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Hybrid quantum dot–superconducting systems: Josephson current and Kondo effect
in the narrow-band limit
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The case of a quantum dot connected to two superconducting leads is studied by using the narrow-band limit
to describe the superconducting degrees of freedom. The model provides a simple theoretical framework, almost
analytical, to analyze the interplay between the Kondo effect, superconductivity, and finite temperature. In the
quantum dot Kondo regime, the model is completely characterized by the ratio �/J , with � the superconducting
gap and J an effective antiferromagnetic exchange coupling between the dot and the leads. The model allows us
to calculate, at any temperature T , the equilibrium Josephson current through the dot in a very straightforward
way as a function of �/J . The behavior of the current allows us to distinguish the four types of hybrid junctions:
0, 0′, π ′, and π . The presence of the 0- and 0′-junction configurations are intrinsically linked to the Kondo
effect in the quantum dot, while the π - and π ′-junction configurations are driven by the superconductivity in the
leads. The Josephson critical current has a non-monotonic behavior with temperature, that may be used for the
experimental characterization of the fundamental 0 − π transition. The model allows us to obtain easily a phase
diagram �/J vs temperature, from where we can obtain an overall picture on the stability of the different types
of junctions. From the explicit analytical expressions for the ground-state, low-energy excitations, free energy,
and Josephson current, it is easy to understand the physical nature of the main features of the critical current and
the phase diagram. The results, obtained with a minimum of numerical effort, are in a good qualitative agreement
with more demanding calculational approaches aimed to solve the full model.
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I. INTRODUCTION

The interplay between the Kondo physics and the Josephson
current through a quantum dot (QD) connected to supercon-
ducting reservoirs has triggered an intense interest on this
topic in recent years [1]. Before that, early and pioneering
experiments in semiconductor quantum dots (QD) coupled to
normal (no-superconductor) metallic leads already attracted
the attention of the physics community since they provide a
unique tool to recreate the electronic and magnetic properties
of many different isolated atomic systems immersed in a metal-
lic matrix [2]. Among the more attractive features of the QD’s
systems is the possibility of changing in a controllable way the
parameters characterizing the dots (i.e., the discrete energy lev-
els of the single-electron states, the total number of electrons,
the Coulomb repulsion among the localized dot electrons, the
hybridization with the leads, etc.). Due to this fact, it is possible
to study with unprecedented detail many different physical
phenomena such as the Coulomb blockade [3], the Kondo
effect [4,5], and different electronic transport properties [3,6].

On the other side, the traditional Josephson effect involves
two macroscopic superconductors with a weak link, usually an
insulating barrier, between them. Each superconductor is char-
acterized by an order parameter or phase ϕ, and if it happens
that there is a difference of phase �ϕ between the two super-
conductors, a dissipationless supercurrent may flow through
the weak link, I (�ϕ) = Jc sin(�ϕ), with Jc being the junction
critical current, which depends both on the size of the super-
conducting gap, and on the transmission amplitude of the weak
link [7]. This sinusoidal dependence of the Josephson current
with the phase difference �ϕ is the landmark of the Josephson

effect, and is widely used in standard superconducting devices
such as the SQUIDs (superconducting quantum interference
devices) [8] and superconducting quantum bits or qubits [9].

The possibility of replacing the normal metallic leads by
superconducting ones added a new twist to the QD-atomic
systems analogy commented above: in 1977 it was predicted
that magnetic impurities in the insulating layer could lead to
a reversal of the Josephson current in a Josephson junction,
I (�ϕ) = −Jc sin(�ϕ) [10]. This situation was characterized
as the “π -junction” behavior [11]. And since the quantum
dot behaves in many ways like atomic magnetic impurities,
the question arises quite naturally: will it be possible to have
π -junction behavior for a quantum dot connected to two super-
conductor leads? And the answer is yes, both from the exper-
imental and the theoretical point of view. On the experimental
side, researchers have explored the consequences of replacing
the thin insulating barrier between the two superconductors by
a nanoscale superconducting or normal metal bridge [12], a
carbon nanotube [13,14], or a semiconductor quantum dot
[15], as commented above. This latter case is the one to
which the present work is devoted. The interplay between
Kondo screening and superconductivity has been also recently
studied with unprecedented experimental detail in these hybrid
systems [16]. The coupling of two superconductors through
a ferromagnetic link has been also experimentally realized
[17]. An exciting new research avenue has been open since
the observation of signatures of Majorana fermions in hybrid
superconductor-semiconductor nanowire devices [18].

On the theoretical side, the “standard” model towards an
understanding of this very interesting problem has been the
Anderson impurity model (representing the dot) connected
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to Bardeen-Cooper-Schrieffer (BCS) superconducting leads.
A complete and update review on these hybrid systems
may be found in Ref. [19]. In spite of the simplifications
leading to the setting of the model, its solution still is a
formidable task, due to the simultaneous presence of strong
correlations inside the dot, superconductivity in the leads,
and intrinsic temperature effects. As a consequence, different
theoretical schemes have been used to attack the problem,
including quantum Monte Carlo (QMC) calculations [20],
numerical renormalization group (NRG) approaches [21,22],
the noncrossing approximation [23,24], and the functional
renormalization group (FRG) [22]. In order to obtain the model
results, most of these methods require large numerical effort.
Among other interesting theoretical schemes applied recently
to these hybrid systems we can cite also the expansion in
powers of the inverse of the superconducting gap size [25]
and the continuous time quantum Monte Carlo approach [26].
A generalized Schrieffer-Wolff transformation has been also
used to simplify the analysis of the coupling between the QD
and the superconducting leads of the standard model [27]. The
aim of this paper is to present a much simpler approach which
qualitative describes the basic physics involved in the interplay
between the Kondo effect and the Josephson current, at zero
and finite temperature.

In the following section we introduce the model Hamil-
tonian and set up the narrow-band limit to this problem. In
Sec. III, we obtain and analyze the free energy, the equilibrium
Josephson current, and provide a global phase diagram of the
model. Finally, Sec. IV consists of the conclusions.

