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ABSTRACT

We have developed a fast method that allowed us to automati-
cally detect and denoise microseismic phase arrivals from 3C
multichannel data. The method is a two-step process. First, the
detection is carried out by means of a pattern recognition strat-
egy that seeks plausible hyperbolic phase arrivals immersed in
noisy 3C multichannel data. Then, the microseismic phase arriv-
als are denoised and reconstructed using a reduced-rank ap-
proximation of the singular value decomposition of the data
along the detected phase arrivals in the context of a deflation
procedure that took into account multiple arrivals and/or phases.
For the detection, we have defined an objective function that
measured the energy and coherence of a potential microseismic
phase arrival along an apex-shifted hyperbolic search window.

The objective function, which was maximized using very fast
simulated annealing, was based on the energy of the average
signal and depended on the source position, receivers geometry,
and velocity. In practice, the detection process did not require
any a priori velocity model, leading to a fast algorithm that can
be used in real time, even when the underlying velocity model
was not constant. The reduced-rank filtering coupled with a
crosscorrelation-based synchronization strategy allowed us to
extract the most representative waveform for all the individual
traces. Tests using synthetic and field data have determined the
reliability and effectiveness of the proposed method for the ac-
curate detection and denoising of 3C multichannel microseismic
events under noisy conditions. Two confidence indicators to as-
sess the presence of an actual phase arrival and the reliability of
the denoised individual wave arrivals were also developed.

INTRODUCTION

The study of microseismic data has become an essential tool in
many geoscience fields, such as oil reservoir geophysics (Maxwell
et al., 2010; Kendall et al., 2011), mining engineering (Sun et al.,
2012), and CO2 sequestration (Zhou et al., 2010). In hydraulic frac-
turing, microseismicity studies permit the characterization and
monitoring of the reservoir dynamics to optimize the production
and the fluid injection process itself. Often, real-time functionality
is needed to control the fluid injection in the field for economic and
safety reasons. Besides, because the number of events is usually
large and the signal-to-noise ratio (S/N) is generally very low (es-
pecially when receivers are located at the surface), fast, automated,
and robust detection algorithms are required for most applications
(Zimmer and Jin, 2011). Furthermore, inadequate array coverage

and uncertainties in the P- and S-wave underlying velocity models
complicate the processing of the data (Eisner et al., 2010).
A basic workflow includes processes such as denoising, detec-

tion, picking, and localization (van der Baan et al., 2013). Gener-
ally, microseismic events are detected (and located) by means of
grid-search algorithms (Maxwell, 2014). These techniques are very
effective and accurate but computationally intensive when dealing
with large 3D or 4D grids (Lagos et al., 2014). Other methods re-
quire picking before carrying out localization, and others are able to
locate the microseisms without any picking at all (Gharti et al.,
2010). As for detection, some techniques are based on the analysis
of the changes of a certain attribute along individual channels, such
as trace energy (Munro, 2004), its absolute value (Chen and Stew-
art, 2006), or a combination of short time average over long time
average (STA/LTA) and the wavelet transform (Vera Rodriguez,
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2011), to name a few. Nevertheless, any single-channel event de-
tection algorithm is prone to fail at some point whenever the S/
N is very poor because not all data information is taken into account
simultaneously. Thus, the key of a reliable event-detection algo-
rithm relies on its ability to incorporate all the multichannel infor-
mation at once. Sabbione and Velis (2013) follow this strategy and
devise a simple method based on single-trace phase pickers bor-
rowed from global seismology that uses all channels simultane-
ously. Zimmer and Jin (2011) and Gharti et al. (2010), for
example, describe the so-called migration-based approach. This ap-
proach uses the information contained in a kind of stack of the input
channels and does not require any trace-by-trace preprocessing for
picking the individual arrivals. Likewise, Radon-based techniques
(Sabbione et al., 2013, 2015) also rely on the information contained
in all the channels simultaneously.
In this work, we present a fast two-stage method that does not

require the knowledge of the underlying velocity model because an
effective constant velocity is obtained as a by-product. First, we ac-
complish the detection by solving a pattern recognition problem
very efficiently using very fast simulated annealing (VFSA) (Velis
et al., 2013). This leads to a fully automatic and reliable micro-
seismic phase-arrival detection algorithm that includes a deflation
process used to deal with multiple phases and/or arrivals and a con-
fidence indicator to assess the significance of the detections. Sec-
ond, we denoise and reconstruct the detected phase arrivals using a
singular value decomposition (SVD)-based reduced-rank filtering
approach, which leads to consistent waveforms that preserve ampli-

tudes throughout all available channels and components. As we
show in the next sections, under certain assumptions, microseismic
phase arrivals are characterized by coherent arrivals along hyper-
bolic patterns. Then, imperfect alignments are tolerated by means
of a crosscorrelation-based synchronization process that is applied
before the filtering. In addition, we provide another confidence in-
dicator to assess the significance of the reconstructed phase arrivals
on a trace-by-trace basis. By means of examples, we show that the
proposed technique behaves very effectively and accurately when
applied to moderate to high-S/N synthetic and field data sets, and
reasonably well when applied to very noisy data sets. Overall, the
detection is robust in the presence of random noise and isolated
traces with useless information, the derived traveltimes are accurate,
and the reconstructed waveforms are consistent with the observed
data, even when the underlying velocity model is unknown.

THEORY

Consider a 2D typical downhole microseismic monitoring sce-
nario as shown in Figure 1a. Assuming a constant velocity medium,
the arrival time at the receiver ðx; zÞ due to a microseism originated
at ðxs; zsÞ can be expressed by

tðx; zÞ ¼ t0 þ
rðx; zÞ

v
; (1)

where

rðx; zÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx − xsÞ2 þ ðz − zsÞ2

q
(2)

is the source-receiver distance, v is the P- or S-wave velocity, and t0
is the occurrence time of the event measured relatively to the start
time of the recorded seismic traces.

