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Abstract A multipurpose/multiproduct plant has to deal with many combinations of tasks
sequences and operation rates that lead to accumulation problems. These problems can be
handled using storage tanks, but usually their location within the flowsheet is predetermined
and not subject to optimization, missing the opportunity to better satisfy the customers.
In this work we will determinate the optimal location of storage tanks for the short-term
scheduling under uncertainty. A hybrid simulation-based optimization (SBO) strategy was
developed and implemented to solve the problems combining stochastic and deterministic
solution algorithms.

Keywords Decision-making - Uncertainty - Simulation-based optimization - Batch plant -
Semi-continuous plant - Scheduling - Multipurpose/multiproduct plants

1 Introduction

The manufacturing process industry operates in a rapidly changing and uncertain environ-
ment. Uncertainties appear, for example, in customer demands for products, raw materials
and products prices, lead times for the supply of raw materials, production and distribution
of the end products, and in process and quality failures.

This situation involves making decisions at different levels in order to satisfy multiple
goals. For example, companies must decide the tuning of the inventory control policies sev-
eral times during a relative long-term period (e.g., once a month), and, more frequently (e.g.,
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once a week), they may have to schedule production to satisfy customer demands. This type
of problem—which is referred to as sequential decision-making under uncertainty—arises in
many decision-making contexts and in a variety of situations in which one makes decisions
at different stages in response to uncertainty that is resolved over time. This class of prob-
lems has attracted increasing attention from the research community, and various theoretical
and computational works have been devoted to model and solve it. The resulting complexity
of these problems, from theoretical and computational perspectives, is a challenge for both
practitioners and researchers.

Particularly, a problem of interest is the short-term scheduling of industrial processes,
which involves finding the optimal series of actions to carry out when operating the process
equipment in order to meet a determinate objective (maximization of profit, minimization
of makespan, etc.). In many cases this is done with deterministic optimization models with
fixed values for parameters. However, this often leads to sub-optimal or infeasible solutions
for the real-world cases, because many of the assumed parameter values are, in fact, uncer-
tain. Although this is acknowledged since long time, the increase in complexity when these
uncertainties are considered in scheduling problems has hindered their study to very recent
years.

A common way of operation, applied in practice to try to mitigate the adverse effects of
uncertainty, is the use of storage tanks. In general, the existence of storage vessels decouples
processing steps and enables better utilization of resources. For example, storage before and
after a bottleneck stage leads to higher production because it allows uninterrupted utilization
of the most scarce resources. Even Storage for raw materials and final products can poten-
tially lead to more flexible operation. Even in some cases, storage itself is often a necessary
processing step; e.g., when products have to be held for at least some time before the next
processing step begins (Sundaramoorthy and Maravelias 2008).

Nevertheless, finding the location of these storage tanks is not a trivial problem because
it can influence the scheduling results. Therefore, it constitutes a bi-level problem: a design
problem (tanks location) coupled with an operational one (optimal scheduling). Hence the
problem can be seen as a sequential decision problem under uncertainty.

The objective of this work is to develop a technique based on a hybrid simulation-based
optimization (SBO) approach, combining stochastic and deterministic algorithms, to de-
terminate the optimal storage tanks location during the short-term scheduling in multipur-
pose/multiproduct batch and/or continuous plants.

The paper is organized as follows. First, the literature review on the two key points in-
volved -decision-making under uncertainty, and SBO- is given. Next, a motivating example
is used to outline the problem and present a suitable approach for solving it. The proposed
methodology is then explained in the following section. The strategy is applied to two case
studies and their results are discussed. Finally, some concluding remarks are provided.

2 Background

According to the concepts and tools presented in this paper, the review is divided into two
interrelated sections: decision-making processes under uncertainty and simulation-based op-
timization.

2.1 Decision processes under uncertainty

The concepts involved in decision-making under uncertainty are closely linked to those of
optimization under uncertainty. Literature on optimization under uncertainty very often di-
vides the approaches into two categories: “wait and see” and “here and now”. In the “wait
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and see” approaches, one has to wait until an observation is made on the random elements,
and then solve the deterministic problem. Conversely, a “here and now” problem involves
optimization over some probabilistic measure of the system performance—usually the ex-
pected value. It should be noted that many realistic problems have both “here and now”,
and “wait and see” problems embedded in them. The trick to overcome this complication
situation is to divide the decisions into these two categories and use a coupled approach
(Diwekar 2002).

In this regard, many advances have been observed in the supporting theory, including
algorithmic developments and computational capabilities for solving this class of problems,
most of which fall into one of these two approaches: multistage stochastic programming and
stochastic optimal control.

In multistage stochastic programming decisions are based on past observations and de-
cisions before the future events occur (Birge and Louveaux 1997). A finite set of scenarios
is often generated to represent the space, therefore, the stochastic program becomes a de-
terministic equivalent program, the size of which can easily grow out of hand for a large
number of scenarios, making the direct solution approaches numerically intractable, thus re-
quiring methods of decomposition or aggregation (Balasubramanian and Grossmann 2004).

Stochastic optimal control describes a sequential decision problem in which the decision-
maker chooses an action in the state involved at any decision stage according to a decision
rule or policy. Dynamic programming provides the framework for designing algorithms to
compute an optimal control policy. However, for large problems, dynamic programming also
suffers numerically from dimensionality. Both approaches—stochastic programming and
optimal control—are essentially equivalent, but they exhibit differences in formulation and
solution, with the consequent advantages and disadvantages for specific problems (Cheng et
al. 2003, 2004a; Duenas and Petrovic 2000; Kuster et al. 2010).