II. MODEL

The standard model to describe the physics of a quantum
dot coupled to two superconducting leads (L and R) can be
written as

H = Hs + Hd + Ht, (1)

where Hs corresponds to the superconducting leads, Hd

describes the QD by the Anderson impurity model, and Ht

is the tunneling Hamiltonian between the QD and the leads.
The leads are considered to be s-wave superconductors and
described by a BCS-like Hamiltonian, as follows:

Hs =
∑
k,p,σ

εkc
†
k,p,σ ck,p,σ −

∑
k,p

�s[e
iϕpc

†
k,p,↑c

†
k,p,↓ + H.c.],

(2)

where εk is the energy of the state k in the leads, and c
†
k,p,σ

(ck,p,σ ) creates (annihilates) an electron with spin σ , in the lead
p (L or R) and momentum k. �s is the superconducting gap
and ϕp is the phase of the superconducting order parameter
in the p lead. The two leads are assumed to be identical
except for the phases ϕL and ϕR . Without loss of generality we
take ϕL = −ϕR = ϕ/2, which implies that ϕL + ϕR = 0, and
�ϕ = ϕL − ϕR = ϕ.

The QD Hamiltonian is given by

Hd =
∑

σ

εd d†
σ dσ + U d

†
↑d↑d

†
↓d↓ , (3)

where d†
σ (dσ ) creates (annihilates) an electron with spin σ on

the QD with energy εd and the interaction U (>0) is of the
order of the charging energy e2/2C, with C the capacitance
of the QD. Both subsystems, the QD and the superconducting
electrons, are coupled via the tunneling or hybridization term,

Ht =
∑
k,p,σ

tp(d†
σ ck,p,σ + H.c.), (4)

where tp is the matrix element of tunneling between the QD
and the p lead. Our aim here is to set up the simplest model that
still retains the essential features of the interplay between the
Josephson current and Kondo effect. To this end, following
our previous work [28], and the work by Vecino et al. [29]
and Bergeret et al. [30], by integrating out the electronic
degrees of freedom of the superconducting leads [31], we
can obtain a simplified model Hamiltonian H̃s to describe the
superconducting leads given by

H̃s = −�(eiϕ/2c
†
L↑c

†
L↓ + e−iϕ/2c

†
R↑c

†
R↓ + H.c.), (5)

where � is an effective pairing potential in the leads and c
†
L(R)σ

(cL(R)σ ) creates (destroys) an electron in the lead L(R) with
spin σ . In Eq. (5) we have taken the Fermi energy in the leads
as the origin of energies. Following this approach, we take
an effective Hamiltonian to describe the coupling between the
QD and the leads given by

H̃t =
∑
p,σ

t(d†
σ cp,σ + H.c.), (6)

where t is an effective hybridization parameter. With this
approximation an effective “narrow-band” Hamiltonian for the
system is obtained:

H̃ = H̃s + Hd + H̃t . (7)

This simplification prevents us from making a quantitative
comparison with experiments. However, as we will see, the
qualitative conclusions of our model are physically valid, the
conceptual ingredients remain intact, and the physics involved
is transparent. Before we proceed with the study of the physical
properties of H̃ , it is useful to define new leads operators:
α†

σ := (c†Lσ + c
†
Rσ )/

√
2 and γ †

σ := (c†Lσ − c
†
Rσ )/

√
2. Thus H̃t

can be written as

H̃t =
∑

σ

√
2t

(
d†

σασ + H.c.
)
. (8)

Only lead symmetric operators ασ and α†
σ couple directly to

the dot, through an enhanced tunneling matrix element
√

2 t .
The H̃s , in terms of the new operators, reads

H̃s = −�{cos (ϕ/2)[α†
↑α

†
↓ + γ

†
↑γ

†
↓ + H.c.]

+ sin (ϕ/2)[i(α†
↑γ

†
↓ − α

†
↓γ

†
↑) + H.c.]}. (9)

Finally, when the parameters U , εd , and t are such that
the QD level occupation approaches one, it is possible to
describe the physics of the system with a reduced Hamiltonian
that couples only the QD spin to the leads [32,33]. This
reduced Hamiltonian includes an antiferromagnetic (Kondo)
interaction between QD and superconducting spins. In this
limit, the contribution from Hd + H̃t in Eq. (7) may be
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approximated by the Kondo interaction

H̃K = J

2
(s+

α S−
d + s−

α S+
d ) + J sz

αSz
d, (10)

where s+
α = α

†
↑α↓, s−

α = α
†
↓α↑, sz

α = (α†
↑α↑ − α

†
↓α↓)/2, J

(= 4t2/|εd |) > 0 is an effective antiferromagnetic coupling
between the dot and the leads, and the different components
of the dot spin S = 1/2 read S+

d = d
†
↑d↓, S−

d = d
†
↓d↑, and

Sz
d = (d†

↑d↑ − d
†
↓d↓)/2. The limit U → ∞ has been taking

in obtaining Eq. (10), preventing strictly the dot double
occupancy [32,33]. Thus, in the Kondo regime of the QD,
an effective model Hamiltonian for the system is obtained

H̃ = H̃s + H̃K. (11)

The Hilbert space corresponding to the Hamiltonian given
by Eq. (11) comprises just 32 states, corresponding to the
four possible occupations (0, ↑, ↓, and ↑↓) of each lead
and the two occupations (↑, ↓) of the dot. This space can be
written as follows: (I) one-particle (dot) states (2): |σ 〉 = d†

σ |0〉
(with |0〉 the vacuum state); (II) two-particle states (8): α

†
σ ′ |σ 〉

and γ
†
σ ′ |σ 〉; (III) three-particle states (12): α

†
↑α

†
↓|σ 〉, γ

†
↑γ

†
↓|σ 〉,

and α
†
σ ′γ

†
σ ′′ |σ 〉; (IV) four-particle states (8): α

†
↑α

†
↓γ

†
σ ′ |σ 〉 and

γ
†
↑γ

†
↓α

†
σ ′ |σ 〉; (V) five-particle states (2): α

†
↑α

†
↓γ

†
↑γ

†
↓|σ 〉. Note

that the subspaces with even (2,4) and odd (1,3,5) number of
electrons are mixed to be the superconducting Hamiltonian
H̃s . Nevertheless, the exact solution of the problem reduces
to the diagonalization of one 4 × 4 and four 2 × 2 matrices
as the full Hilbert space is drastically block diagonalized.
From the eigenvalues, the partition function is calculated from
which the analytical expression for the free energy and the
associated Josephson current as a function of the parameters
is immediately obtained. Since the zero-temperature results
presented in the first part of the next section are for the
Kondo-limit Hamiltonian H̃ of Eq. (11), this prevents us from
a quantitative comparison with the zero-temperature results of
Refs. [29] and [30], corresponding to the more general model
of Eq. (7). The results from the two models agree, of course,
once the parameters U , εd , and t of the latter are tuned towards
the Kondo limit, as explained above Eq. (10).