Cones and hyperbolas

Equation 1 can be rewritten as

ðx − xsÞ2
v2

þ ðz − zsÞ2
v2

¼ ðt − t0Þ2; (3)

which is the equation of a right circular cone in ðx; z; tÞ centered at
ðxs; zs; t0Þ. Figure 1b shows part of this quadratic surface for
ðxs; zsÞ ¼ ð0.5; 1.6Þ km, t0 ¼ 0 s, and v ¼ 2.4 km∕s. When a cone
is sliced vertically, a hyperbola is obtained. For this reason, for a set
of receivers placed along a straight monitoring well (vertical or
slanted), as depicted in Figure 1a, the time arrivals align along an
apex-shifted hyperbola (Figure 1b). Should the receiver array not be
aligned along a straight line, a fact that depends on the local con-
ditions of the monitoring well and the engineering objectives, the
arrival times will no longer align along a hyperbola. Thus, for the sake
of generality, rather than assuming that the arrival times are aligned
along a hyperbola, one may assume that in fact they are placed on a
cone (or a hypercone in a 3D scenario). In practice, however, most
monitoring wells are approximately straight along the extension of
the receiver array; hence, the hyperbolic approximation is perfectly
valid for constant velocity models. For nonconstant velocity models,
raypaths are not straight lines. Thus, despite the fact that equation 1
can be generalized by redefining rðx; zÞ∕v as the traveltime from
source to receiver, arrivals are no longer expected to be aligned

 1

 1.2

 1.4

 1.6

 1.8

 2
 0  0.1  0.2  0.3  0.4  0.5  0.6

R1

R8

Source

r

z 
(k

m
)

x (km)

a)

b)

Monitoring well

 0  0.2  0.4  0.6  0.8

 1.2

 1.6

 2

 0

 0.1

 0.2

 0.3

R1
R8

x (km)

z (km)

t(
x,

z)
 (

s)
t(

x,
z)

 (
s)

Figure 1. (a) Typical 2D downhole microseismic monitoring sce-
nario and (b) the cone represents the arrival times expressed in equa-
tion 3. For a linear monitoring well, arrivals are aligned along an
apex-shifted hyperbola. The R1 and R8 denote the first and eighth
receivers, respectively.
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along cones or hyperbolas. Nonetheless, the hyperbolic approxima-
tion is acceptable as long as the impact of the velocity hetero-
geneities on the observed arrival times is relatively small. For the
sake of simplicity, the following analysis assumes a constant-veloc-
ity model. Later, we will consider the case in which the velocity is
nonconstant.
The 3C microseismic synthetic data shown in Figure 2 corre-

spond to an acquisition scheme similar to the one depicted in Fig-
ure 1a. Additive band-limited Gaussian noise was added with
S∕N ¼ 10, 3, and 1. The hyperbolic phase arrival observed in Fig-
ure 2a and 2b corresponds to a P-wave arrival for an eight-receiver
vertical array. It is very easy to visually detect the phase arrival be-
cause its energy is much larger than the energy of the noise. Con-
trarily, in Figure 2c, in which the S/N is very low, the microseismic
phase arrival can hardly be distinguished, even by a trained eye.
Thus, to automatically detect a microseism, an analyst (or a com-
puter algorithm) should be able to detect hyperbolic signal patterns
in the presence of noise. For the sake of simplicity, it is generally
assumed that the monitoring well is vertical (or approximately so
for relatively short receiver arrays), and thus, the problem reduces to
identifying an apex-shifted hyperbola in the ðz; tÞ domain (Velis
et al., 2013; Sabbione et al., 2015).

Pattern recognition

Humans’ (and animals’) ability to visually recognize patterns is
well known. This process, which is carried out almost effortlessly
and instantaneously by the brain, is based on the visual perception
of meaningful patterns and forms that “make sense” when a certain
visual stimulus is received. Because patterns may contain a large
amount of information, the perception of a given pattern may be
a difficult task for a computer program, but not so for a living being
such as primates that often use up to half of their total cortex space
for processing visual stimuli (Felleman and van Essen, 1991). Usu-
ally, the process starts by assessing the evidence of a given number
of features or a combination of features that characterize the input
data and are associated with potential objects or parts of objects and
their relationships. Then, the process involves the use of a large
number of templates (or prototypes) to “match” the potential pat-
terns or groups of patterns to the expected object (Galotti, 2014).
These templates and prototypes constitute a priori information usu-
ally built based on past experiences and learning. How we interpret
the visual stimuli in relation to this a priori information is what most
differentiates humans (and animals) from machines or computer
programs. Specifically, which algorithms or processes the brain ac-
tually uses to effortlessly detect objects remain poorly understood
(DiCarlo et al., 2012).
In the context of microseismic event detection, the objective of a

pattern recognition process is to devise a computer algorithm that is
able to identify potential events from the observed data as a whole,
just like a geophysicist analyst would do by visual inspection.
Rather than considering every trace individually, a process that
would include partial information only, whenever all traces are con-
sidered simultaneously, the human eye (or brain) immediately
would associate coherent signals (patterns) to a given “object” (mi-
croseismic phase arrival). To this end, because microseism arrivals
are expected to align along hyperbolic patterns, the proposed algo-
rithm is devised to search for this kind of patterns within the input
data. For the sake of efficiency, we use VFSA (Ingber, 1989) as a
tool to maximize, with respect to the parameters that define all pos-

sible hyperbolas that “make sense,” an energy or coherence function
computed within a hyperbolic time window that embraces any po-
tential microseismic arrival (either the P- or S-wave phase). This
pattern recognition strategy will clearly ignore incoherent signals
and any nonhyperbolic patterns. In addition, because VFSA requires
the user to define a search range for all the parameters, nonrealistic
hyperbolic patterns can be ignored too. Notice that, in practice, the
selection of a search range does not represent any limiting assump-
tion because they can be very large by virtue of the well-known
searching efficiency of VFSA, as we will show in the “Results”
section. Note that location and detection methods based on the grid
search also rely on the selection of predefined search ranges, but
their efficiency in terms of computational cost is much lower than
VFSA (Lagos et al., 2014). Essentially, the method proposed by
Sabbione et al. (2015) shares the same objective of searching for
realistic hyperbolic patterns, but the calculations are computation-
ally more intensive, especially when considering the hyperbolic Ra-
don transform (Sabbione et al., 2013).