Efficient numerical solution proposals can be achieved by combining several techniques
that belong to each approach. The resulting strategy needs to be adapted to solve the specific
problem, defining some approximations or heuristic-based methods. The works by Cheng
et al. (2004b) and Jung et al. (2004) are relevant examples in this regard. Among these
approximate approaches, an attractive alternative to address large-scale problems is SBO.

2.2 Simulation-based optimization

SBO is an attractive combined strategy that addresses the situation in which the analyst
wishes to find which of many possible sets of input parameters lead to the optimal perfor-
mance of a system. Thus, a simulation model can be understood as a function whose explicit
form is unknown and which converts input parameters to performance measures (Law and
Kelton 2000).

Typically, the optimization search process is slow and inefficient due to the presence
of some noise coming from the simulation output as well as the fact that each simula-
tion run takes significant execution time. However, SBO provides an alternative for prob-
lems in which analytical methods are inefficient. Moreover, SBO is an active area of re-
search in the field of stochastic optimization (Gosavi 2003). In the literature on Process
Systems Engineering (PSE), SBO approaches have received some attention and are cur-
rently awaiting further study. The works by the group of Reklaitis (Subramanian et al. 2001;
Jung et al. 2004; and Wan et al. 2005), and Mele et al. (2006b) are well-regarded contribu-
tions to this field.

There are a variety of ways of optimizing processes represented by means of a simula-
tion model. Among those widely studied SBO algorithms, response surface methodologies
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(Nedderrneijer et al. 2000; Silva and Salcedo 2009; Kim et al. 2009), stochastic approxi-
mation (Kleinman et al. 1999; Giirkan 2000; George and Farid 2008) and metamodelling or
surrogate model building (Barton 1994; Wan et al. 2005; Mele et al. 2006a; Sundar Raj and
Lakshminarayanan 2008) play important roles.

The response surface SBO scheme proposed in this work uses a genetic algorithm (GA)
to perform the search process. The success of metaheuristics in carrying out this task is
perhaps that they are designed to seek global optimality and their properties are apparently
robust in practice, even though they do not yet have a solid theoretical basis (Gosavi 2003).
Evolutionary algorithms, in general and GA, in particular, forms an important subset of
metaheuristic methods, which have been used to optimize multimodal, discontinuous, and
non-differentiable functions, whose main advantage is that they are capable of exploring a
larger area of the solution space with a smaller number of objective function evaluations.
Because, in the context of SBO, evaluating the objective function entails running the sim-
ulation model, being able to find high-quality solutions early on in the search is of critical
importance.

3 Motivating problem

The motivating problem for this article is to determine the optimal storage tanks location
into a multipurpose/multiproduct batch-continuous plant. Current approaches to this prob-
lem transform it into different optimization problems whose structures are normally com-
plex (nonlinear, non-convex problems with mixed integer and continuous variables). Specif-
ically, the consideration of the uncertainty and the modelling of the heuristic rules that
drive the plant operations usually results in large-scale mixed-integer nonlinear program-
ming (MINLP) problems. Solving these problems by means of mathematical programming
techniques requires excessive computing time, because of their size and complexity when
real scenarios are considered.

In this work, a SBO approach is proposed to address the sequential decision-making
problem under uncertainty in the area of batch-continuous plant scheduling, which has the
objective of overcoming the computational limitations of current solution methods. This
approach considers two important components: a simulation model used to represent the
real system, and a metaheuristic optimization algorithm that is designed to improve the
operation of this system.

Consider the following situation to illustrate the effect of intermediate tanks in the op-
eration of batch-continuous plants under uncertainty. In the situation of no uncertainties in
the duration of tasks -tasks last as expected- intermediate materials transfers between units
happen as determined by the deterministic short-term scheduling (as shown in Fig. 1a, be-
tween units j, j/ and j”). However, when applying the deterministic schedule in a realistic
situation, uncertainties in the length of tasks can arise. These differences with the expected
lengths lead to cases were the mass in, e.g., unit j’ cannot be transferred to the following
unit j”, thus not allowing the release of unit ;' for the processing of other tasks. Figure 1b
shows that unit j cannot transfer its mass to unit j' because the last one is still waiting for
unit j” to finish, unit j will have to wait until unit j’ releases its content, as shown if Fig. 1c.
However, if a storage tank is located between units j” and j” for intermediate material s’,
then unit j’ will be idle to continue with the scheduled tasks (Fig. 1d).

Deviations produced by uncertainties will almost surely lead to worse-than-expected per-
formances for a given objective function. As an example, consider Fig. 2. The histogram on
the left (Fig. 2a) shows the results of simulation runs for the multipurpose/multiproduct
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Fig. 2 Histograms from 100 simulations for a given batch plant. (a) No storage tanks (mean 70.25%).
(b) Three storage tanks (mean 91.72%)

batch plant of Case Study I, in terms of total fulfilled product demands. The histogram was
obtained by first doing a deterministic short-term scheduling that complies with product
demands (100% of fulfilled demand), and then implementing it 100 times in a simulation
model with given uncertainties in the task duration and no storage tanks. The mean value of
Fig. 2a histogram is 70.25%. Figure 2b shows the same situation but having three storage
tanks available in the plant flowsheet (one tank for intermediate material of product A pro-
duced by task 1 and consumed by task 2, one for intermediate B between tasks 2 and 3, and
one amid tasks 3 and 4 of product C). The incidence of the storage tanks increases the mean
value to 91.72% of fulfilled demand.