The narrow-band or “zero-bandwidth” approximation lead-
ing to our effective hybrid superconductor-quantum dot Hamil-
tonian of Eq. (7) has been applied successfully to study a
variety of different problems in the past years. Introduced
first in the context of valence fluctuating problems [34–36]
and for the study of the effect of magnetic impurities in
superconducting matrices [37,38] has been applied later to
the study of the electrical transport properties of semicon-
ductor quantum dots [28], and also to calculate the magnetic
correlations between two-magnetic impurities in a metallic
matrix [39]. In all cases, this simple approach has been in
good qualitative agreement with more elaborate theoretical
approaches, and provided a transparent physical view of
complicated many-body problems, like the Kondo effect. The
combination of simplicity and right physics motivate also some
authors to discuss the narrow-band limit or zero-bandwidth
model in several textbooks [40–42].

III. RESULTS AND DISCUSSION

A. Zero temperature

At zero temperature, the model is completely characterized
by the dimensionless parameter (�/J ) and the phase ϕ which
is determined by looking for the minimum of the ground-state
energy. As we will see, for any value of (�/J ), this minimum
corresponds either to ϕ = 0 or ϕ = π .

There is a critical value � = �c = (1 + √
17)J 	 0.64J

(to be derived below) below which (i.e., for � < �c) the
localized magnetic moment in the QD is screened by the
Kondo effect, and the ground state is a spin singlet. This
regime corresponds to ϕ = 0 and it is known as the 0 or 0′
junction regime (see below). The singlet ground-state energy
of H̃ and the corresponding eigenvector can be obtained
easily from the lowest eigenvalue of the following 2 × 2
matrix:∣∣∣∣∣−3J/4 − � cos(ϕ/2) − λ � sin(ϕ/2)

� sin(ϕ/2) � cos(ϕ/2) − λ

∣∣∣∣∣ = 0. (12)

The solution is trivial and we obtain

λ0,1(ϕ) = −3J

8
[1 + R3,1(ϕ)], (13)

with

Rm,n(ϕ) =
√

1 − (−1)n
16�

mJ
cos (ϕ/2) + 64�2

(mJ )2
(14)

for 0 � ϕ � π and Rm,1(ϕ) > Rm,2(ϕ). The eigenvalues are
denoted by λS,i(ϕ), with the first index either S = 0 (singlet),
S = 1/2 (doublet), or S = 1 (triplet). The second index just
enumerates the S-type solutions in ascending order (i = 1, the
ground state).

The corresponding eigenvector associated with the eigen-
value (13) is given by

|0,1〉(ϕ) = a1(ϕ)
1√
2

(1 + γ
†
↑γ

†
↓)

1√
2

(α†
↑|↓〉 − α

†
↓|↑〉)

+ a2(ϕ)
i√
2

(−1 + α
†
↑α

†
↓)

1√
2

(γ †
↑|↓〉 − γ

†
↓|↑〉),

(15)

where

a1(ϕ) = 1√
2

[
1 + 1 + 8� cos (ϕ/2)/(3J )

R3,1(ϕ)

]1/2

(16)

and

a2(ϕ) = − 1√
2

[
1 − 1 + 8� cos (ϕ/2)/(3J )

R3,1(ϕ)

]1/2

. (17)

For ϕ = 0, a1(0) = 1, a2(0) = 0, Eq. (13) gives the lowest
eigenvalue λ0,1(0) = −3J/4 − �, and the ground state re-
duces to

|0,1〉(0) = 1√
2

(1 + γ
†
↑γ

†
↓)

1√
2

(α†
↑|↓〉 − α

†
↓|↑〉). (18)

|0,1〉(0) shows the product of two independent subspaces:
only the α fermions are coupled to the electron in the
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dot and produce a singlet state. That is, in simplified
terms, the physics that governs the Kondo effect in the
QD. The other factor (γ fermions) represents the super-
conductivity in the leads as a mixing of zero and two
electrons with opposite spins. The weight of the second
component with coefficient a2(ϕ) increases by increasing
ϕ from zero, but always is fulfilled that a1(ϕ) � |a2(ϕ)|.

For � > �c, the ground state is a doublet characterized by
a reversal of the sign of the Josephson current-phase relation
(ϕL − ϕR = π ), this is the π -junction regime and the minimum
ground-state energy corresponds to ϕ = π . The ground state
can be obtained from the lowest eigenvalue λ1/2,1(ϕ) and the
corresponding eigenvector [b1(ϕ),b2(ϕ),b3(ϕ),b4(ϕ)] of a 4 ×
4 matrix, given by

∣∣∣∣∣∣∣∣∣

−J/2 − λ
√

3J/4 0 0√
3J/4 −λ 2� sin(ϕ/2) 0

0 2� sin(ϕ/2) −λ −2� cos(ϕ/2)

0 0 −2� cos(ϕ/2) −λ

∣∣∣∣∣∣∣∣∣
= 0. (19)

For ϕ = π , we obtain the ground-state energy λ1/2,1(π ),
and we can write the doublet ground state as

|1/2,1〉(π ) = b1√
6

[(α†
↑γ

†
↓ + α

†
↓γ

†
↑)|σ 〉 − 2α†

σ γ †
σ |σ 〉]

+ b2√
2

(α†
↑γ

†
↓ − α

†
↓γ

†
↑)|σ 〉

+ ib3√
2

(1 + α
†
↑α

†
↓γ

†
↑γ

†
↓)|σ 〉

+ ib4√
2

(α†
↑γ

†
↓ + α

†
↓γ

†
↑)|σ 〉, (20)

where b1 = b1(π ), b2 = b2(π ), b3 = b3(π ), and b4 = b4(π ) =
0. The first term in |1/2,1〉(π ) gives the contribution due to the
antiferromagnetic coupling (Kondo) between the spin S = 1
in the leads and the spin S = 1/2 in the dot and it represents
the contribution of the Kondo effect in the π regime. When
� is increased this term goes to zero. On the contrary, the
second and third term involves the unscreened spin 1/2 in
the dot. The second term shows the electrons in the leads in a
superconducting singlet state and |b2|2 → 1/2 for large values
of �. Finally, the third term represents a superconducting
contribution and it increases when � is increased from the
�c (|b3|2 → 1/2). Therefore, for � 
 �c, from Eq. (19) we
obtain λ1/2,1(π ) 	 −2� − 3J 2/(64�) and the ground state
can be approximated by b1 	 −√