Coherency and energy

The pattern recognition problem can be solved by searching hy-
perbolic patterns within the given 3C data set. To this end, we need
to define a measure of signal coherence or “energy” along all po-
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Figure 2. Synthetic data (a) S∕N ¼ 10, (b) S∕N ¼ 3, and
(c) S∕N ¼ 1.
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tential hyperbolas (or cones), which are defined by ðxs; zs; t0; vÞ.
Velis et al. (2013), for example, use the quantity

Genvðxs; zs; t0; vÞ ¼
1

3M

XM
i¼1

ðŝxi þ ŝyi þ ŝzi Þ; (4)

where ŝci is the ith sample of the mean envelope (c ¼ x; y; z) along
the trial hyperbola, and M is the number of samples (width) of the
search window. Clearly, when Genv attains a maximum value, the
probability of having a phase arrival is high. Note that this measure,
which is similar to those used by Michaud and Leaney (2008),
Gharti et al. (2010), and Sabbione et al. (2015), is particularly very
sensitive to the energy of the phase arrival, irrespective of any phase
changes.
An alternative measure is the average energy of the mean traces:

Gseðxs; zs; t0; vÞ ¼
1

3M

XM
i¼1

½ðs̄xi Þ2 þ ðs̄yi Þ2 þ ðs̄zi Þ2�; (5)

where s̄ci is the ith sample of the normalized mean trace (c ¼ x; y; z)
along the trial hyperbola of width M. This energy measure, which
we call stack energy for simplicity, is similar to the semblance used in

conventional velocity analysis (Yilmaz, 2001) and reservoir charac-
terization (Chopra and Marfurt, 2007). The conventional semblance,
however, is related to an energy-normalized crosscorrelation, and
it has a smaller dynamic range than unnormalized measures that re-
present estimates of signal energy (Neidell and Taner, 1971). Thus,
semblance focuses on similarity rather than on energy, whereas the
stack energy is sensitive to both.
Figure 3 (top row) shows Genvðxs; zs; t0; vÞ for fixed values t0 ¼

0.0 s and v ¼ 3.0 km∕s (the actual values used to generate the syn-
thetics shown in Figure 2), and a search window of 0.03 s. As ex-
pected, the global maximum is clearer in the case of a high S/N (left)
than in the case of a very low S/N (right). Similarly, Figure 3
(middle row) shows the conventional semblance. Note that although
the global maximum can be distinguished more clearly in the high
S/N case (left) than in the low S/N case (right), the semblance func-
tion is rather rough in both cases. Contrary to the envelope-based or
the normalized semblance measures, which are devised to measure
energy or similarity between waveforms, respectively, the stack en-
ergy is sensitive to the energy and similarity (Figure 3, bottom row).
It is clear that the resolving power of the stack energy measure is the
largest of the three measures, especially for a relatively high S/N.
Naturally, other energy or coherency measures with high resolving
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Figure 3. Envelope energy (top row), semblance (middle row), and
stack energy (bottom row) associated with the microseismic data
shown in Figure 2. In all cases, t0 and v have been fixed to their
actual values. The source coordinates are denoted by the white
crossing lines. Left column: data with S∕N ¼ 10. Right column:
data with S∕N ¼ 1.
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Figure 4. Envelope energy (top row), semblance (middle row), and
stack energy (bottom row) associated with the microseismic data
shown in Figure 2. In all cases, t0 and xs have been fixed to their
actual values. The source zs coordinate and actual velocity are de-
noted by the white crossing lines. Left column: data with S∕N ¼ 10.
Right column: data with S∕N ¼ 1.
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power could be taken into account, such as those proposed by Sac-
chi (1998) and Ursin et al. (2014) in the context of velocity analysis.
Similar behavior is observed when t0 and xs are fixed and zs and

v are varied (Figure 4). For the analyzed data set, the stack energy
provides the highest resolving power of the three tested measures,
the semblance has a lower resolving power and is quite rough, and
the envelope energy has the lowest resolving power but is the
smoothest. Nonetheless, as compared with Figure 3, the global
maximum is much less pronounced in all cases. This occurs because
there exist several hyperbolas that embrace the microseismic phase
arrival due to the short aperture of the array (see Figure 2). This
nonuniqueness problem does not represent any serious issue for
detecting the microseismic phase arrival, as shown in the “Results”
section. In contrast, it may severely affect the location problem, for
the accurate position of the source in the time-space domain is
poorly constrained when a single monitoring well is used.
In summary of the three tested measures, the envelope energy is

the smoothest and exhibits the lowest resolving power, which
should not complicate the detection problem. However, the stack
energy shows the highest resolving power, but the global maximum
might be harder to find because it occupies a smaller portion of the
model space. Finally, the semblance has a considerable resolving
power, but it is the roughest and the most sensitive to noise. Hence,
the use of envelope-based measures might be preferable for solving
the detection problem. This preliminary conclusion will be sup-
ported by the results shown in next sections. To solve the location
problem (not addressed in this study), a measure with higher resolv-
ing power and relatively robust to random noise, such as the stack
energy, might be desirable.

Detection

Once we select an appropriate coherency-energy measure, which
we call G for the sake of generality, the next step is to find the
parameters that lead to their maximum and associate them to a po-
tential microseismic phase arrival. In practice, we minimize the ob-
jective function,

Φðxs; zs; t0; vÞ ¼ 1 − Gðxs; zs; t0; vÞ; (6)

provided the data have been previously normalized so that
0 ≤ G ≤ 1.
Thus, the pattern recognition problem becomes a multidimen-

sional optimization problem. One of the most effective methods
to find the global minimum of a function is perhaps the grid search,
provided that the parameter discretization is fine enough (Lagos
et al., 2014). In the 2D case illustrated in Figure 1, in which the
x-axis is aligned along the azimuth (which is assumed to be known
a priori), Φðxs; zs; t0; vÞ depends on four parameters. Thus, a grid
search might be very time consuming and not very practical when
processing large data sets. A gradient-based method is not recom-
mended either because the roughness of Φ may lead to local min-
ima. Alternatively, we use a very efficient global search technique
such as VFSA (Ingber, 1989), a powerful optimization algorithm
that converges much faster than conventional SA approaches. Fur-
thermore, because the unknown model variables are allowed to vary
continuously, the accuracy of the results, and the number of itera-
tions required to reach the global minimum, do not depend on the
parameter discretization.