The goal of our contribution can be thought as a discrete-time decision process over
a given time horizon, in which managers periodically make their decisions based on the
available information. A partition of the set of decisions must be performed according to
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the frequency with which they are updated. The system evolves over time and generates
values for some performance indexes. The problem then becomes one of finding the decision
strategies that can optimize these performance indexes.

Particularly, if the problem of storage tanks location in batch-continuous plants is consid-
ered, the plant uses different resources to produce products s in a time horizon of T periods.
The company has the option to install intermediate storage tanks at the beginning of each
period 8 € {1, ..., T'}. Within each period 6, the plant schedule is reviewed and optimized,
and decisions are made at the beginning of each subperiod t € {1, ..., L}, given that the size
of 7 is less than the size of 6.

The uncertain parameters, such as product demand or task duration, are modelled as a
discrete-time stochastic process that gives a value of the uncertain variable at some instants
in the time horizon. Hereafter, one realization of the uncertainty is identified with w.

Decisions are made in stages as information arrives and uncertainty is unveiled over time.
The following sequence summarizes the events occurrence during each period:

(a) At the beginning of each period 6 =1, ..., T, having observed the information avail-
able, new information about storage tanks location 7 are chosen.

(b) At the beginning of each subperiod 6, and based on the current information, the simu-
lator mimics the plant behaviour executing a given scheduling plan.

(c) The procedure is repeated from step (a) (rolling horizon) until 6 =7 + 1.

It is important to notice that this problem can be considered as embedded within a wider
decision-making problem. There might be long-lasting decisions, such as strategic decisions,
to update at the beginning of each period h € {1, ..., H}, with the size of / being greater
than the size of 6 (for instance, plants or warehouses capacities), such that the scope of these
decisions would include the decisions previously described.

At each stage of the decision process, as a consequence of the selected decision, the
company receives a profit or incurs a cost. After choosing and implementing the decision
strategy, the decision-maker receives the outcomes for the system performance. The man-
ager’s motivation is to choose a decision strategy such that these outcomes are as good as
possible, that is to say, optimal. This necessitates the definition of performance measures
to compare alternative decisions. In this work, the performance criterion adopted is the ex-
pected demand satisfaction, which under a given decision strategy 7, can be expressed as
follows:

F(n) = E[(f(n, ®)] ey

where the expectation E[e] is taken with respect to all random variables in .
Therefore, the optimization problem can be stated mathematically as:

max F(n) = E[(f(n, z, ®)]

1 produced quantity
.t , Zs ==
s F@.z,0) N Z[: demanded quantity

hs(,z,0) =0 g(n,z,w) <0 )
hio(n,z,0) =0
8io(n,2,w) <0

nt<n<n¥, F<z<7V, ol<w<o
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where: 1 accounts for the decision variables in a higher level, z, for decision variables (con-
tinuous and binary) at a lower level, and w, for the uncertain parameters. A, g, are rules-
based relationships corresponding to usually non-explicit equation simulation models, and
h;, and g;, correspond to variable relationships embedded in the model.

4 Proposed methodology

The problem under study is complicated enough that there is no possibility to express it
explicitly or analytically; thus, an approach that considers this problem by means of an SBO
approach is very well suited to address these systems. SBO proposes a hybrid framework for
optimization under uncertainty, in which a “here and now” solution strategy is assumed, but
incorporating “wait and see” features. The SBO approach has three valuable advantages:

e Using simulation provides a framework with the flexibility to accommodate arbitrary
stochastic elements.

e It is a very flexible solution strategy, a feature that has leaded to applications with
quite different purposes, e.g. portfolio selection for R&D pharmaceutical projects (Sub-
ramanian et al. 2001, 2003), industrial supply chain optimization (Jung et al. 2004;
Mele et al. 2006b) or life-support system design for manned missions to Mars (Aydo-
gan et al. 2005).

e Using simulation facilitate problem resolution of models with larger amount of details
than in math programming.

These three strengths have to be balanced with two main shortcomings:

e It can take much time and computational resources to solve a given problem. Each access
to the objective function requires many simulations and deterministic optimizations in
order to obtain a representative value.

e Its usefulness is strongly dependent of the selection and distribution of the decision vari-
ables in the two loops.

The SBO requires decision variables to be divided into two levels: for each uncertain
parameters instance and for the stochastic optimization. In the particular case of interest
in our work, the location of storage tanks in a multipurpose batch-continuous plant, the
classification in levels of the variables has been done by taking advantage of the decision hi-
erarchy in manufacturing processes proposed by the International Society for Measurement
and Control (1995, 2000) (ANSI/ISA-S88, ANSI/ISA-S95) (see Fig. 3). The higher level
(outer loop) is related to design whereas the lower level (inner loop) is related to short-term
scheduling at the operational level.