3J (1 + 0.25J/�)/(8
√

2�),
b2 	 1/

√
2, and b3 	 [−1 + 3J 2/(128�2)]/

√
2. From the

“crossing” condition λ1/2,1(π ) = λ0,1(0) = −3J/4 − �, the
analytical expression of �c can be obtained exactly as �c =
J (1 + √

17)/8 	 0.64J .
In Fig. 1, we show the ϕ dependence of eigenvalues

λS,i(ϕ), with S = 0, S = 1/2, and S = 1, for �/J = �c/J .
For S = 0 (full lines) they are given in ascending ordering
by Eq. (13) and λ0,2(ϕ) = −3J/8[1 + R3,2(ϕ)], λ0,3(ϕ) =
−3J/8[1 − R3,2(ϕ)], and λ0,4(ϕ) = −3J/8[1 − R3,1(ϕ)]. For
S = 1/2 the figure shows (dashed lines) the four eigenvalues
of Eq. (19) [λ1/2,i(ϕ) for i = 1,2,3,4]. For S = 1 (dotted
lines) the analytical expressions for the displayed eigenvalues
are λ1,1(ϕ) = J/8[1 − R1,1(ϕ)], λ1,2(ϕ) = J/8[1 − R1,2(ϕ)],
λ1,3(ϕ) = J/8[1 + R1,2(ϕ)], and λ1,4(ϕ) = J/8[1 + R1,1(ϕ)].

Considering spin degeneracies, altogether 24 eigenvalues
are shown in Fig. 1 (4 belonging to singlet states, 8 corre-
sponding to doublet states, and 12 belonging to triplet states).

The remaining eight eigenvalues are independent of ϕ, and they
do not become the ground state for the range of parameters
used in this work. It is interesting to note that for exactly
this particular value of �, λ0,1(0) = λ1/2,1(π ), which marks
the zero-temperature boundary between the junction 0like
behavior (� < �c) to the junction π -like behavior (� >

�c). Some useful symmetry properties of the eigenvalues
are as follows. Defining ϕ′ = π − ϕ, the eigenvalues of the
4 × 4 matrix of Eq. (19) satisfy λ1/2,i(ϕ′) = λ1/2,i(−ϕ′).
This is easily proved by checking that the quartic equation
for the λ’s that results from Eq. (19) remains invariant

0.0 0.2 0.4 0.6 0.8 1.0
-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5

Δ/J=0.64

λ S
,i /

J

φ/π

 2-4 part. S=0
 1-3-5 part. S=1/2
 2-4 part. S=1

FIG. 1. ϕ dependence of eigenvalues λS,i(ϕ), with S = 0, S =
1/2, and S = 1, for �/J = 0.64. For each �, the point of intersection
between the two lowest eigenvalues, λ0,1(ϕ∗) = λ1/2,1(ϕ∗), defines
ϕ∗(�). For this particular case, ϕ∗(� = �c) ∼ 0.45π . For �/J =
0.75 (not shown), ϕ∗ = 0, and λ0,1(0) = λ1/2,1(0); for �/J > 0.75
(not shown), λ0,1(ϕ) > λ1/2,1(ϕ) for all ϕ.
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0.0 0.2 0.4 0.6 0.8 1.0
-2.5

-2.0

-1.5

-1.0

-0.5

0.0
λ S

,i /
J

Δ/J

λ
0,1

(0)
λ

1/2,1
(π)

λ
0,1

(π)
λ

1/2,1
(0)

λ
1/2,2

(0)

FIG. 2. Lowest energy levels of H̃ as a function of �/J . For
� < �c 	 0.64J we can observe the singlet (solid line) ground-state
energy λ0,1(0), and for � > �c the doublet (dashed line) ground-
state energy λ1/2,1(π ) is observed. The thin vertical line denotes the
transition point.

under the change ϕ′ → −ϕ′. On the other side, using the
analytical expressions for the singlet states, it results that
λ0,1(ϕ′) = λ0,2(−ϕ′), and that λ0,3(ϕ′) = λ0,4(−ϕ′). In brief,
the full spectrum shown in Fig. 1 is invariant under the
change ϕ′ → −ϕ′. In Fig. 9 of Ref. [22], the first and
second many-body excited states of the full model given
by Eq. (1) have been obtained, using the NRG. Look-
ing at the corresponding low-energy region of the full
spectrum in Fig. 1, the similarity is quite encouraging.
The results in Ref. [22] are, however, for finite U .

In Fig. 2, we show the lowest energy levels λS,i(ϕ) of
Fig. 1, for ϕ = 0, and π , as a function of �/J . The figure
shows λ0,1(0) = −3J/4 − �, the eigenvalue of |0,1〉(0),
λ1/2,1(π ), the eigenvalue of |1/2,1〉(π ), λ0,1(π ) = −3J/8 −√

9J 2/64 + �2, λ1/2,1(0), and λ1/2,2(0). The analytical ex-
pressions for these two last eigenvalues are

λ1/2,1(0) = −3J

4
θ

(
0.375 − �

J

)
− 2�θ

(
�

J
− 0.375

)
(21)

and

λ1/2,2(0) = −3J

4
θ

(
�

J
− 0.375

)
− 2�θ

(
0.375 − �

J

)
.

(22)

Here, θ (x) = 1 if x > 0, and θ (x) = 0 if x < 0. It is interesting
to observe at this point that at � = 0.75J , λ0,1(0) = λ1/2,1(0);
this marks the zero-temperature boundary between the π - and

π ′-junction behavior (see below). In other words, for �/J >

0.75, λ1/2,1(ϕ) is the ground state of the system for any value
of ϕ.

