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Introduction

Bacteriocins are ribosomally synthesized peptides produced 
by bacteria of all genera, which have antimicrobial activity 
on related bacterial species (Cotter et al. 2005; Drider et al. 
2006). They have aroused great interest because of their 
potential application in medical sciences and food industry. 
The demand for pathogens-free food, more natural, with 
fewer chemicals has led to the search for alternative food 
preservatives. Bacteriocins can offer a solution to this prob-
lem because they have some advantages such as pH and heat 
stability, inhibition of food-borne microorganisms at sub-
nanomolar concentrations and easy inactivation by intesti-
nal proteases (Drider et al. 2006; Chikindas et al. 2017). In 
addition, the increasing resistance to common antibiotics is 
highly worrisome, thus, it has led to the study of alternative 
antimicrobials, such as bacteriocins and bacteriophages, as 
a primary concern (Cotter et al. 2013; Orndorff 2016).

Bacteriocins are classified into: (1) class I (modified), 
which have post-translational modifications, and (2) class II 
(unmodified or cyclic), which do not have post-translational 
modifications. Bacteriocins of class II are subdivided into 
class IIa: pediocin-like linear peptides, which may con-
tain one or two disulfide bridges and a conserved YGXGV 
region; IIb: two peptides that require a combined action to 
exert its activity; IIc: cyclic structured bacteriocins and IId: 
variable group of linear peptides that do not fit into any of 
the other groups (Nes et al. 1996; Cotter et al. 2013).

Many lactic acid bacteria produce class IIa bacteriocins 
which have anti-listerial activity. Since they are produced by 
GRAS organisms (generally recognized as safe), bacteriocins 
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have a great potential as antimicrobial agents in food. The 
successful use of pediocin PA-1 as a bio-preservative in the 
food industry has promoted the research on the mechanism 
of action of class IIa bacteriocins (Rodríguez et al. 2002). It 
should be considered, as an important advantage that class 
IIa bacteriocins do not undergo further post-translational 
modifications than the cleavage of a leader peptide from 
the precursor. For this reason, heterologous expression of 
linear bacteriocins is less problematic and possibly much 
more scalable than class I bacteriocins. In fact, many class 
II bacteriocins have already been successfully produced in 
bacterial species different from the natural producers. The 
understanding of the mechanism of action of class IIa bac-
teriocins is fundamental for the design and development 
of new variants with biotechnological applications as food 
biopreservatives or with potential use in the pharmaceutical 
industry (Acuña et al. 2012). It has been demonstrated that 
class IIa bacteriocins act on the cytoplasmic membrane of 
Gram-positive cells dissipating the transmembrane electrical 
potential, which results in an intracellular ATP depletion. 
These peptides induce the exit of ions, amino acids and other 
essential molecules by forming hydrophilic pores in target 
membranes (Bhunia et al. 1991; Bruno and Montville 1993; 
Chikindas et al. 1993; Minahk et al. 2000).

Two models have been proposed to explain class IIa bac-
teriocins mechanism of action: (a) the bacteriocin would 
bind the receptor leading to an irreversible opening of an 
intrinsic channel; or (b) the bacteriocin would employ the 
receptor as a docking molecule to bring the peptide closer 
to the plasma membrane, allowing subsequent bacteriocin 
insertion and oligomerization to form a pore (Fig. 1) (Cot-
ter et al. 2005; Drider et al. 2006). This review attempts to 
reconsider some aspects of class IIa bacteriocins mechanism 
of action from a new perspective.

The role of the receptor

To date, there is solid evidence that membrane-associated 
receptors are necessary for the function of class IIa bacteri-
ocins (Chikindas et al. 1993; Venema et al. 1995; Duquesne 
et al. 2007; Kjos et al. 2009; Cotter et al. 2013). However, 
the precise role of the receptor protein and the nature of the 
pore remain to be investigated.

At first, it was assumed that positive charges of class IIa 
bacteriocins interacted with anionic phospholipids of target 
cells, allowing the insertion of an amphipathic portion of the 
bacteriocin in the membrane (Drider et al. 2006). After that, 
it was proposed that the mannose phosphotransferase system 