It is important to remark that obtaining the global minimum of Φ
does not guarantee that a microseism phase arrival has been de-
tected because the analyzed time window may contain none. Thus,
a criterion is needed to assess the presence of an event or a “false
positive.” To this end, we propose to compute the following energy
ratio as an indicator of the presence of a phase arrival:

RE ¼ E∕Ēn; (7)

where E is the energy of the potential phase arrival and Ēn is the
corresponding mean energy of the noise, which can be estimated by
averaging the energy of a certain number of random hyperbolas.
Clearly, when RE is close to 1, the probability of having a phase
arrival is low, and the detection should be discarded or checked vis-
ually by the analyst. However, when RE is much larger than 1, the
probability of having a phase arrival is high.

Denoising

Denoising is carried out after a phase arrival has been detected.
For this purpose, we extract the detected hyperbolic window to fo-
cus on the microseismic phase arrival. Then, the data within the
search window of length M that contains a phase arrival are viewed
as a rectangular matrix S of sizeM × N, in whichN is the number of
traces. The SVD of S is given by

S ¼ UΣVT; (8)

where U is a M × N column-orthogonal matrix, Σ is an N × N
diagonal matrix with positive or zero elements called singular val-
ues, and VT is the transpose of an N × N column-orthogonal matrix
(Press et al., 1992). This matrix decomposition always exists, and
it is unique. The columns of U (left singular vectors of S) are the
eigenvectors of the matrix SST , whereas the columns of V (right
singular vectors of S) are the eigenvectors of the matrix STS. In
general, the eigenvectors are ordered so that their corresponding
singular values σi, which are equal to the square roots of the cor-
responding eigenvalues, satisfy σ1 ≥ σ2 ≥ · · ·≥ σN. Then, S can be
expressed as

S ¼
Xq
i¼1

σiuivTi ; (9)

with q ¼ N, and ui, and vi being the corresponding eigenvectors.
Note that uivTi constitute basis images of rank one that form an
orthogonal basis for image representation (eigenimages). Thus, if
q < N, the sum 9 leads to an approximate matrix Sq of rank q. In
addition, Sq is such that the Frobenius norm of the difference between
S and Sq is minimized, and the norm of each eigenimage is equal to the
corresponding singular value (Golub and Van Loan, 1989).
In many applications, such as image compression (Gonzalez and

Wood, 2007), usually a large number of basis images can be ne-
glected. This is especially the case of a microseismic arrival con-
tained in the matrix S because all the signals are expected to share
similar waveforms, at least for relatively short arrays and observatio-
nal distances. Indeed, in the noise-free case, if all theN signal arrivals
were equal to within a scale factor, then σi ¼ 0 for i ¼ 2; : : : ; N, and
S would be a rank one matrix. Thus, S1 ¼ σ1u1vT1 would contain all
the signal energy. As a result, all waveforms will be scaled versions of
each other and most random noise and incoherent signals would be
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attenuated, as we will show in the “Results” section. When wave-
forms vary, the level of noise attenuation and waveform “homogeni-
zation” can be controlled by the number of singular values used in the
approximation because the signal energy would be contained in the
first (and largest) eigenimages.

Synchronization

Until now, we have assumed that the underlying velocity model
was constant. This assumption has allowed us to describe the micro-
seismic time arrivals by cones and/or hyperbolas. Clearly, when the
velocity model is heterogeneous, the signals are not expected to
align in such a geometrically simple way and a single parameter
v used to fit the arrivals as in equation 3 is questionable. In spite
of this, as shown by Blias and Grechka (2013), a homogeneous
medium with an effective constant velocity may provide suitable
constraints to solve the microseismic event location problem and
constitute a simple and effective strategy to fit the arrival times
acceptably well in most scenarios. Naturally, the accuracy of the
estimated hypocenters degrades with velocity heterogeneity. In
solving the detection problem, however, the constant velocity
assumption is less restrictive because the velocity is only used in
defining the search window. In this sense, it is enough that it con-
tains the microseismic phase arrival, but it is not necessary that it
aligns very accurately along the actual hyperbolic phase arrival. It is
emphasized that, as pointed out by Blias and Grechka (2013), this
effective velocity represents a fitting parameter in the same way as
the stacking velocity is a fitting parameter in conventional velocity
analysis of seismic reflection data. Therefore, an estimate of the
actual velocity model is not required for it will be obtained as a
by-product when equation 6 is minimized.
Nevertheless, the proposed method is general enough so as to

accommodate heterogeneous models whenever these models are
available a priori. In fact, the energy or coherence measure is com-
puted along a time-varying window, which may or may not follow a
simple geometric curve or surface, depending on the velocity used
in equation 1. For nonconstant velocities, arrival time t, which de-
fines the time-varying window, can be computed using either ray
tracing or any other technique for every tested triplet ðxs; zs; t0Þ,
instead of ðxs; zs; t0; vÞ, at each SA iteration. Thus, although it is
computationally more demanding, the number of unknowns is re-
duced by one and the optimization of the corresponding cost func-
tion should not be a problem provided the input velocity model is
accurate enough. Actually, most event location methods require the
user to provide an adequate velocity model. This velocity model,
which is usually derived from sonic logs, should be properly cali-
brated before proceeding to estimate the hypocenters (Maxwell,
2014).
Here, we provide an alternative strategy to allow for hetero-

geneous velocity models when these are not available. The useful-
ness of this strategy relies on the assumption that the homogeneous
velocity approximation is good enough so as to provide a hyperbola
that embraces the potential phase arrival, whether the individual
arrivals at each receiver are aligned or not. Then, the individual de-
tected arrivals are synchronized by adding appropriate time shifts.
By this means, it is possible to account for possible deviations be-
tween the modeled and observed arrival times due to the velocity
model assumption. This is a very important process for the denois-
ing stage because SVD filtering assumes that the arrivals are aligned
along the final search window. Thus, once the phase arrival has been

detected in the framework of the constant velocity model assump-
tion, we proceed to compute the average trace envelope within the
final search window and time shift every individual arrival so as to
maximize the crosscorrelation between the average envelope and
the corresponding individual envelopes. This simple crosscorrela-
tion-based synchronization process guarantees that all arrivals are
properly aligned before carrying out the denoising using the
SVD. Finally, the time-shift corrections are undone to obtain the
corresponding denoised microseismic phase arrival. The described
strategy is specially suited for relatively short arrays and when the
impact of the velocity heterogeneities on the time shifts are rela-
tively small. Nevertheless, the strategy can also be applied when the
velocity model is available. In this case, the synchronization process
could account for possible deviations between the modeled and
observed phase-arrival times due to the uncertainties in the velocity
model.