It is instructive at this point to compare the results displayed
in Figs. 1 and 2 with the equivalent results displayed in Figs. 4
and 5 of Ref. [29], for the same narrow-band model, but
for finite U . The link between both models is given by the
antiferromagnetic Kondo coupling for finite U ,

J (U ) = 4t2U

|εd |(U + εd )
, (23)

which for U 
 |εd | coincides with the expression given
before, J (U → ∞) → J = 4t2/|εd |. In some sense, the three
parameters involved in the calculations of Ref. [29] (t , U , εd ),
are collapsed in a single parameter J (U ) in Eq. (23), which for
large U coincides with our J . First note that for t/� = 1.2 and
εd/� = −10 (parameters corresponding to Fig. 4 in Ref. [29]),
J = 4t2/|εd | = 0.576� → �/J 	 1.74. And since for this
value of the unique parameter �/J (in our model) the system
is well inside the π -phase regime, it may be expected that as
U increases, the system of Ref. [29] progressively enters in
this regime. This is exactly the tendency observed in Fig. 4 of
Ref. [29]: for example, panel (d), corresponding to U/� = 18,
has a value of �/J (U ) 	 0.77, just above the threshold value
of 0.75 found in our case for having a π -type ground state
for any value of ϕ (see caption in Fig. 1). Passing to the
results in Fig. 5 of Ref. [29], from Eq. (23) we obtain that
�/J (U ) 	 0.11 for panel (a), and that �/J (U ) 	 0.43 for
panel (b). According to our model, for small values of �/J the
crossing point ϕ∗(�/J ) is close to π , as observed in panel (a).
On the other side, for �/J 	 0.43 the system is in the 0′ phase,
as observed in panel (b). Regarding the zero-temperature
“phase diagram” displayed in Fig. 6 of Ref. [29], the
same is out of the reach for our model, as a result of working
in the large-U (infinite) Kondo limit.

The Josephson current I (ϕ) through the quantum dot can
be obtained using I (ϕ) = (2e/�)dF (ϕ)/dϕ, where F (ϕ) is the
free energy of the system. At zero temperature, the free energy
becomes the ground-state energy, and for 0 � ϕ � ϕ∗(�),
from Eq. (13) it is straightforward to obtain the analytical
expression

I0(ϕ)

I0
=

[
1 + 16�

3J
cos

(ϕ

2

)
+ 64�2

9J 2

]−1/2

sin
(ϕ

2

)
,

� 0, (24)

while, for ϕ∗(�) � ϕ � π ,

Iπ (ϕ)

I0
= 3�

16JA1(ϕ)
sin(ϕ) � 0, (25)

with

Ai(ϕ) = λ̄3
1/2,i(ϕ) + 3

8
λ̄2

1/2,i(ϕ)

− 3J 2 + 64�2

32J 2
λ̄1/2,i(ϕ) − �2

2J 2
. (26)

Here I0 = e�/� is the critical current of a transparent
single-mode junction, λ̄1/2,i(ϕ) = λ1/2,i(ϕ)/J , and ϕ∗(�/J )
is defined, for each �, as the intersection point between the
two lowest eigenvalues, λ0,1(ϕ∗) = λ1/2,1(ϕ∗) (see Fig. 1). In
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obtaining Eq. (25), the quartic equation resulting from Eq. (19)
has been used, for the direct evaluation of dλ1/2,1(ϕ)/dϕ. From
Eqs. (25) and (19), it is easy to prove that Iπ (ϕ − π/2) =
Iπ (π/2 − ϕ), and then that Iπ (ϕ) has an extremum at ϕ = π/2;
in consequence Iπ (π/2) is the minimum possible value of
Iπ (ϕ).

The signs of I0(ϕ) and Iπ (ϕ) are opposite, and this is the
most distinctive feature that distinguishes the 0 junction from
the π -junction regime. The difference in sign is evident from
the opposite slopes in Fig. 1 of λ0,1(ϕ) and λ1/2,1(ϕ), and
also from the analytical expressions in Eqs. (24) and (25).
From a more microscopic point of view, the positive slope of
λ0,1(ϕ) comes from the fact that the gain in energy for the
singlet ground state is optimum for ϕ = 0. From Eq. (18),
it is quite clear that in |0,1〉(0) the α electrons are fully
devoted to build the Kondo singlet, while the γ electrons are
exclusively involved in the superconductivity. Increasing ϕ,
a2(ϕ) 
= 0 and both α and γ electrons are involved in building
the Kondo singlet. But as the γ electrons are not directly
coupled to the QD, the gain in energy is smaller. For ϕ = π ,
from Eq. (9) is clear that the superconductivity is only possible
for “mixed” α-γ pairs, and this is in direct conflict with
the Kondo singlet. Regarding the negative slope of λ1/2,1(ϕ),
from Eq. (21), λ1/2,1(0) = −2�; in this configuration, all
gain in energy comes from the superconductivity, with zero
Kondo contribution. Increasing ϕ, λ1/2,1(ϕ) gain energy both
from the superconductivity and by the Kondo effect, and the
energy decreases. For ϕ = π , the ground state is |1/2,1〉(π )
in Eq. (20): the mixed pairs α-γ found the way to contribute
both to the superconductivity (term proportional to b2), and to
a kind of spin-1 Kondo effect (term proportional to b1).

Depending on the value of �/J , four zero-temperature
configurations are then (in principle) possible for the junction.

(a) ϕ∗(�/J ) = π , and the Josephson current is given by
Eq. (24) for 0 � ϕ � π . This is the 0-junction regime, which
is not realized for any finite value of �. One way to see this is
from the very same Eq. (24), according to which I0(π )/I0 
= 0,
and this is not possible.

(b) 0 < ϕ∗(�/J ) < π , with λ0,1(0) < λ1/2,1(π ). This is the
0′-junction regime, valid for � < �c.

(c) 0 < ϕ∗(�/J ) < π , but λ0,1(0) > λ1/2,1(π ). This is the
π ′-junction regime, valid for �c < � < 0.75J .

(d) ϕ∗(�/J ) = 0, and the Josephson current is given by
Eq. (25) for 0 � ϕ � π . This is the π -junction regime, and it
is realized for �/J � 0.75.

The Josephson current is positive both in the 0- and
0′-junction regimen, and negative in the π and π ′-junction
regime.

It is important to note that in the 0′- and π ′-junction
configurations the Josephson current is given by two different
functions at right and left of ϕ∗(�/J ), which gives rise to a
discontinuity given by

�I0−π [ϕ∗(�/J )] := I0[ϕ∗(�/J )] − Iπ [ϕ∗(�/J )] > 0.