Fig. 1  Proposed models for class IIa bacteriocins mechanism of 
action. The bacteriocin remains unstructured in the extracellular 
medium and adopts a well-defined conformation upon contact with 
the membrane. The positively charged residues in the N-terminal 
region of the bacteriocin would mediate the initial non-specific bind-
ing with the negatively charged phospholipids of the target mem-
brane (left panel). This would lead the peptide from the extracellular 
medium to the man-PTS receptor to establish an intimate and strong 

contact. Two models were proposed to explain the subsequent steps: 
a the bacteriocin would induce a conformational change in the recep-
tor leading to an irreversible opening of an intrinsic channel. b The 
bacteriocin would employ the receptor as a docking molecule to bring 
the peptide closer to the plasma membrane, allowing the following 
bacteriocin insertion and oligomerization to form a pore.  IIC and  IID 
are the membrane subunits of the man-PTS complex. PM plasmatic 
membrane
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(man-PTS) was responsible for Listeria monocytogenes sen-
sitivity to class IIa bacteriocins (Ramnath et al. 2000; Dalet 
et al. 2000, 2001). Eventually, the man-PTS was confirmed 
as the membrane specific receptor for many pediocin-like 
bacteriocins (Ramnath et al. 2004). The man-PTS family 
was phylogenetically clustered into groups I, II and III. Only 
members from group I seem to function as receptors for 
class IIa bacteriocins, and the receptor efficiency is directly 
dependent on their phylogenetic positions (Kjos et al. 2009).

Prior to the consolidation of the man-PTS as the specific 
receptor for class IIa bacteriocin, there was a preponderant 
notion that the bacteriocin was capable of permeabilizing 
the membrane itself. It has been well settled that the flex-
ible hinge between the conserved N-terminal domain and 
the highly variable C-terminal domain is responsible for 
the independent function of each region of the bacteriocin 
(Johnsen et al. 2005b). It was firmly believed that after bind-
ing to the membrane of the target cell through the N-ter-
minal region, the C-terminal half penetrated the membrane 
and interacted with the hydrophobic core playing a major 
role in determining bacteriocins target cell specificity (John-
sen et al. 2005b). Thus, the composition of the membrane 
hydrophobic core would be more accurate to determine the 
antimicrobial spectrum than the functionality of a receptor 
or docking-site for the peptide on the surface of the cell 
(Uteng et al. 2003; Haugen et al. 2005).

Pediocin PA-1 was a prime example because it was able 
to interact directly with lipid vesicles of L. monocytogenes 
permeabilizing the membrane without the need for a recep-
tor protein. So, a receptor was not believed to be essential 
for pediocin PA-1 activity in vitro, although it was suggested 
that it might facilitate the post-binding process (Chikindas 
et al. 1993).

Thereupon, sound evidence was provided of a strong and 
specific association of the bacteriocin with the man-PTS 
complex. It was proposed that the N-terminal initially binds 
to an extracellular loop of the IIC subunit from the man-
PTS, whereas the C-terminus might interact with transmem-
brane segments that entrap the bacteriocin within the recep-
tor. These results support the first mechanism commented 
above (Fig. 1a) (Diep et al. 2007; Kjos et al. 2010, 2011).

Although evidence over the years appeared to be con-
flicting to explain pediocin-like bacteriocins mechanism 
of action, the experimental evidence seems to become rec-
onciled in the second proposed model. There is, indeed, a 
docking molecule with a key function in the binding and 
anchoring of the bacteriocin to the membrane. However, the 
subsequent step might be a receptor-independent interaction 
with the lipid bilayer, responsible for membrane disruption 
(Fig. 1b).

Recently, a more conclusive evidence that the man-
PTS would participate as a docking molecule, but not 
as a pore-forming structure was provided by the use of 
hybrid proteins called “suicide probes” (Gérard et  al. 
2004). Escherichia coli is naturally insensitive to class 
IIa bacteriocins because they are not able to cross the outer 
membrane (Stevens et al. 1991; Chalón et al. 2012) and 
E. coli man-PTSs, belonging to group II and III, do not 
serve as specific receptors (Kjos et al. 2009). Neverthe-
less, it was proven that if the bacteriocin is anchored to 
the inner membrane through the bitopic membrane protein 
EtpM, the bacteria depolarize and die even in the absence 
of the specific receptor (Barraza et al. 2017). These results 
suggest that the binding and anchoring of the bacteriocin 
to the membrane seem to be a sufficient condition for its 
insertion and pore formation.