Deflation

Another assumption that we have used so far is that there is a
single phase arrival within the analyzed time window. However,
data may contain P- and S-wave arrivals associated with one or
more microseismic events. Rather than detecting and denoising all
signal arrivals simultaneously, we propose to carry out the detection
and denoising of each individual signal arrival separately by means
of a deflation procedure. In this sense, once a phase arrival has been
detected and denoised using the described methods, the resulting
data are subtracted from the original data, leading to a residual data
set containing any other phase arrival that may have not been de-
tected, denoised, and removed yet. Then, the residual is treated as a
new data set for the detection and denoising. This deflation process
is repeated until no new phase arrivals are detected (e.g., until RE is
smaller than a given threshold value). Note that because the detec-
tion process involves the minimization of the cost function 6 by
means of SA, which is equivalent to locate the most energetic
and/or coherent hyperbolic phase arrival within the analyzed time
window, the deflation procedure implies that the most significant
phase arrivals will be detected first. At the end of the deflation proc-
ess, the residual is expected to contain noise only.
The described deflation process resembles the well-known match-

ing pursuit algorithm, in which seismic traces are decomposed into a
series of “atoms” of decreasing energy selected from a large and re-
dundant dictionary of basis functions (Mallat and Zhang, 1993). Usu-
ally, dictionaries are built based on adaptive time-frequency wavelets
(e.g., Gabor or Morlet wavelets) so that the time-varying signal
structure can be correctly represented by a relatively small number
of atoms (Liu and Marfurt, 2005; Wang, 2010). In the proposed
deflation process, instead of using predefined basis functions or
wavelets, the microseismic signals are represented by a reduced-
rank approximation of the SVD of the detected phase arrivals along
hyperbolic windows.

RESULTS

Synthetic example 1

First, we test the method using the 3C microseismic synthetic
data shown in Figure 2. These data sets contain a single microseis-
mic phase arrival and correspond to a constant velocity model.
Thus, cost function 6 is dominated by a single global minimum
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(although small local minima exist, as shown in Figures 3 and 4),
and the deflation procedure will not be required. No synchroniza-
tion would be required either because the individual arrivals are
aligned along hyperbolas. The deflation and synchronization proce-
dures will be illustrated in synthetic example 2. For statistical purposes,
and for the detection process only, in each case we perform 100 real-
izations and averaged the results. The time window width involved in
the calculation ofG was 30 ms, the maximum number of SA iterations
was 1000, and the search ranges were set as follows: xs ¼ 0 − 1 km,
zs ¼ 0 − 2 km, t0 ¼ 0 − 0.2 s, and v ¼ 1 − 5 km∕s.
Table 1 summarizes the average results and the corresponding

standard deviations. The phase arrival was detected in all the
cases with a high degree of confidence, as denoted by the fact that
RE >> 1 except for the S∕N ¼ 1 case where RE ¼ 1.39� 0.1. We
observe that the uncertainties of the various parameters increase
with a decreasing S/N, as expected, except for xs, t0, and Δtrms

for S∕N ¼ 1, and RE in all cases. The uncertainties associated with
the hyperbola parameters are all very large, even for S∕N ¼ 10, and
their variations with S/N are not very significant. Contrarily, the
uncertainties associated with G and the root-mean-square (rms) er-
ror between the actual arrival times tðxi; ziÞ and the calculated
arrival times t̂ðxi; ziÞ are relatively low. The arrival time rms error
is computed using

Δtrms ¼
�
1

N

XN
i¼1

½tðxi; ziÞ − t̂ðxi; ziÞ�2
�1∕2

: (10)

As for the denoising stage, the results are shown in Figure 5 (left
column) for a particular realization of those averaged in Table 1. In
each case, we use a single eigenimage to approximate the data
within the final search window. We observe that the waveforms and
amplitudes were recovered very well, especially for the higher S/N
cases (Figure 5a and 5b, left column). In these cases, the normalized
crosscorrelations between the noise-free data sets and the corre-
sponding denoised data sets are very high (greater than 0.95), as
shown in Table 2. Although less accurately, the microseismic signal
was also recovered in the very low S/N case (Figure 5c, left col-
umn). Overall, these results are quite reasonable, considering the
fact that the actual signal is badly contaminated in the S∕N ¼ 3 case
(Figure 5b, left column), and they are almost undistinguished (if not
hidden at all) in the S∕N ¼ 1 case (Figure 5c, left column).
For comparison, Figure 5 (right column) shows the results of the

detection and denoising using the apex-shifted hyperbolic Radon
transform approach described in Sabbione et al. (2013). For the
two higher S/N cases, we observe that the accuracy of the results
is very similar to the accuracy obtained using the proposed SVD
filtering, yielding very high crosscorrelation values (see Table 2).
However, the Radon approach degrades significantly in the very
low S/N case. Note that for a fair comparison, we calculate the
crosscorrelations using the denoised images muted with the same
hyperbolic window used in the SVD filtering.
Figure 6 shows the convergence curves for the S∕N ¼ 3 case