(27)

This is shown in Fig. 3. For � 
 �c, λ1/2,1(ϕ) → −2� −
3J 2 sin2(ϕ/2)/(64�). Evaluation of Ai(ϕ) in Eq. (26) with
this approximation for λ1/2,1(ϕ), and replacing in Eq. (25),

FIG. 3. (Color online) Zero-temperature Josephson current
I (ϕ)/I0 as a function of ϕ, for different values of �/J . All curves,
except the ones for �/J = 0.75 and 1, have a discontinuity at
ϕ∗(�), indicated by the vertical thin straight line. The size of the
discontinuity is given by Eq. (27). τ = kBT .

yields the leading contribution

Iπ (ϕ)

I0
≈ − 3J 2

64�2
sin(ϕ). (28)

This equation describes the zero-temperature Josephson cur-
rent well inside the π -junction regime. The zero-temperature
results displayed in Fig. 3 look quite similar to the ones in
Fig. 4 of Ref. [22], obtained using both the FRG and the NRG
for the full model, and for finite U .

Since the discontinuity in I (ϕ)/I0 displayed in Fig. 3 is
exactly located at ϕ∗(�/J ), from here it is possible to follow
the evolution of ϕ∗(�/J ) for increasing values of �/J . For
small values of this parameter, ϕ∗(�/J ) ∼ π , and then it
decreases monotonically as �/J increases, reaching zero
when �/J = 0.75. For larger values of �/J , the junction
is in the π regime, and ϕ∗(�/J ) = 0.

Zero-temperature I (ϕ)/I0 vs ϕ diagrams have been ob-
tained previously through the solution of the full standard
model of Eq. (1) [22]. The similarity with the results presented
in Fig. 3 is remarkable. This gives the first hint of what is one
of the messages of the present work: that besides the drastic
simplification introduced by the narrow-band approximation,
after it the model still retains all the important physical
ingredients of the original model, reproducing in a qualitative
way their results. This conclusion is extended to the finite-
temperature case in the following section.
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B. Finite temperature

At finite temperatures, it is straightforward to obtain the free
energy of the system as a function of the model parameters.
We can write F (ϕ) = −kBT ln [Z(ϕ)], with Z(ϕ) the partition
function given by

Z(ϕ) = 2 exp

(
3βJ

8

) 2∑
n=1

cosh[3βJR3,n(ϕ)/8]

+ 6 exp

(
−βJ

8

) 2∑
n=1

cosh[βJR1,n(ϕ)/8]

+ 2
4∑

i=1

exp[−βλ1/2,i(ϕ)] + 4

[
1 + exp

(
−βJ

4

)]
,

(29)

where β = 1/(kBT ), kB being the Boltzmann constant. The
first and the second terms in Z(ϕ) give the contribution due
to the mixing of two-particle and four-particle states with
total spin S = 0 and S = 1, respectively. The third term
gives the contribution of eigenvalues of Eq. (19). Finally,
the last term gives the contribution of four states of S = 1/2
and zero energy corresponding to 1√

2
(α†

↑α
†
↓ − γ

†
↑γ

†
↓)|σ 〉 and

1√
2
(1 − α

†
↑α

†
↓γ

†
↑γ

†
↓)|σ 〉, and other four three-particle states

with S = 3/2 and energy J/4. Being independent of ϕ, these
eight states play no role in what follows. Since the full energy
spectra is invariant under the change ϕ′ → −ϕ′, F (π − ϕ) =
F (ϕ − π ), and F (ϕ) enters with zero slope at ϕ → π .

In Fig. 4 we show F (ϕ) as a function of ϕ, for τ/J = 0.01,
and different values of �/J . Depending on the value of �/J ,

FIG. 4. (Color online) Free energy F (ϕ) as a function of ϕ

[measured from F (ϕ = 0)], for τ/J = 0.01 and different values of
�/J . F (ϕ) enters with zero slope at the limiting values ϕ = 0,π .

we can observe two different absolute minimum of the free
energy either at ϕ = 0 or π , and one maximum at 0 < ϕ < π .
In the region of parameters where this maximum exists, it
allows us to identify the finite temperature 0′-junction regime
when the absolute minimum of F (ϕ) corresponds to ϕ = 0, and
the π ′-junction finite-temperature behavior when the absolute
minimum of F (ϕ) occurs at ϕ = π [20]. For small values
of �/J , F (ϕ) shows the 0-junction behavior, the physics is
dominated by the Kondo effect, and we can see the minimum of
F (ϕ) at ϕ = 0, with a weak dependence of ϕ (see solid line for
�/J = 0.1). Increasing �/J the maximum at ϕ = π moves
up (�/J = 0.2,0.3). For �/J 	 0.306, the free energy shows
the transition from the 0-junction to 0′-junction behavior,
and for 0.306 � �/J � 0.631 the 0′-junction behavior can
be observed (�/J = 0.35,055). For �/J 	 0.631, where
F (ϕ = 0) 	 F (ϕ = π ), the model gives the transition from
0′ to π ′ behavior. For 0.631 � �/J � 0.744, the free energy
corresponding to the π ′-junction behavior can be observed
(�/J = 0.64,0.70). Finally, for �/J 	 0.744 the transition
from π ′ to π junction takes place and the figure shows the
π -junction behavior of the free energy for �/J = 0.75.

From the free energy it is easy to write the Josephson current
explicitly as

I (ϕ)

I0
= sin (ϕ/2)

Z(ϕ)

{
2 exp(3βJ/8)

2∑
n=1

sinh[3βJR3,n(ϕ)/8]

(−1)n−1R3,n(ϕ)

+ 6 exp(−βJ/8)
2∑

n=1

sinh[βJR1,n(ϕ)/8]

(−1)n−1R1,n(ϕ)

+ 3�

8J
cos (ϕ/2)

4∑
i=1

exp[−βλ1/2,i(ϕ)]

Ai(ϕ)

}
. (30)

From Eq. (30) we obtain I (0) = I (π ) = 0. The fact that
I (0) = 0 is explicit from the equation above. On the other side,
I (π ) = 0 is a consequence of the symmetry properties of the
eigenvalues under the change ϕ′(= π − ϕ) → −ϕ′ discussed
previously.