Bacteriocin structure

Many details of the structure–function relationship of class 
IIa bacteriocins were obtained when the three-dimensional 
structures of leucocin A, carnobacteriocin B2, sakacin P, 
and curvacin A were solved. The secondary structure have 
been well characterized by NMR studies in the presence 
of lipophilic substances that mimic biological membranes 
such as solvents (TFE) or membrane anionic phospholipids 
(DPC micelles) (Fregeau Gallagher et al. 1997; Wang et al. 
1999; Uteng et al. 2003; Haugen et al. 2005). Interestingly, 
class IIa bacteriocins seem to exist as a non-structured 
form in aqueous solution but adopt a well-defined con-
formation upon contact with membrane mimetic environ-
ments (Fregeau Gallagher et al. 1997; Uteng et al. 2003). 
This supports the idea of a direct phospholipid–bacteriocin 
interaction that induces structural changes on the peptide. 
The described structures share some common qualities. 
The cationic hydrophilic N-terminal forms an antiparallel 
β-sheet stabilized by a disulfide bridge and several hydro-
gen bonds. As the N-terminal is shared among all class 
IIa bacteriocins, they would bind in a similar manner with 
the IIC extracellular loop of man-PTS (Kjos et al. 2010). 
A flexible hinge separates the hydrophobic C-terminal 
domain containing one or two well-defined α-helices fol-
lowed by a terminal tail creating a hairpin-like structure 
(Fig. 2). The hydrophobic/amphiphilic properties of this 
domain suggest that this portion is highly likely to inter-
act with the phospholipids of the membrane (Drider et al. 
2006). As a matter of fact, a water-filled pore model upon 
bacteriocin membrane insertion has been described as a 
barrel-stave like pore. This structure consists of a bundle 
of amphipathic peptide helices forming a hydrophilic inner 
wall and a hydrophobic outer wall that face the fatty acyl 
chains of the membrane lipids (Fig. 1b) (Moll et al. 1999).
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The membrane as a conditioning factor 
for the mechanism of action

As it was previously mentioned, class IIa bacteriocins act on 
Gram-positive bacteria, which have a high content of anionic 
phospholipids in the plasma membrane. Hence, before the 
description of the man-PTS as the specific receptor, it was 
raised that the positively charged residues in the N-terminal 
region of the bacteriocin mediated the initial binding with 
the negatively charged phospholipids of the membrane 
(Fig. 1) (Chen et al. 1997, 1998). These electrostatic interac-
tions between the bacteriocin and the phospholipids should 
still be considered as non-specific bindings that lead the pep-
tide from the extracellular medium to the man-PTS receptor 
to establish an intimate and strong initial contact. In effect, 
it was reported that a higher content of negatively charged 
phospholipids increases the affinity of the bacteriocin for the 
membrane (Chen et al. 1998).

On the other hand, although genetic down-regulation of 
the receptor has been reported as a mechanism of resist-
ance against man-PTS targeting bacteriocins (Opsata 
et al. 2010; Kjos et al. 2011), there are also cases where 
resistant cells show regular or even elevated man-PTS 
expression (Vadyvaloo et al. 2002; Tessema et al. 2009; 
Kjos et al. 2011; Masias et al. 2017). These exceptions 
illustrate how other features such as membrane lipid com-
position, fluidity, or cell surface charge might affect and 

condition bacteriocin-phospholipid interactions, playing 
an important role in modulating cells sensitivity to the 
bacteriocin. Actually, it has been proposed that several 
factors may contribute to the resistance degree. Changes 
in membrane phospholipid composition seem to explain 
low-level resistance whereas mutation or lack of expres-
sion of the man-PTS complex would determine high-level 
resistance to class IIa bacteriocins (Vadyvaloo et al. 2002, 
2004; Masias et al. 2017).

The immunity mechanism

Bacteriocin-producing cells are protected from the lethal 
effect of their own bacteriocin by the expression of an 
immunity protein (Fimland et al. 2002). In general, the 
immunity protein acts specifically toward its related bac-
teriocin. A well experimentally supported immunity model 
suggests that the bacteriocin gets locked onto the receptor 
by its immunity protein forming a ternary complex, which 
is settled only when the bacteriocin acts from the outside. 
Thereby, the immunity protein might interrupt the subse-
quent steps that lead to cell death (Diep et al. 2007).

The use of hybrid immunity proteins that vary their 
C-terminal half revealed that this region is involved in 
specific recognition of their related bacteriocins (Johnsen 
et al. 2005a). Thus, it was suggested that the C-terminal 
part of the immunity protein interacts with the C-terminal 
domain of class IIa bacteriocins (the one that is highly 
variable and defines the antimicrobial spectrum) through a 
direct or indirect interaction (Sprules et al. 2004; Johnsen 
et al. 2005a). Though it has not been possible to demon-
strate a direct contact between the immunity protein and 
the bacteriocin in vitro (Nissen-Meyer et al. 1993; Quadri 
et al. 1995; Venema et al. 1995), this kind of interaction 
cannot be ruled out. It is possible that a direct bound occur 
once the bacteriocin penetrates the membrane and adopts 
its secondary structure (Fregeau Gallagher et al. 1997). 
A significant finding that highlights this concept is how 
the co-expression of enterocin CRL35 immunity protein 
(MunC) together with the EtpM-Ent35 suicide probe 
counteracts the lethal effect of the bacteriocin, even in 
the absence of the specific receptor. Apparently, MunC 
obstructs the pore in this condition (Barraza et al. 2017). 
This result suggests that there is indeed, a direct bacteri-
ocin- immunity protein interaction in a membrane-inserted 
form. The fact that the immunity protein acts only if the 
bacteriocin is present, supports this conclusion. Because 
the immunity protein has mostly a cytoplasmic location, it 
could only get contact with the bacteriocin once the pep-
tide has passed through the membrane. Therefore, in this 
model of immunity, the pore should be already formed to 
allow the bacteriocin-immunity protein interaction.