This approach proposes a hybrid strategy, combining simulation with deterministic op-
timization and stochastic optimization in two levels. In the inner level a deterministic op-
timization algorithm ignores all the random elements present in the problem and obtains a
deterministic optimal solution for the problem, then the simulator implements it handling
uncertainties while respecting the guidelines given by the optimization algorithm. This level
is embedded in an outer level loop where a stochastic optimization technique utilizes the in-
formation from the simulation to search the decision space systematically, trying to improve
the performance of the solution. The particular choice of the problem variables that will be
controlled by each level, as well as the optimization and simulation algorithms, depends on
the case study.
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In this work, a simulation model of a multipurpose batch-continuous plant is coupled
with a GA to optimize certain parameters related to the operation of the plant. The logical
(or heuristic) rules, which are implemented in the simulation model to respond to the arriv-
ing events, are parameterized, and the metaheuristic algorithm is then invoked to act over
these parameters searching for an improvement of the objective function. The motivation
for using GAs is to take advantage of the features of this technique, applying it to complex
problems such as that previously described (see Sect. 3). Particularly, in the presented exam-
ples (Sects. 5 and 6), the framework permits to obtain the parameters values associated with
the storage tank location, in such a way that the customers’ demand satisfaction is optimized
over a given time horizon. Nevertheless, the proposed approach is general enough to enable
the choice of any other parameter for optimization (equipment capacity, inventory policy
selection, backlogged orders management, etc.), as well as any other objective functions.

Storage tanks location is usually determined at the design stage of a project, using an
expected demand as the objective to fulfil, and the proposed approach can be applied to
solve not only this problem, but also tank capacities.

Although, as demands’ characteristics will surely change over time, the selected loca-
tions will be no longer optimal and re-design stages will be needed. Since in multipur-
pose/multiproduct plants storage tanks location can be changed simply by modifying tubing
and connections, without actually physically moving the vessels, the frequency of this re-
designing corresponds to long- and/or medium-term planning. The time durations of these
planning stages depend on the industry, but, because of this, for our technique to be applica-
ble, it must have good computational performance, i.e., to solve the problem in a reasonable
time despite the large number of uncertain parameters involved.

The proposed approach applied to the problem presented previously is summarized in
Fig. 4. First, and to determine the value of the performance index, f (1, ®), a set of scenar-
ios of the uncertain variables extended over the entire planning horizon w are generated in
a Monte Carlo manner. A simulation run of the batch plant is then executed, considering
a specific distribution of storage tanks, for the full horizon, and for a given scenario. The
result of a set of such simulations serves to provide an estimate of the objective function,
E[f(n, w)]. The parameters for setting the storage tank location at the plant are then ad-
justed by means of the outer optimization loop. The outer optimizer uses the parameters of
the tanks location as decision variables, whereas the inner problem involves a simulation
with a series of embedded scheduling sub-problems.

@ Springer



Ann Oper Res (2012) 199:225-247 233

CAo0/b0K initial values \
optimization MATLAB 7.5 n
jon ¢+——— ; <
solution Stochastic
> optimizer
. J
values
F(n)=Elf(n,z,w,p,%)] outer alread
loop's decision testedy
variables Outer
n | F(n) > Doon
Evaluator of
probabilistic l Filter I
indexes
performance R
indexes Sampling
f(n,z,w,p,x) > tool uncertain J
parameters
w
Evaluator of 3\
performance
indexes | ...
. Time discrete model
A MATLAB 7.5
simulation Simulation i
outputs H
x model — Inner
J Loop
model status| :  filtered outer
: loop’s decision
: e : variables
inner loopis Deterministic B n
decision varigbles optimizer
z

Fig. 4 Scheme of the proposed solution strategy

Next, the outer optimization sub-problem and the inner planning sub-problem, are de-
fined, discussing in more detail the various computational details that are needed to link
these sub-problems and drive the computations.

4.1 Outer loop optimization

The objective function of the outer optimization involves a stochastic optimization in which
the customers’ demand satisfaction is maximized by choosing the appropriate tank location
n, through the following equation:

max F (1) 3)
n

Equation (3) is evaluated using the inner loop’s results of multiple Monte Carlo samplings
with embedded simulation, which, in turn, involves if-then rules, and scheduling optimiza-
tions.

The outer optimization algorithm consists of a GA-based strategy, to improve the values
of the variable parameters. The unavailability of explicit equations to model the plant be-
haviour has encouraged the GA-based strategy as a suitable tool for performing the stochas-
tic optimization in the outer loop. The general resolution strategy is as follows:

e Step 1. Create an initial population of N randomly generated individuals (a set of param-
eters for tanks location), nfg‘w, gen =0, for all products s. The term gen is the counter for
the GA generations, i.e., the outer loop iterations, and the parameter k accounts for each
individual in the population.
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o Step II. Run a sufficient number (n) of Monte Carlo samplings from a pool of values
of the uncertain variable (e.g. task duration and/or product demand) to generate different
sample paths w.

e Step III. Execute the simulator card(w)-times with its embedded optimizations and rules
to obtain a reliable estimate of the expected customers’ demand satisfaction for each
individual k, F (n;‘en). Step II and III are carried out by the inner loop of the SBO strategy.

e Step IV. Apply genetic operators over the current population of r;’gm values to generate a
new one.

e Step V. If gen > MaxGen, with MaxGen being the maximum number of generations,
stop. Otherwise, set gen = gen + 1 and go to step II. Until this moment, the best solution
found is n},,: F(n},,) =max{F(n%,), k=1,...,N}.

