here fits with a mag-
matic arc to the west of a back-arc in Tremadocian-middle Areni-
gian times. The tectonic setting was not simple, as the back-arc
was active over a long time (~15 Ma) and records contractional
and strike-slip events occurring at distinct times and places in an
overall extensional framework. Contractional deformation with
variable components of strike-slip took place contemporaneously
with the intrusion of upper Tremadocian-lower Arenigian bimodal
plutonism in the Cobres and Tanque ranges (Kirschbaum et al.,
2006; Hongn et al., 2006). Bimodal volcanism occurred in the mid-
dle Arenigian in the Cochinoca-Escaya ranges, indicating that in
this region extension continued until the middle Arenigian.

During the Arenigian a transition from extensional to contrac-
tional conditions began (Bahlburg, 1990). By the Llanvirnian, a
well-defined contractional environment was in place. This transi-
tion involved some localized shortening in a generally extensional
framework due to kinematic variations of the subduction under the
western arc. Plutons with crustal affinities (Tanque Granite, Pérez
and Coira, 1998, a strike-slip component with left lateral motion
is required to explain the NE-SW to E-W extension recorded by
shallow-plunging stretching lineation (Fig. 2). This strike-slip com-
ponent originates dilatation structures enhancing the basic magma
ascent. The ascent and emplacement of these magmas took place
contemporary with or close to contraction, although their genesis
can be linked to extensional periods. Additionally, stretching paral-
lel to the orogen might have occurred during the contractional
periods, as is the case where intense thermal anomalies (Cruden
et al., 2003) generate structures that allow plutons to be emplaced.

An extensional framework associated with a thermal anomaly
and lithospheric thinning, including short contractional events
and strike-slip components as in extensional as well as in shorten-
ing episodes, defines a complex picture.

Deformational, magmatic and metamorphic events like those
observed in the Cobres and Tanque ranges provoke stratigraphic
discontinuities in the contemporaneous basins such as those de-

scribed in the Cordillera Oriental (Salfity et al.,, 1984; Moya,
1999; Astini, 2003).

After the late Arenigian, the magmatism drastically decreased,
contractional deformation dominated, and the basin that received
the Upper Ordovician deposits was generated (Upper Puna Turbi-
dite Complex, Bahlburg, 1990). In this context, the zones occupied
by the Western and Eastern Eruptive Belts could concentrate duc-
tile deformation, creating uplifted regions that supplied deposits to
the Upper Turbidite Complex.

In conclusion, the Ordovician tectono-magmatic evolution re-
cords two main stages. The first stage lasted from the Tremadocian
to the early Arenigian dominated by extension. During that stage a
bimodal magmatism took place represented by mesosilicic rocks
with crustal affinities and initially, basic rocks with MORB-arc sig-
nature, succeeded at the Tremadocian-Arenigian boundary by one
with OIB-type rocks. A later Arenigian stage lasted until the late
Arenigian during which extensional and contractional conditions
occurred diachronously along the basin, as was observed along
the Tanque-Cochinoca-Escaya regions, the last with late basic
OIB-like records associated to dacitic members.

The geochemical characteristics of the basic magmas erupted
are attributed, considering the presented data, to a combination
of factors such as variably depleted mantle sources, additions of
continental crust and/or subduction components, and variations
in the degree of melting in the source. These factors probably were
controlled by episodical changes - both in time and space - in the
extensional conditions which could affect the configuration of the
basin. The variable chemistry of the basic rocks, the presence of
siliceous magmatic rocks with crustal signatures and the contrac-
tional events record the evolution in the northeastern Puna of a
back-arc, in which contractional episodes took place.
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