In Fig. 5, we can see the ϕ dependence of the Josephson
current through the QD for τ/J = 0.01 and �/J ranging from
0.05 to 1. Three types of behavior can be observed: (I) for
small values of �/J , the 0-junction regime, where the Kondo
physics is important and the current is positive (�/J = 0.05,
0.10, 0.20, and 0.30), (II) the crossover regime (0′ and π ′
junction), for �/J = 0.55 and 0.70, where the current shows
positive and negative values, and (III) the π -junction regime,
where the current is negative, has a sinusoidal behavior,
and is small (see �/J = 0.75 and 1). These results are in
a good qualitative agreement with the results obtained in
Ref. [20] using Monte Carlo simulations [43]. Comparison
between the zero-temperature and finite-temperature results of
Figs. 3 and 5, respectively, reveals how the zero-temperature
discontinuities �I0−π [ϕ∗(�/J )] are transformed in broadened
transitions, located essentially at the same ϕ∗(�/J ). At
difference with the T = 0 results, however, the maximum in
I (ϕ)/I0 shows a nonmonotonic behavior with increasing �,
first increasing (0.05 → 0.10), and then decreasing (0.10 →
0.20 → 0.30 → 0.55).
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FIG. 5. (Color online) Josephson current I (ϕ)/I0 as a function of
ϕ, for τ/J = 0.01 and different values of �/J .

Figure 6, which is the same as Fig. 5, but for τ/J = 0.10,
shows some important differences. In the first place, the
amplitude of the Josephson current is about five times smaller
as compared with the amplitudes in Fig. 5. Second, besides the
nonmonotonic behavior in the regime of small �, the current
also shows a second nonmonotonic behavior in the regime of
intermediate �’s. Clearly, for this temperature I (ϕ)/I0 has a
minimum in his amplitude for 0.55 � �/J � 0.60, increases
for increasing �, and then decreases again for �/J = 1. This
somehow nontrivial behavior of the Josephson current with
temperature and the strength of the unique parameter �/J is
better displayed by looking at the critical current Ic/I0.

Proceeding, in Fig. 7 we show the critical current Ic/I0

as a function of �/J , for different values of temperature,
in Fig. 8 we show the critical current as a function of τ/J ,
for different values of �/J , and in Fig. 9 we depict the
“phase diagram” of the hybrid junction in �/J vs τ/J space.
Starting with the analysis of Fig. 9, the full line shows
the transition from the π ′ regime at lower T ,�’s to the
π regime at higher T ,�’s. At zero temperature this transition
occurs at �/J = 0.75, as discussed above. The dashed line
shows the transition from the 0′ to the π ′ regime. It starts at
zero temperature at �c = J (1 + √

17)/8 	 0.64J , and then
decreases monotonically with temperature. The transition from
the 0 to the 0′ regime is indicated by the dotted line, and the case
is that the 0-junction regime occurs only at finite temperatures.
At τ � 0.25 and �/J → 0, all the curves collapse in one
curve, where only one transition is possible from the 0 to
the π regime. However, we must take into account that we
neglected the temperature dependence of � and then we
consider our results reliable only for � � τ . The thin dashed

FIG. 6. (Color online) Josephson current I (ϕ)/I0 as a function
of ϕ, for τ/J = 0.1 and different values of �/J . I (ϕ)/I0 has a
nonmonotonic behavior both in the regime of small and intermediate
values of �/J .

straight line represents the limit � = τ , meaning that the part
of the phase diagram below this line is not reliable. The thin full

FIG. 7. (Color online) Critical current Ic/I0 = maxϕ |I (ϕ)|/I0 as
a function of �/J for different values of τ/J . In all cases Ic/I0 → 0
for � → 0.
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FIG. 8. (Color online) Critical current Ic/I0 as a function of tem-
perature, for several values of the superconducting order parameter.
All curves have a finite value at τ = 0, smaller than 1.
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FIG. 9. Phase diagram in �/J , τ/J space. The analytical zero-

temperature intercepts of the 0-0′, 0′-π ′, and π -π ′ boundaries are 0,
�c/J = (1 + √

17)/8 	 0.64, and 0.75, respectively. The thin full
straight line corresponds to � = 10τ , while the thin dashed straight
line represents � = τ .

straight line corresponds to � = 10τ and represents the line
over which the authors in Ref. [20] perform the calculations.
For the transitions, their results give (�/kBTK ∼ 0.51)0−0′ ,
(�/kBTK ∼ 0.875)0′−π ′ , and (�/kBTK ∼ 1.1)π ′−π . Our re-
sults, in the Kondo limit (U → ∞), are (�/J ∼ 0.4)0−0′ ,
(�/J ∼ 0.6)0′−π ′ , and (�/J ∼ 0.7)π ′−π . In spite of the
fact that the model parameters are not identical and the
calculations are very different, our model results are in good
quantitative agreement. The main message beyond the results
in Fig. 9 is the fact that the Kondo-related 0- and 0′-junction
configurations are dominant for �/J � 0.75 and τ/J � 0.25,
and that by increasing �/J or/and τ/J the π ′- and π -junction
configurations become dominant. As we will see below, the
fundamental 0′-π ′ boundary manifests clearly in the junction
critical current, a fact that may be used for its experimental
characterization.

Figure 7 displays then the behavior of the critical current
as one moves vertically in the phase diagram, changing �/J

at fixed τ . At zero temperature Ic/I0 decreases monotonically
with �/J . For �/J � 0.70, Ic/I0 is given by the maximum
value of I0(ϕ)/I0. From Eq. (24) and considering that I0(ϕ)/I0

reaches its maximum value at ϕ∗(�/J ) (see Fig. 3), we obtain
that

Ic

I0
= I0(ϕ∗)

I0
(31)

in this Kondo-dominated regime. For �/J � 0.70, Ic/I0 is
given by the negative of the extreme value of Iπ (ϕ)/I0, which
is (approximately) located at ϕ/π = 1/2. That is,

Ic

I0
	 −Iπ (π/2)