4.2 Inner loop

The computations inside the inner loop optimization involve the repeated simulation of the
short-term scheduling of the batch-continuous plant operation over the planning horizon,
each with a given Monte Carlo sample of the uncertain parameters. Within each of these
simulations, a series of decisions are periodically made to execute a given schedule. The
simulator has the outstanding advantage of being capable of representing the real multipur-
pose/multiproduct plant operation as fitted as desirable. One of the actions taken by the sim-
ulator is the call for the scheduler. Each complete simulation run travels across a so-called
timeline. The procedure for executing a timeline is as follows:

e Step L. At the beginning of each access to the inner loop, take a sample of all the prod-
uct demands wp, generate a deterministic short-term scheduling to comply with these
demands.

o Step IL. Run a simulation for the scheduling horizon H with expected tasks’ durations
affected by uncertainties, wc¢. Problems arising from deviation from expected values (as
explained in Sect. 3) unleashing a set of events, mostly through if-then rules, that drive
the simulation imitating the plant operation in the real world.

e Step III. Calculate and record performance measuring function, f(n, ).

By repeating the aforementioned procedure for a number n of Monte Carlo samples, the
performance results necessary to compute the expected value, F(n) = E[f(n, w)], can be
collected. Note that the accuracy of the expected value will be governed by the number of
analyzed timelines and their representativeness.

It is worth noting that solutions given by the simulation-based approach generally cannot
guarantee optimality. Nevertheless, the proposed approach is capable of providing reason-
able solutions, in time and effort, using building blocks that are readily implementable in
practice.

4.3 Implementation of the proposed strategy

The computational scheme for implementing the proposed strategy of Fig. 4 has been pro-
grammed using MATLAB 7.5 (2007). The simulator, also encoded in MATLAB, generates
the input data for the scheduling model of the plant process, which is used periodically to
make production decisions. The scheduling model is formulated as a mixed-integer linear
programming problem (MILP), which is solved using GAMS 23.0/CPLEX 11.2 (Brooke et
al. 2008). GAMS is interfaced with MATLAB, using the library developed by Ferris et al.
(2005).
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Fig. 5 State-Task Network representation for Case Study I

The objective function calculation module encloses necessary data to calculate the sim-
ulation performance (objective function) from the simulation outputs and is encoded in
MATLAB. The outer loop optimization is handled by the GA toolbox of the MATLAB 7.5
package, with default option values. This toolbox is able to handle non-linear constraints
(needed to avoid repeating tanks’ locations) and integer variables.

5 Case Study I: batch paint plant
5.1 Problem description

This case study involves a multipurpose/multiproduct batch plant, where 6 products (A, B,
C, D, E and F) are manufactured in 4 stages that are carried out in 23 equipment units (E1-
E23). This test example was extracted from Adonyi et al. (2008). Its State-Task Network
representation is shown in Fig. 5. It takes into account equations related to mass balances and
task duration, and constraints related to allocation, capacity, sequence, tightening, storage
and demand. The recipes of the products are given in Table 1. The changeover time is 70 min
for equipment units E6 to E9, and 100 min for equipment units E1-E5 and E10 to E20. All
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Table 1 Recipes for products A, B, C, D, E, and F

Task  Product A Product B Product C Product D Product E Product F
Eq. Time  Eq. Time  Eq. Time Eq. Time  Eq. Time  Eq. Time
(min) (min) (min) (min) (min) (min)

El 60 El 60 E2 60 E3 60 E4 40 E5 40

2 E6 310 E7 240 E8 120 E7 240 E6 300 E7 240
E8 120 E9 240 E8 120 E8 120
E9 240
3 E10 60 Ell 120 Ell 120 E10 60 E10 60 E10 60
El1l 120 E13 60 E12 70 Ell 120 E12 90 E15 120
E13 60 E15 120 E13 70 E13 60 El14 90 El6 90
E15 120 E17 60 El4 60 E14 90 El6 90 E17 60
E17 60 E19 120 El6 50 E15 120 E18 90 E18 90
E19 120 E20 60 E17 60 E20 60 E19 120
E20 60 E18 90 E20 60
E19 120
E20 60
4 E21 720 E22 540 E21 720 E22 540 E21 720 E21 720
E22 540 E23 720 E22 540 E23 720 E22 540
E23 720

Table 2 Mean values of

demands for each product Product A B C D E F

Number of batches 3 5 1 3 9 3

other changeover times are supposed to be zero. This case study’s plant is able to produce
a maximum total of 27 batches of product in a week of operation time (8000 minutes). The
number of batches to be produced at the end of the horizon time is given in Table 2.

The inner loop optimization involves a deterministic short-term scheduling problem, and
the MILP model was developed with the formulation presented in Shaik and Floudas (2009).
Two objective functions are generally used in short-term scheduling: (a) profit maximiza-
tion and (b) makespan minimization. For this case study makespan minimization is chosen
in order to free the process units at earlier times and decrease the impact of parametric
uncertainty on the objective function of the outer loop (mentioned below).

The simulation model is a linear discrete-time model capable of meeting the timing con-
straints, mass balances at production units and storage tanks, and the bounds on variables.

The flowchart shown in Fig. 6 represents the system of rules utilized in the simulation
model to avoid incurring in violation of units’ limits and storage vessels’ capacities.

The objective for the outer optimization loop is to maximize the likelihood (expected
value) of complying with consumers demands within a week of production (8000 minutes),
by locating N, storage tanks with a given maximum capacity in the flowsheet.

The sources of uncertainties are two: product demands and duration of batch cycle times.
Regarding the demand for each product, the mean value has been perturbed with a factor
which variation follows a normal distribution Norm(1,1). Demand values are then corrected
to integer values, and checked to be positive. Moreover, total number of demanded batches
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Fig. 6 Flowchart of simulation model for Case Study I

cannot be greater than 27 (maximum plant capacity). Each time the objective function is ac-
cessed; three samplings are done over the product demands, each one with their correspond-
ing deterministic scheduling. For each one of the samplings five simulations are carried out.
It has been found that with this number of samplings and simulations is enough to get a
representative value of the objective function.

