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Chiral partition functions of conformal field theory describe the
edge excitations of isolated Hall droplets. They are characterized
by an index specifying the quasiparticle sector and transform
among themselves by a finite-dimensional representation of the
modular group. The partition functions are derived and used to
describe electron transitions leading to Coulomb blockade conduc-
tance peaks. We find the peak patterns for Abelian hierarchical
states and non-Abelian Read–Rezayi states, and compare them.
Experimental observation of these features can check the qualita-
tive properties of the conformal field theory description, such as
the decomposition of the Hilbert space into sectors, involving
charged and neutral parts, and the fusion rules.
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1. Introduction

1.1. Disk partition functions

Within the conformal field theory description of edge excitations [1,2], the advanced methods of
rational conformal field theories (RCFT) [3] have been recently applied to discuss the interference of
non-Abelian anyons [4,5] and to determine the bipartite entanglement entropy of topological ordered
ground states [6]. The RCFT methods, and the corresponding properties of topological Chern–Simons
gauge theories, were originally investigated by Verlinde [7], Witten [8], Moore and Seiberg and others
[9]. These authors analyzed the equations of crossing symmetry (duality) of n-point correlators and
the identities relating these functions among themselves on general Riemann surfaces. The fundamen-
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tal sets of relations were shown to be: (i) the modular invariance of the partition functions (1-point
functions) on the toroidal geometry; (ii) the crossing symmetry of the 4-point function on the sphere.
All other equations follow by ‘‘sewing” the surfaces with handles and punctured spheres [9].

The rational theories are characterized by a finite set of quasiparticle excitations with rational
values of spin and statistics (scaling dimensions). The prominent theories of the quantum Hall effect
are indeed RCFTs: the Abelian states, which are (multicomponent) Luttinger liquids described by
charge lattices [10], and the non-Abelian Read–Rezayi states [11], that involve Zk parafermions
[12]. Other theories, such as the W1þ1 models [13] and the Fradkin–Lopez theory [14] for the Jain
states [15], are not rational theories but projections of them, such that their properties can be traced
back to those of RCFTs. Therefore, the rational CFTs are of general physical interest.

In the recent literature, the RCFT methods have been reconsidered and extended [16,5]: the duality
equations for four and higher-point functions have been thoroughfully analyzed, in particular for
studying interferometry of non-Abelian anyons [4]. On the other hand, the modular invariant partition
functions have not been extensively discussed.

In this paper, we provide a rather complete and selfcontained discussion of the partition functions
in the QHE setting. Based on a previous study of partition functions on the annulus geometry [17], we
obtain the chiral partition functions that pertain to the disk geometry and study their properties [18].
These partition functions describe the excitations of isolated droplets of Hall fluid and provide a com-
plete definition of their Hilbert space and its decomposition into sectors; moreover, the fusion rules,
the selection rules for the composition of excitations, are built in.

The general form of the annulus partition function is:
Zannulus ¼
XN

k¼1

hk hk; ð1:1Þ
where the index k runs over the sectors of the theory, described by the functions hk, that are analytic
(resp. anti-analytic) for the inner (resp. outer) edge.

The annulus partition function is defined on the spacetime torus made by the edge circle and the
compact Euclidean time: it is invariant under modular transformations, the discrete coordinate
reparametrizations that respect the double periodicity of the torus geometry [3]. In RCFTs, modular
invariance is achieved as follows: the generalized theta functions hk transform by a unitary linear rep-
resentation of dimension N, that leaves the sesquilinear form (1.1) invariant. An interesting feature is
that the number of sectors N is equal to Wen’s topological order [1], the degeneracy of Hall ground
states on the compact toroidal space (a general proof of this result is reported in Section 2.2 of
[17]). Another fact is that the states in each k sector form a representation of the maximal chiral alge-
bra of the RCFT, whose character is hk.

In Section 2, we introduce the annulus partition functions in the simpler case of Laughlin plateaux,
with filling fraction m ¼ 1=p (p odd); we describe the conditions of modular invariance and solve them
to obtain the form (1.1) with N ¼ p. We show that the geometrical modular conditions have clear phys-
ical meanings in the QHE setting and provide useful building principia. In the Laughlin case, the charac-
ters hk resum all excitations with same fractional charge part, Q ¼ k=pþ Z: the corresponding chiral
algebra is the extension of dUð1Þ current algebra (Luttinger theory) by a field of scaling dimension
h ¼ p=2; the fusion rules for the corresponding excitations are given by the additive group Zp.