I0
(32)

in this superconductivity-dominated regime. According
Eq. (28), for �/J 
 1, Ic/I0 ∼ 3J 2/(64�2). The transition
from one regime to the other is indicated by a change in slope
for �/J ≈ 0.70. It is interesting to note that the change of
regime from Eq. (31) to (32) occurs close (but not exactly) to
the 0′ → π ′ transition in Fig. 9, slightly above the boundary,
but clearly inside the π ′-junction regime [44]. For τ 
= 0,
the current first increases (from zero) with �/J to reach a
maximum at small values of �/J and then decreases when
�/J is increased. This first maximum in the curve for Ic/I0

vs �/J is then a natural consequence of the condition I (ϕ =
0) = 0 for �/J = 0 at any τ [Eqs. (24) and (30)], and the fact
that in the Kondo-dominated regime, the current must decrease
for increasing �/J . Consistent with this, the Kondo-induced
first maximum in Ic/I0 decreases with increasing temperature
showing the progressive loss of the Kondo correlations in
the 0 and 0′ regimes. At very low temperatures, the critical
current is essentially dominated by the singlet ground state
(Kondo effect) of Eq. (15) that yields high values of Ic/I0

close to the limiting value 1 (τ/J = 0.001,0.01). When τ

is increased, the thermal excitations progressively destroy
the Kondo correlations given an important reduction of
the critical current (τ/J = 0.03, 0.06, 0.1, 0.15, and 0.2).
Simultaneously, the zero-temperature change of regime (slope
discontinuity) around 0.7 evolves towards a local minimum for
Ic/I0 located close to the finite-temperature 0′ − π ′ boundary
in Fig. 9 [20]. The appearance of this minimum has a straight-
forward explanation. Since the boundary between the 0′ and π ′
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regimes is defined by the condition that
∫ π

0 dϕ I (ϕ) = 0, for
this to be true, the amplitudes of the positive (Kondo-driven)
and negative (superconductivity-driven) contributions to I (ϕ)
should be essentially the same, and relatively small (see, for
example, the case �/J = 0.6 in Fig. 6). Beyond this point, the
negative component increases and the positive component de-
creases (see, for example, the cases �/J = 0.65,0.7 in Fig. 6),
opening the way for the existence of a minimum for the critical
current close to the boundary 0′ − π ′. In brief, this minimum
marks the change from a Kondo-dominated regime (for �’s
to the left of the minimum) to a superconductivity-dominated
regime (for �’s to the right of the minimum). The presence of a
minimum in the curve Ic/I0 vs �/J is also in good qualitative
agreement with the QM results of Ref. [20], made on the single-
temperature line τ = �/10. From their data, however, it is not
possible to observe the first increase of Ic/I0 for small values
of �/J , presumably due to the fact that their first (smallest)
value of �/TK (the equivalent of �/J here) is already large
[45]. Also, the existence of a local minimum was characterized
by these authors as a “subtle many-body effect,” for which
we provide here a simple explanation, making the reasonable
assumption that it is also valid for the full “standard” model.
For increasing values of τ/J , the local minimum moves to
smaller values of �/J , since the strength of the Kondo effect
diminishes as the temperature rises. For large values of �/J ,
all critical current curves collapse to the one corresponding
to the zero-temperature limit, which goes to zero as (J/�)2,
as shown above. This is the reason for the existence of a
second maximum beyond the local minimum. Interestingly,
for τ/J � 0.15, the first maximum is smaller than the second
one, and also we can see the crossings of curves (τ/J = 0.15
and τ/J = 0.2) at �/J ∼ 0.5. This suggests the existence of
an “anomalous” regime at small values of the critical current,
such that when τ is increased, Ic/I0 is also increased.

We display such anomalous behavior in Fig. 8, using
for now the critical current Ic/I0 as a function of τ/J ,
for different values of �/J . For �/J � 0.75, at any value
of temperature the junction is π type (see Fig. 9), and
Ic/I0 decreases monotonically with τ/J (�/J = 0.75). For
�/J = 0.65 we can observe, at low temperatures, a different
behavior of Ic/I0, with a change in slope around the transition
between 0′ and π ′ regimes. For �/J = 0.55 the curve shows
how the change in slope at τ/J ∼ 0.125 evolves towards
a smooth local minimum. Similar behavior is obtained for
�/J = 0.45, �/J = 0.35, and �/J = 0.25, where we can
see a well defined minimum for τ/J ∼ 0.18, τ/J ∼ 0.21, and
τ/J ∼ 0.23, respectively. For higher values of τ/J beyond this
minimum, Ic/I0 shows the anomalous behavior commented
on above, increasing with increasing temperature. This kind of
behavior has been observed experimentally in Ref. [17], where

the coupling of two superconductors through a ferromagnet
link was studied. As in the previous case of Fig. 7, these minima
in Fig. 8 mark the transition from a Kondo dominated regime at
low temperatures to a superconductivity dominated regime at
higher temperatures. As before, the minima are located slightly
above the 0′ − π ′ boundary in Fig. 9.

IV. CONCLUSIONS

We have applied the narrow-band approximation to analyze
the Josephson current through a quantum dot connected
between superconducting electrodes, when the dot is in the
Kondo limit. The model is completely characterized by the
dimensionless parameter �/J , with � the superconducting
order parameter, and J the antiferromagnetic Kondo exchange
strength. Each of the two narrow-band superconducting banks
can be occupied by zero, one, or two electrons at most,
and this simplifies drastically the calculations, without losing
any of the main physical ingredients of the full standard
model. As a proof of that, we have reproduced all the
known zero- and finite-temperature features of the full model,
as follows: (i) qualitative agreement between the first and
second many-body excited states of the full model and the
lowest-lying eigenvalues of the present narrow-band model;
(ii) four types of hybrid junction configurations (0, 0′, π ′, π );
(iii) a nonmonotonic behavior of the junction critical current,
at fixed temperature and for increasing values of �/J . The
simplicity of the model allows us to provide a transparent
physical explanation for each of these features, something
that is not always possible with the much more involved
calculations needed for the full model.

We also provide evidence for a nonmonotonic behavior
of the critical current for increasing temperatures, at fixed
values of �/J , and just before the junction enters in the
π -junction regime. This finding should be possible to be
checked experimentally. And, finally, we summarize our
findings in a global phase diagram in the space �/J , kBT /J ,
showing the evolution and stability of the four possible
junction configurations with superconductivity strength and
temperature. This global phase diagram should be useful for
further experimental and theoretical developments alike, by
providing an overall picture of the hybrid junction system.
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