(synthetic example 1), using the envelope energy Genv (left panel)
and the stack energy Gse (right panel), respectively. Note that in
most cases, the convergence is achieved well before 1000 iterations,
especially when G ¼ Genv. The convergence is faster when using
the envelope energy measure because it is smoother (and easier to
minimize/maximize) than the stack energy measure (see Figures 3
and 4). The same behavior is observed for the cases with S∕N ¼ 10

and 1 (not shown). In terms of computational cost, the final solution
for a single SA run using either measure is obtained almost instantly
on a standard PC, making the method suitable for real-time
processing.
When we compare the arrival times plotted in Figure 7, we notice

that, due to its higher resolving power, the greater accuracy is ob-
tained when using the stack energy (dotted line) than using the
envelope energy (dashed line) in the S∕N ¼ 1 case (Figure 7, right
panel). However, when the noise level is moderate to low (S∕N ¼ 10,
left panel of the same figure), both measures exhibit similar accuracy,
in spite of a relatively small bias of a few milliseconds. We want to
stress that for the sake of the phase-arrival detection process, both
measures behave satisfactorily well, even for the S∕N ¼ 1 case, in
which the signal is almost indistinguishable. Nonetheless, for the
SVD filtering, it is clear that we need to obtain a hyperbolic window
that follows as closely as possible the curvature of the actual phase
arrival. A moderate bias is of no concern because the individual
waveforms would add up in phase anyway. On the contrary, any
deviation from the actual curvature, as shown in the right panel
of Figure 7 for the envelope-energy case, would certainly diminish
the quality of the results.
Quantitatively, the accuracy of the results was already assessed

by analyzing the normalized crosscorrelations between the clean
(noise free) data and the denoised data as shown in Table 2. Because
the clean data are not available when dealing with field data sets, the
accuracy of the results can be assessed by analyzing, instead, the
normalized crosscorrelations between the raw (noisy) and the
denoised data. Theses quantities are depicted in Figure 8 (left col-
umn), on a channel-by-channel basis. Note that crosscorrelation val-
ues greater than 0.7–0.8 are obtained for most microseismic arrivals,
except for the very low S/N case. Crosscorrelation between the ac-
tual and the denoised signals is viewed as an S/N indicator that can
be used for subsequent microseismic data analysis processes. For
example, they could be used as weights when averaging the indi-
vidual azimuths derived from a hodogram analysis.

Synthetic example 2

The purpose of the second synthetic example is to test the syn-
chronization and deflation processes. This example illustrates the
case in which the underlying velocity model is not constant and
there is more than a single phase arrival. Essentially, we use the
same source-receiver geometry as in the case of the data shown

Table 1. Mean and standard deviation after 100 realizations
(kmax � 1000, G � Gse). Actual event parameters are
�xs; zs; t0; v� � �0.5; 1.6; 0.0; 3.0�.

S∕N ¼ 10 S∕N ¼ 3 S∕N ¼ 1

xs (km) 0.534� 0.122 0.531� 0.126 0.467� 0.110

zs (km) 1.648� 0.086 1.640� 0.092 1.680� 0.161

t0 (s) 0.002� 0.054 0.000� 0.057 −0.003� 0.050

v (km∕s) 3.139� 0.411 3.068� 0.420 2.901� 0.568

Δtrms (s) 0.0031� 0.0016 0.0039� 0.0021 0.0044� 0.0009

G 0.0698� 0.0007 0.0079� 0.0008 0.1050� 0.0011

RE 9.17� 1.67 3.67� 0.29 1.39� 0.10
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in Figure 2, but we include the S-wave arrival with vs ¼ 2.4 km∕s.
For the optimization process, we use the same parameters as in the
example 1: a time window width of 30 ms, a maximum of 1000 SA
iterations, and the following search ranges: xs ¼ 0 − 1 km,
zs ¼ 1 − 2 km, t0 ¼ 0 − 0.2 s, and v ¼ 1 − 5 km∕s. To simulate
possible deviations between the modeled and observed arrival times
due to velocity model inaccuracies, as discussed in the “Synchro-

nization” section, we add to each individual arrival time random
perturbations drawn from a uniform distribution in the range
ð−10; 10Þ ms. A portion of the resulting data (S∕N ¼ 10) is shown
in Figure 9 (top row). Notice that the actual S/N is much lower than
10 for the P-wave in general and for the y-component of the S-wave
in particular. In addition, the P-wave arrivals corresponding to the
first 3 and 4 receivers exhibit a very low S/N. The same observation
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Figure 5. Microseismic signal denoising (synthetic example 1) using the proposed method (left column) and the hyperbolic Radon transform
approach (right column): (a) S∕N ¼ 10, (b) S∕N ¼ 3, and (c) S∕N ¼ 1. In each case, rows 1 to 3 represent the actual data, the detected/
denoised phase arrival, and the residual, respectively.
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is valid for receivers 5–8 of the S-wave arrivals that include a polar-
ity reversal due to the associated source radiation pattern. Figure 10
shows the corresponding arrival times (square dots) and the unper-
turbed hyperbola (solid line).
Because we have two phase arrivals, the deflation process for this

particular example consists of applying the described detection and
denoising procedures twice. The synchronization step was used to
align the individual arrivals before denoising via the SVD filtering.
In the first iteration of the deflation procedure, the most significant
phase arrival (the S-wave arrival) was detected and denoised (Fig-
ure 9, second row). The corresponding residual (Figure 9, third row)
was then input to the detection/denoising process again, leading to
the results shown in Figure 9, fourth row. The fifth row of the same
figure shows the corresponding residual. Finally, the bottom row
shows the full data reconstruction, which is the result of adding
up the data in rows two and four. We observe that the P- and S-wave
phase arrivals were recovered very accurately despite the fact that
the individual arrivals are not aligned along a perfect hyperbola. The
resulting hyperbolas estimated after the minimization of cost func-
tion 6 are depicted in Figure 10 (dashed lines), together with the
arrival times derived from the crosscorrelation-based synchroniza-
tion (cross dots).