In Section 2.3, the disk partition functions are obtained by taking the limit of Zannulus when the inner
circle shrinks to zero, leading to:
ZðaÞdisk ¼ ha; ð1:2Þ
where the sector k ¼ a is chosen according to the type of quasiparticles in the bulk [18,19]. Besides the
Laughlin case, in this paper we provide the expressions of Zdisk for general multicomponent Luttinger
liquid theories, including the Jain states, and for the non-Abelian Read–Rezayi states, using new and
known results of the corresponding annulus partition functions [17,20].
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1.2. Coulomb blockade in quantum Hall droplets

In Fig. 1 is drawn the geometry of the quantum Hall interferometer, namely a bar-shaped sample
with two constrictions [21]. In this device, one can consider two opposite regimes of weak and strong
backscattering of edge excitations at the constrictions: the interference of edge waves is best achieved
in the weak backscattering limit ðaÞ, while the Coulomb blockade takes place for strong backscattering
ðbÞ. In the latter limit, an isolated droplet of Hall fluid is formed and only electrons can tunnel into the
droplet. The electric potential difference is counterbalanced by the electrostatic charging energy lead-
ing to conductance peaks at exact matching. One can observe characteristic peak patterns upon vary-
ing: (i) the area of the dot by means of a side modulation gate or (ii) by tuning the magnetic field (a
third possibility not discussed here could be charging an antidot engineered inside the droplet). The
Coulomb blockade in quantum Hall droplets has been considered in [22,23,19], where it was shown
to provide interesting tests of the conformal field theory description. Indications of experimental fea-
sibility have been recently reported [24].

In this paper, we obtain the peak patterns from the knowledge of the disk partition function
(1.2) [18]. Each ZðaÞdisk resums all excitations corresponding to adding electrons to the droplet within
the a sector (of given fractional charge): level deformations and degeneracies are all accounted there.
We study the peak patterns in the ðS;BÞ plane, corresponding to simultaneous changes of area and
magnetic field, and discuss the bulk-edge relaxation (recombination) of neutral excitations.

In Section 3, we give a detailed account of the Coulomb blockade in the Jain hierarchical states al-
ready presented in [18], as well as the results in two alternative theories for the same states. In Section
4, we discuss the case of Read–Rezayi non-Abelian states, extending the results [22,23,19]. The peaks
follow a periodic pattern with a modulation in the separations that is due to the presence of neutral
excitations. Although the peak patterns are qualitatively similar in the Abelian and non-Abelian cases,
there are specific differences:

(i) in the Abelian Jain hierarchical case, the energy levels possess multiplicities characteristic of the
multicomponent fluids, that can be observed experimentally in the peak patterns; moreover, all
features are independent of the bulk quasiparticle sector a, and bulk-edge relaxations are not
possible,

(ii) in the non-Abelian Read–Rezayi states, there are no degeneracies and the peak patterns depend
on the sector; furthermore, bulk-edge relaxations could be possible, and would wipe out the
dependence on the sector.

In summary, experiments of Coulomb blockade peaks can test the qualitative properties of the CFT
Hilbert space: the fusion rules, the sectors and the multiplicities of excitations. These features are
manifestly shown by the disk partition functions.
Fig. 1. The quantum Hall interferometer: the electron fluid is drawn in the (a) weak and (b) strong backscattering limits.
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2. Partition functions in QHE

2.1. Annulus geometry

The Hilbert space of a RCFT is made by a finite number of representations of the maximally ex-
tended (chiral) symmetry algebra, which contains the Virasoro conformal algebra as a subalgebra
[3]. The representations are encoded in the partition function of the Euclidean theory defined on
the geometry of a space-time torus S1 � S1. Moreover, any RCFT is associated to a Chern–Simons the-
ory, and the torus partition function in the former theory corresponds to a path-integral amplitude for
the latter theory on the manifold S1 � S1 � R, where R is the time axis [8,25].

In the quantum Hall effect, we can consider a spatial annulus with Euclidean compact time of per-
iod b, the inverse temperature: the topology of this space-time manifold is M ¼ S1 � S1 � I, where I is
the finite interval of the radial coordinate. The partition function of edge excitations is defined on the
boundary @M, corresponding to two copies of a space-time torus (see Fig. 2(a)). The excitations are
chiral and anti-chiral waves on the outer ðRÞ and inner ðLÞ edges, respectively. The annulus coordinates
are ðu; tE; rÞ, with r 2 I ¼ ½RL;RR� and tE � tE þ b;u � uþ 2p. We assume that there are no static bulk
excitation inside the annulus; they could be added afterwards but will not be necessary.

We illustrate the method and set the notation by first repeating the analysis of the simpler Laughlin
states [17]. The following spectrum was obtained for the excitations on each edge from the canonical
quantization of the chiral Luttinger liquid [26]:
m ¼ 1
p
; Q ¼ n

p
; L0 ¼

n2

2p
; n 2 Z;p ¼ 1;3;5; . . . : ð2:1Þ
Each pair of values ðQ ; L0Þ are weights of a (highest-weight) representation of the dUð1Þ affine (current)
algebra of the conformal theory with central charge c ¼ 1, L0 being the zero mode of the Virasoro
algebra.