For the case of batch cycle times, the mean value has been affected by a factor which also
has a normal distribution Norm(1,0). Two values for the standard deviation have been con-
sidered: o = 0.010 (Case Study Ia, or CSI-a) and o = 0.025 (Case Study Ib, or CSI-b). The
resulting configuration utilized in this example involves around 50 uncertain parameters; the
exact number depends on the time all the tasks are executed.
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Table 3 Results of Case Study I

CSI-a CSI-b

Population 32 16
Generations 8 10
Objective function (best individual/s) 97.92% 97.69%
Found at generation 0 5

Objective function value for the no-tanks configuration: 73.11%
Valid solutions (24—-7+1)3=5.832 Q4-7+1)3=52832
Solutions found 32 x 9=1288 16 x 11 =176
Unique solutions 137 61
Average CPU time per scheduling? 15.41 sec 15.79 sec
Total CPU time?® 6 h 59 min 7 sec 3 h 40 min 21 sec

4Computing time using an AMD Athlon 64 X2 Dual Core with 1 GB of RAM

5.2 Results

Case Study I has been divided into two sub-cases. In CSI-a, the GA-based outer loop has
been set with a population of 32 individuals and a maximum number of generations of 8. In
CSI-b, the population size has been 16 individuals and the maximum number of generations
equal to 10. For both CSI-a and CSI-b, the number of storage tanks to locate is three, each
with a maximum storage capacity of 3 batches.

The location of all storage vessels has been restricted to the storage of intermediate ma-
terials, and tanks locations are allowed to superpose. This last situation is considered as if
the storage capacity of such intermediate has duplicated or triplicated.

Results for both CSI-a and CSI-b are reported in Table 3. The population size and number
of generations for the GA are shown, as are the objective function value of the best solution
found in each case and the generation where they have been first located. For comparison,
the value of the objective function when there are no tanks is also presented. This value has
been obtained by accessing the inner loop (realizing 3 demands’ sampling with determin-
istic scheduling, each with 5 simulations) with no locations selected for the tanks. “Valid
solutions” indicates how many possible combinations of tanks’ locations are valid, while
“Solutions found” shows how many combinations have been tried in the sub-cases. Some
of the combinations tried in each sub-cases have been repeated, as explained in Sect. 4,
those solutions are not cycled again through the inner loop, but their values are repeated
by a filter. Therefore they do not add computational load to the sub-case solution process.
The numbers in the “Unique solutions” row indicate how many non-repeated solution have
been tried. “Average CPU time per scheduling” and “Total CPU time” stand for the elapsed
computing time to solve the average scheduling problem of the inner loop and the stochastic
optimization of the outer loop, respectively.

As a general rule in the proposed framework, the values of the decision values of the
outer loop do not have a direct impact on the inner loop objective function’s value. This
characteristic stems from the fact that outer loop’s decision variables move, if they are cor-
rectly chosen, the expected value of an objective function that is affected by the present
parametric uncertainty, a condition that is not “seen” by the objective function of the inner
loop’s deterministic optimization. In Case Study I this translates to the tanks’ location hav-
ing little or no impact over the minimization of makespan, as is shown in Table 4, where the
difference on the average values is around 1%.
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Table 4 Inner loop results of Case Study I

Average makespan No Tanks (min) CSI-a (min) CSI-b (min)
Deterministic scheduling® 6511.1 6453.3 6589.4
Simulation® 12347.0 8048.7 8509.0

4 Average over 100 runs

bAverage over 3 demands’ samplings, each one with 5 simulations

Table 5 Solutions of Case Study Ia

Solution Individuals? Tank 1 Tank 2 Tank 3
5 Int.C for tasks 2-3 Int.E for tasks 2-3 Int.D for tasks 1-2
Int.C for tasks 2-3 Int.D for tasks 3-4 Int.D for tasks 1-2
Int.C for tasks 2-3 Int.E for tasks 2-3 Int.D for tasks 3-4

4Number of individuals with the same solution at the final GA generation

However, the impact of the outer loop’s decision variables on the value of the makespan
length calculated from the Monte Carlo simulations is expected to be large, since the simula-
tions do consider parametric uncertainty. As it can be seen in Table 4, the average makespan
is reduced in 34.8% and 31.1% from the no-tanks configurations to the better ones found
in CSI-a and CSI-b. This fact is coherent, since a smaller average makespan means more
batches produced in less time, thus increasing the likelihood of complying with product
demand.

5.2.1 Results Case Study la

Three solutions were found with the best objective value of Case Study Ia, with more than
one individual with the same combination in two of them:

Analysing the results on Table 5, it can be seen that solution 1 has been found at gen = 0,
which would seem that a population size of 32 is too large for this problem. In all three
solutions a tank is placed for the recipe of product C (between stages 2-3), although it is the
product with lowest mean demand. Finally, all solutions locate a storage tank in the lines for
product D or products D and E.

5.2.2 Results Case Study Ib

As in Case Study Ia, three solutions were found with the best objective function value. They
are shown in Table 6.