Field data example

We select three field records that were acquired in a monitor well
located 500 m away from the extraction well using a vertical array
of eight triaxial receivers spaced 30 m. Figure 11 shows a half-
second window that contains a microseismic phase arrival and the
final window after automatic detection. The search window length
was set to 20 ms, the maximum number of iterations was set to
1000, and the search ranges were set as follows:
xs ¼ 0 − 1 km, zs ¼ 0 − 4 km, t0 ¼ 0 − 0.2 s,
and v ¼ 1 − 5 km∕s. In all cases, the phase
arrival was detected accurately despite the fact
that it is almost missing in some of the compo-
nents (e.g., the x-component), probably due to
the radiation pattern, coupling effects, or noise.
Furthermore, some channels do not exhibit any
useful information either because there is some
problem with the receiver (e.g., channel 5 in the
x-component) or because of the very low S/N
(e.g., the z-component channels in the poor and
very poor quality data records).
Figure 12 (left column) shows the resulting

denoised data sets (q ¼ 3 in equation 9). First,
we observe that the phase arrival was accurately
detected in all the cases, even when the S/N is very low (Figure 12c,
left column). The corresponding confidence indicators RE were 6.2,
2.5, and 1.9 for the moderate, poor, and very poor quality data sets,
respectively. The synchronization process, although applied, did not
yield any significant time shifts. The deflation process, however, led
to RE values of 1.3, 1.2, and 1.3, for the moderate, poor, and very
poor quality data records, respectively. These “close-to-one” values
indicate that the probability of having a second microseismic arrival
or wave phase within the analyzed time window is very low, a fact
that can be corroborated by visually inspecting the original data as
shown in Figure 11.
In Figure 12 (left column), we also observe that consistent wave-

forms were recovered reasonably well in most channels, especially

in the moderate quality data case and at those channels of the poor
and very poor quality data sets in which the S/N is not that severe.
For those channels in which the S/N is extremely low (e.g., channels
1 and 2 on most cases), the denoised data show waveforms that are
compatible with the signal energy and the nearby waveforms. Fi-
nally, we note that the results of the denoising using the Radon ap-
proach (Figure 12, right column) are comparable to those obtained
using SVD filtering, except for the very poor quality data case.
Finally, Figure 8 (right column) shows the corresponding cross-

correlations between the raw data and the denoised data. As expected,
many channels exhibit very low crosscorrelation values, a fact that is
interpreted as an indicator that the information contained in the re-
sulting denoised arrivals may not be very reliable. This is the case, for
example, for channels 6 and 8 of the x-component in the very poor
quality data set, in which the crosscorrelations are approximately 0.1
and lower. On the contrary, some channels and/or components exhibit
relatively high crosscorrelation values (0.7 and above), suggesting
that the corresponding wave arrivals can be used with higher confi-

Table 2. Normalized crosscorrelation between the noise-free
data sets and the corresponding denoised data sets using the
SVD filtering and the Radon approach (synthetic example 1).

S∕N ¼ 10 S∕N ¼ 3 S∕N ¼ 1

SVD Radon SVD Radon SVD Radon

x 0.987 0.986 0.968 0.920 0.748 0.572

y 0.987 0.989 0.978 0.963 0.838 0.818

z 0.984 0.991 0.970 0.933 0.799 0.724
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Figure 6. Very fast simulated annealing convergence curves (20 realizations) for the
synthetic example 1 with S∕N ¼ 3.
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dence for further data processing and/or analysis of the microseis-
mic data.

DISCUSSION

The statistical results summarized in Table 1 for synthetic exam-
ple 1 show that the estimated source parameters (i.e., the cone apex)
for the three tested noise levels are relatively uncertain, but the
arrival times are very accurate. Moreover, the variations in the stan-
dard deviations do not show a clear increase with decreasing S/N.
This suggests that the optimization process (and the detection of the
phase arrival) is robust to random noise and accurate, despite the
fact that there are many similar hyperbolic windows that include
the microseismic signal. For this reason, the estimated hyperbola
parameters should not be assumed to correspond to the actual lo-
cation and occurrence time of the source, but rough estimates of the
actual source parameters. In contrast, the resulting arrival times are
very accurate estimates of the actual values, implying that the pro-
posed technique may be used as an automatic picking tool.
Contrarily to solving the detection problem, the location problem

that aims to determine the source coordinates (cone or hypercone
apex) is a much harder task because the observed arrival times sam-
ple a small portion of the cone or hypercone as shown in Figure 1a.
Furthermore, the underlying velocity model is usually uncertain.
Thus, the accurate position of the cone or hypercone apex in the
time-space domain is poorly constrained when a single monitoring

well is used, and further constraints are required to reduce the un-
certainty in most field experiments (e.g., by adding a second mon-
itoring well). Hence, for 2D scenarios (in which the azimuth has
been determined previously), the location problem is equivalent
to fitting a cone to the previously determined arrival times (for
3D scenarios, the fitting function is a hypercone). Although solving
the location problem is not the purpose of this work, it is worth
keeping in mind that the detection of hyperbolic patterns in data
sets such as those shown in this work implicitly involves the iden-
tification of a cone as defined in equation 3, which in practice is
carried out by minimizing cost function 6.
It is worth mentioning that, although arrival times are assumed to

align along hyperbolas, they are actually on a cone for a 2D sce-
nario, as shown in Figure 1b. Nonetheless, when a single vertical or
slanted linear monitoring well is considered, a hyperbola is obtained
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Figure 9. Microseismic signal denoising with synchronization
through crosscorrelation and deflation (synthetic example 2). From
top to bottom: (1) actual data, (2) first detected/denoised phase
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under the assumption of a constant velocity model. When the under-
lying velocity model is not constant, the geometric alignment of the
arrival times is no longer valid. Still, an effective constant-velocity
model coupled with a crosscorrelation-based synchronization pro-
cedure to align the individual wave arrivals can be used, as illus-
trated in Figure 9 for synthetic example 2. The synchronization
process is required for the validity of the SVD filtering. Otherwise,
the energy of the phase arrival will not be concentrated on the first
eigenimages. One advantage of SVD filtering when coupled with an
appropriate synchronization is that the resulting denoised data
exhibit consistent waveforms throughout all the channels and com-
ponents. In addition, the degree of filtering (and consistency) can be
controlled by the number of eigenimages used in matrix approxi-
mation 9. The use of the first eigenimage only is very convenient
from the computational point of view because its calculation is less
expensive when using, for example, the so-called power methods
(Antia, 2002; Burden and Faires, 2005). Nevertheless, because
the dimensions of S are usually very small, and the denoising is
applied only once after detecting the phase arrival, the computation
of the full SVD is not an issue for the current application.
In the “Results” section, we also compare the results of the pro-