Fig. 2  Proposed model for class IIa bacteriocin secondary struc-
ture in the membrane. The cationic hydrophilic N-terminal forms an 
antiparallel β-sheet that is located at the membrane interface. A flex-
ible hinge separates the hydrophobic C-terminal domain containing 
one (depicted in figure) or two well-defined α-helices placed on the 
core of the lipid bilayer. The terminal hairpin-like tail is stabilized 
by a disulfide bridge or by an interface-localized tryptophan residue 
(Fimland et al. 2005)
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Is there an only target for bacteriocins? Which 
is the main one?

It seems to be clear that class IIa bacteriocins are pore-form-
ing peptides and that they cause cell death by membrane per-
turbation. Nevertheless, some studies reveal that they might 
compromise cellular viability by blocking sugars uptake, 
because of its interaction with man-PTS. It is reasonable to 
ask whether the structure or sugar transport functionality of 
the man-PTS is altered when it is interacting with the bacte-
riocin or the immunity protein. Indeed, a fitness cost comes 
along with immunity. Immune cells growth, with mannose 
or glucose as sole carbohydrate source, is in effect perturbed 
in the presence of the bacteriocin since the man-PTS is a key 
pathway for the uptake of these sugars (Diep et al. 2007). It 
has been previously pointed out that class IIa bacteriocins 
are capable of binding and kill target cells expressing man-
PTS of group I. The fact that, in general, bacteriocins have 
a reduced spectrum of action, which is restricted to bacte-
rial genera phylogenetically related to the producer strain, 
support the idea of an alternative purpose for bacteriocins 
beyond their antimicrobial activity. The role of antimicro-
bial peptides in bacterial ecosystems has not yet been fully 
elucidated (Riley and Gordon 1999; Riley and Wertz 2002). 
The most accepted theory is that they would attack other 
bacteria that compete directly with the producer bacteria for 
space within a particular ecological niche. Clearly, this is the 
most evident role and it has been recently demonstrated for 
some bacteriocins (Kommineni et al. 2015; Sassone-Corsi 
et al. 2016). However, the production of the bacteriocin and 
the immunity protein has demonstrated to imply an energetic 
cost that compromises bacterial growth in the environment. 
Notably, the regulation of bacteriocin expression is under 
control of growth phase and/or quorum sensing showing 
a finely concerted production mechanism according to the 
needs of the producing bacterium (Diep et al. 1995; Riley 
and Wertz 2002; van der Ploeg 2005; Shanker and Federle 
2017). It is likely that different types of known bacteriocins 
have different functions or even that a single bacteriocin has 
several distinct functions in a bacterial community, and some 
may even mediate quorum sensing phenomena (Miller and 
Bassler 2001).

Conclusion

Through the years, different mechanisms have been pro-
posed to explain class IIa bacteriocins toxicity and immu-
nity. Regarding the role of man-PTS, there is no doubt 
that its presence is necessary to render a target sensitive, 
and it is a required condition for bacteriocins anchoring 
to the membrane. Nonetheless, as we have previously 
underlined, many studies support the model in which the 

bacteriocin is able to disrupt a membrane itself, although 
a significantly higher peptide concentration is necessary 
(Drider et al. 2006). The influence of the membrane com-
position on bacteriocins activity cannot be denied and it 
could be a key factor in the proper bacteriocin insertion 
and the final step of pore formation. Based on the results 
presented to date by several authors, we believed that the 
second proposed model, in which the pore is formed by 
the bacteriocin attached to the receptor, would be more 
accurate to explain the mechanism of action and immunity 
of bacteriocins. In respect of immunity process, though 
no direct in vitro interaction has been reported, an in vivo 
system provided sound evidence that immunity protein 
might bind the bacteriocin, not in aqueous solution but in 
a membrane-inserted conformation.

This issue remains to be investigated and a complete elu-
cidation of the molecular basis of these peptides is essential 
to engineer broad-spectrum bacteriocins that could bind to 
ubiquitous bacterial membrane components others than the 
specific receptor.
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