In CSI-b, solution 1 was found at gen = 5. On increasing the standard deviation, o, in
the distribution of perturbation for batch cycle times (0.025 for Case Study Ib), the stochas-
tic solver allocates the tanks for those products with greater mean demands (products B,
E and F). This result indicates great sensibility of the objective function to the standard
deviation.
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Table 6 Solutions of Case Study Ib

Solution Individuals® Tank 1 Tank 2 Tank 3
7 Int.E for tasks 1-2 Int.B for tasks 3-4 Int.F for tasks 2-3
Int.E for tasks 1-2 Int.B for tasks 2-3 Int.F for tasks 2-3
Int.E for tasks 2-3 Int.B for tasks 2-3 Int.F for tasks 3-4

4Number of individuals with the same solution at the final GA generation

6 Case Study II: continuous paint plant
6.1 Problem description

The test example used in this Case Study is a modified version of the problem presented in
Sect. 3.1.2 of the work of Ierapetritou and Floudas (1998). This is a well known benchmark
case, which has been used in several works presenting short-term scheduling formulation
techniques.

Figure 7 shows the State-Task Network representation of the studied paint plant. It ob-
tains 15 different products from 3 different bases. The 3 bases are processed to make 7
different intermediates using 3 mixers. The intermediates are stored in storage tanks and
then sent to 5 packing lines that produce the 15 final products. Unlike the previous case
study, all the equipment units operate in continuous mode and there are necessary clean-up
times for certain combinations of operations. The operation rates and clean-up requirements
of each unit are given in Table 7 and the minimum required mass of each final product at the
end of the week (120 hours) are given in Table 8.

In the original version of the problem, three tanks of 60 tons each are used for the storage
of intermediates materials Int1 to Int7. The tanks are available for all intermediates provided
that they only store one intermediate at any time. The modified problem presents the vari-
ation of having dedicated storage tanks for each intermediate. The aim of our strategy is to
find their optimal location.

The short-term scheduling in this case study is carried out with a model obtained with the
technique of Castro et al. (2004). Again, the simulation loop is done with a linear discrete-
time model, complying with timing constraints, mass balances at production units and stor-
age tanks, and variables’ limits. The systems of rules utilized to assure limits’ complaining
is shown through the flowchart of Fig. 8.

The goal of the outer optimization loop is to maximize the expected value of complying
with consumers demands within a week of production (8000 minutes). Case Study II has
been divided into three sub-cases. In the first one (Case Study Ila, or CSII-a), the objective
is to find the optimal location of three tanks with the same capacity (60 tons). The goal
of the Case Study IIb, (CSII-b) is to get the optimal location of three different tanks, with
capacities of 30, 60 and 120 tons respectively. Finally, the third one (Case Study Ilc, CSII-c)
involves 7 different tanks, each one with capacities between 0 (no tank) to 120 tons, with
the optimal capacity value decided by our algorithm. Case Study Ilc, is the fully expanded
expression of the problem of optimal tank location, with no limits imposed over the number
or capacities of storage tanks. It is included to validate the results obtained in CSII-a and
CSII-b.

The sources of uncertainties are again the products demands and the durations of pro-
cessing tasks. The uncertainty in product demands was modeled as a normal distribution,
with mean values equal to the rates indicated in Table 7, and a standard deviation of 10%.
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Fig. 7 State-Task Network representation of Case Study II

Processing tasks’ durations are obtained by multiplying the value predicted by the determin-
istic scheduling by a stochastic factor with a normal distribution of Norm(1, 2.5%). Since in
each simulation the total quantity of tasks done is around 100, so is the number of uncertain
parameters.

To assure a representative value for each objective function, five products’ demands sam-
plings, each with ten simulations were performed.

6.2 Results
Table 9 shows the results for cases CSII-a, CSII-b and CSII-c. CSII-a and CSII-b have been

solved using 10 generations of 8 individuals, thus generating 88 accesses to the GA ob-
jective function, out of 343 valid combinations. For both cases, combinations with more
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Table 7 Equipment’s data for

Case Study II Equipment Rate (ton/h) Clean time (h)
Mixer 1 17.00 -
Mixer 2 12.24 -
Mixer 3 12.24 -
Pack Line 1 5.833 1
Pack Line 2 2.708 4
Pack Line 3 5.571 1
Pack Line 4 3.333 2
Pack Line 5 5.357 -

Table 8 Product demand for

Case Study IT Product Demand (ton) Product Demand (ton)
P1 220 P9 425
P2 251 P10 114.5
P3 116 P11 53
P4 15 P12 2.5
P5 7 P13 16.5
P6 47 P14 13.5
P7 8.5 P15 17.5
P8 144

Table 9 Results of Case Study 11

CSlII-a CSII-b CSII-c

Population 8 8 32
Generations 10 10 10
Objective function (best individual/s) 96.32% 98.11% 99.45%
Found at generation 0 2 3

Objective function value for the no-tanks configuration: 66.27%
Valid solutions 73 =343 73 =343 257 =6,103,515,625
Solutions found 11 x 8 =88 11 x 8§ =88 11 x 32 =352
Unique solutions 22 (8 not valid) 20 220
Average CPU time per scheduling? 11.71 sec 18.44 sec 13.06 sec
Total CPU time? 1 h 16 min 23 sec 1 h 48 min 49 sec 19 h 54 min 44 sec

4Computing time using an AMD Athlon 64 X2 Dual Core with 1 GB of RAM

than one storage tank per intermediate were considered not valid; therefore, those combi-
nations were assigned a low customers’ demand satisfaction value (30%). In CSII-c there
are 6,103,515,625 valid combinations (since 7 tanks can have any of the capacity values
between 0 and 120 tons with 5 tons intervals), thus the population size was increased to 32.