posed method with those obtained using the apex-shifted Radon
approach (Sabbione et al., 2013), for the synthetic and field data
examples. As shown by Sabbione et al. (2013), this technique is
very effective for the detection of microseismic phase arrivals
and to significantly enhance the S/N of the signal. However, it is
computationally more demanding than the method proposed in this
work, especially for the 3D case because a large set of quadruplets
(or quintuplets) needs to be scanned to compute the adjoint operator
used in solving the inverse problem. Instead of a scan, the proposed
method relies on a very efficient search using VFSA, which rapidly
locates the most significant hyperbolic phase arrival within the an-
alyzed data set. As for the accuracy of the results, in synthetic ex-
ample 1, we show that except for the extreme case of S∕N ¼ 1, they
were comparable. In the very low S/N case, the Radon approach
results degraded significantly because the threshold used to restrict
the signal support in the Radon domain was not able to isolate the
hyperbolic phase arrival. In the field data example, we also show
that the results were comparable in the lower S/N cases. We do not
apply the Radon technique for synthetic example 2 because the

phase arrivals were not aligned along hyperbolas and a synchroni-
zation scheme would have been necessary to stack the energy ap-
propriately. Actually, the deflation and synchronization processes
could have been incorporated into the Radon approach scheme,
but this analysis is beyond the scope of this work.
Note that the proposed detection strategy is general and flexible

in the sense that should a nonconstant velocity model be available,
any ray-tracing algorithm could be used to compute the traveltimes
that are subsequently used to calculate the coherency-energy mea-
sure. For simplicity, in the synthetic examples, we assume a 2D
constant velocity model, which needs not be known a priori because
it represents an unknown to be determined together with the param-
eters that define the corresponding hyperbola. In this context, the
extension to 3D is straightforward. For these reasons, the so-called
constant velocity hypothesis that leads to hyperbolic integration paths
is not viewed as a limiting assumption of the proposed method, but as
a means to derive rough estimates whenever the velocity model is
unknown. When a velocity model is available, as in most actual mi-
croseismic processing projects, phase-arrival times should be com-
puted using a forward modeling technique, and the proposed
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method could be applied after a slight modification of the cost func-
tion as described in the Synchronization section. Regarding the
SA search ranges, these are not viewed as limiting assumptions ei-
ther because they can be very large without significantly increasing
the optimization complexity by virtue of the search capabilities
of VFSA. In the synthetic examples, for instance, the search

ranges were xs ¼ 0 − 1 km, zs ¼ 1 − 2 km, t0 ¼ 0 − 0.2 s, and
v ¼ 1 − 5 km∕s. These ranges were wide enough so as to avoid
adding unnecessary assumptions, but restrictive enough so as to pre-
clude nonrealistic hyperbolic patterns.
In its current formulation, the deflation process only allows for

the automatic detection of a single phase at a time within the search
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Figure 12. Microseismic signal denoising (field data example) using the proposed method (left column) and the hyperbolic Radon transform
approach (right column): (a) moderate quality data, (b) poor quality data, and (c) very poor quality data. In each case, rows 1–3 represent the
actual data, the detected/denoised phase arrival, and the residual, respectively.
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window (P- or S-wave splitting). This means that some extra work
is required to identify the different detected phase arrivals and
associate them with one or more microseismic events. There are
various strategies that can be implemented to solve this problem. In
the case that the P- and S-wave velocity models are available, the
method can be easily modified to search for two (or three) hyper-
bolas simultaneously (one for each phase arrival). To this end, one
would have to redefine the coherence function G as the sum of the
coherence functions associated to each potential phase arrival. This
implementation is straightforward. Another option would be to add
extra unknowns to account for the P- and S-wave velocities under
the constant effective velocity assumption, and do the same. Sim-
ilarly, when there are two or more monitoring wells, there would be
one hyperbolic pattern associated with each phase arrival and mon-
itoring well. Then, the contribution of all the hyperbolic patterns
would have to be added altogether into a single coherence function.
The key difference is that the hyperbolas for each monitor well that
are associated with the same phase arrival would share the same
source coordinates and origin time.

CONCLUSIONS

The proposed technique allows one to automatically detect and
denoise a microseismic phase arrival immersed in 3C noisy data.
The technique is fast and accurate, provided a constant velocity
model is appropriate to define the alignment of the arrivals along
an hyperbola. For nonconstant velocity models, the proposed cross-
correlation-based synchronization process allows one to detect and
appropriately denoise nonhyperbolic phase arrivals. In this context,
SVD filtering promotes consistent waveforms throughout all the
channels and components, independently of the regularity observed
in the alignment of the time arrivals. Furthermore, a crosscorrela-
tion-based S/N indicator is provided to assess the significance of the
reconstructed individual arrivals. This indicator could be used as a
weighting factor for further processing and/or analysis of the micro-
seismic data.
A deflation process is proposed to handle more than a single

phase arrival within the analyzed time window. The deflation proc-
ess is iterative, leading to a sequence of detected and denoised phase
arrivals of decreasing energy that is repeated until the residual data
contain no significant coherent energy. A simple energy-ratio con-
fidence indicator that prevents the detection of false positives is pro-
vided for this purpose.
The detection-denoising strategy is very simple because the tun-

ing parameters are just a few and easily set. These include the maxi-
mum number of VFSA iterations and the length of the time window
associated with the hyperbola. In particular, we used 1000 iterations
in all the examples for data windows of 0.5–1 s and a hyperbolic
search window of 20–30 ms, just enough to encompass one period
of the expected signal arrival.
Tests using synthetic and field data demonstrated that the proposed

technique behaved very accurately when applied to moderate- to
high-S/N data sets, and reasonably well when applied to very noisy
data sets. The algorithm output includes the following: (1) estimates
of the origin time, coordinates of the source, an effective velocity
model, and the corresponding traveltimes, (2) consistent denoised
wave arrivals throughout all the channels and components, and
(3) two confidence indicators: one to asses the presence of an actual
phase arrival, and the other to assess the reliability of the derived
wave arrivals. Overall, the detection is robust to random noise, the

derived traveltimes are accurate, and the denoised waveforms are
consistent with the observed data.
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