As in Case Study I, the objective function value of the deterministic scheduling is not
expected to be greatly affected by the outer loop’s decision variables. This is expressed
in Table 10, where the results of inner loop’s scheduling show little variation of the plant
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Fig. 8 Flowchart of simulation model for Case Study II

average makespan between the no-tanks configuration and the best solution of each sub-
case.

But, again as in Case Study I, there is great impact of the outer loop’s decision variables
over the simulations’ average makespans, with averages 15.5% to 19.8% smaller for the best
solutions found.
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Table 10 Inner loop results of Case Study II

Average makespan No Tanks (h) CSlII-a (h) CSII-b (h) CSII-c (h)
Deterministic scheduling® 93.53 93.12 93.04 92.86
Simulation® 147.08 124.21 125.88 117.94

4 Average over 100 runs

bAverage over 5 demands’ samplings, each one with 10 simulations

Table 11 Solution of Case Study Ila

Individuals® Tank 1 Tank 2 Tank 3
(60 tons) (60 tons) (60 tons)
5 Intermediate Int2 Intermediate Int5 Intermediate Int4

@Number of individuals with the same solution at the final GA generation

Table 12 Solution of Case Study IIb

Individuals? Tank 1 Tank 2 Tank 3
(30 tons) (60 tons) (120 tons)
6 Intermediate Int2 Intermediate Int5 Intermediate Int4

@Number of individuals with the same solution at the final GA generation

6.2.1 Results Case Study Ila

In the final generation the best solution is present with 5 individuals, each with the combi-
nation shown in Table 11, which gives a customers’ demand satisfaction value of 96.32%.

The best solution was found at generation 0, meaning that the population size is too
large for this problem. The best solution found locates a tank for intermediate Int2, which
is transformed into products P4 and P5, both with some of the lowest demands; thus, any
mass that fails to comply with their consumers’ demand has a greater impact in the objective
function. A tank is also located for intermediate Int5, which is transformed into products P9
and P10. The packing of P9, with a lower than average demand, is done by Packing Line 2,
one of the busiest and slowest equipment units, thus necessitating a tank as a buffer. The
tank for intermediate Int4 is needed because a combination of one of the lowest demands
and slow and busy equipment (Packing Line 4) hinders the manufacture of product P4.

6.2.2 Results Case Study IIb

As presented in Table 12, the best solution for CSII-b is found by 6 individuals, with an
objective function value of 98.11%.

The best solution, which was first found at generation 2, is very similar to CSII-a’s one,
with the three tanks used for intermediates Int2, Int4 and Int5, although with different ca-
pacities. The outer loop locates the biggest tank for intermediate Int4, which has one of its
derived products, P4, with its production being hindered by slow and busy equipment and
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Table 13 Solution of Case Study Ilc

Individuals? Tank capacity for intermediate (tons)
Intl Int2 Int3 Int4 Int5 Int6 Int7
12 0 20 5 115 85 115 30

4Number of individuals with the same solution at the final GA generation

with great impact on the objective function. The improvement of having 60 more tons of
available storage over CSlII-a solution increases the likelihood of obtaining a better con-
sumers’ demand fulfillment value.

6.2.3 Results Case Study Ilc

Table 13 shows the best tanks’ capacity combination for Case Study Ilc. In the final gener-
ation the best solution is present with 12 individuals, each with the following combination
which gives a customers’ demand satisfaction value of 99.45%.

Found at generation 3, the best solution for CSII-c almost repeats the available storage
values for intermediates Int2, Int4 and Int5 of the best solution of CSII-b. By also allocating
storage availability for the other intermediates excepts Intl, the objective function value
improves to almost 100%, but the present problem does not considers the extra capital cost
incurred by having more storage vessels.

7 Conclusions

A simulation-based optimization (SBO) strategy has been implemented to solve the opti-
mal location of storages tanks, in multipurpose/multiproduct batch and/or continuous plants
under parametric uncertainty.

The strategy has shown to be effective to handle problems with large number of uncer-
tain parameters. It also has enough flexibility to allow the combination of different solution
algorithms that better fit the characteristics of each application.

Two case studies corresponding to realistic problems have been solved. The Case study
I represents a multipurpose/multiproduct batch plant problem in the paint industry, with a
large number of possible pathways for product manufacturing. The SBO was able to find the
optimal tank locations reaching a likelihood of customers’ demand satisfaction to almost
98% as compared with only 70% for the case without intermediate tanks in a reasonable
computing time for a design problem. Our strategy was able to solve the case study in
almost 7 hours of computing time in CSI-a, but a comparable objective function value was
obtained in CSI-b with only 3 hours and 40 minutes of running time.

Case study II corresponds also to a multipurpose/multiproduct paint plant but with con-
tinuous operation mode, with approximately 100 uncertain parameters. The SBO strategy
was able to solve in less than 2 hours of computing time the design problem of optimally
locating 3 tanks (cases CSII-a and CSII-b), increasing the likelihood to 96 and 98% respec-
tively. These results were validated running a fully general case, where no limit was imposed
in the number and capacity of the tanks; verifying that the optimal locations found in the
cases with three tanks were kept in the same positions. The fully general case required 19 h
of computing time and increased the likelihood of customers’ satisfaction to 99.5%.
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The computational performance showed in both case studies proves that the proposed ap-
proach can be applied not only for the designing stage of the plant, but also for re-designing
of long- and/or medium-term planning.
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