We shall obtain the partition functions Zannulus by using these data and by imposing the modular
invariance conditions. We start by the definition [3]:
Zannulusðs; fÞ ¼ KTr ei2p s LL
0�c=24ð Þ�s LR

0�c=24ð ÞþfQLþfQRð Þ
h i

; ð2:2Þ
where the trace is over the states of the Hilbert space, K is a normalization to be described later and
ðs; fÞ are complex numbers. We recognize (2.2) as the grand-canonical partition function; the total
Hamiltonian and spin of excitations are:
H ¼ vR

R
LR

0 �
c

24

� �
þ vL

R
LL

0 �
c

24

� �
þ Vo Q L � Q R

� �
þ const:; J ¼ LL

0 � LR
0: ð2:3Þ
The energy is proportional to the conformal dimension, E ¼ ðv=RÞðL0 � c=24Þ, with c parameterizing
the Casimir energy [3]. The real and imaginary parts of ðs; fÞ are related to the inverse temperature
b and Fermi velocity v ;2pR Ims ¼ vb > 0, the ‘‘torsion” Res, the chemical potential lb ¼ 2pRef and
the electric potential between the two edges Vob ¼ 2pImf. Since the Virasoro dimension is roughly
the square of the charge, the partition sum is convergent for Ims > 0 and f 2 C. Let us momentarily
Fig. 2. The (a) annulus and (b) disk geometries.
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choose a symmetric Hamiltonian for the two edges by adjusting the velocities of propagation of exci-
tations, vL=RL ¼ vR=RR.

As usual in RCFT, one can divide the trace in (2.2) into a sum over pairs of highest-weight dUð1Þ rep-
resentations (one for each edge) and then sum over the states within each representation. The latter
give rise to the dUð1Þ characters [3]:
ChðQ ; L0Þ ¼ Trj cUð1Þ ei2p s L0�c=24ð ÞþfQð Þ� �
¼ qL0 wQ

gðqÞ ; ð2:4Þ
where g is the Dedekind function,
gðqÞ ¼ q1=24
Y1
k¼1

1� qk
� �

; q ¼ ei2ps; w ¼ ei2pf: ð2:5Þ
Any conformal field theory with c P 1 contains an infinity of Virasoro (and dUð1Þ) representations [3];
therefore, we must further regroup the dUð1Þ characters into characters hkðs; fÞ of an extended algebra
in order to get the finite-dimensional decomposition:
Zannulus ¼
XN

k;k¼1

N k;l hk hc
l: ð2:6Þ
In this equation, the bar denotes complex conjugation and the suffix ðcÞ is the charge conjugation C,
acting by: Q ! �Q ; h! hc. The inner (resp. outer) excitations are described by hk (resp. hc

l), according
to the definition (2.2). The coefficients N k;l are positive integers giving the multiplicities of sectors of
excitations: they are not known in general, but in cases of explicit path-integral calculations. In the
following, we shall self-consistently determine the N k;l by imposing modular invariance and some
physical requirements.

2.2. Modular invariance conditions

The torus geometry T can be described as the quotient of the complex plane C by the lattice of
translations K generated by the two periods x1 and x2:
T ¼ C

K
; z � zþ n1x1 þ n2x2; z 2 C; n1; n2 2 Z: ð2:7Þ
The same lattice can also be generated by another pair of periods x01 and x02, that are related by linear
integer transformations with unit determinant, i.e by SLð2;ZÞ mappings. Owing to scaling invariance,
the torus is characterized by the complex modulus, s ¼ x2=x1, with Ims > 0. Equivalent coordinates
on the torus are related by the modular transformations,
s0 ¼ asþ b
csþ d

; a; b; c;d 2 Z; ad� bc ¼ 1: ð2:8Þ
The modular group is thus given by C � PSLð2;ZÞ ¼ SLð2;ZÞ=Z2 (the quotient is over the global sign of
transformations): it is known that the group has two generators, T : s! sþ 1 and S : s! �1=s, sat-
isfying the relations S2 ¼ ðSTÞ3 ¼ C, where C is the charge conjugation matrix, C2 ¼ 1 [3] (more details
are given in Appendix A).

The invariance of the partition function under modular transformations is therefore given by:
Zannulus
�1
s
;
�f
s

� 	
¼ Zannulus sþ 1; fð Þ ¼ Zannulus s; fð Þ: ð2:9Þ
Note that the other parameter f transforms under (2.8) as a coordinate on the torus, that acquires the
scale factor: f0 ¼ f=ðcsþ dÞ.

In the following discussion, these geometrical conditions will be obtained from physical require-
ments on the QHE system, thus showing that they are appropriate for the CFT description of edge
excitations.

The most interesting modular transformation exchanges the two periods of the torus,
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S : Z �1
s
;� f

s

� 	
¼ Z s; fð Þ: ð2:10Þ
From the geometrical standpoint, the equivalence of the periods is apparent in the Chern–Simons the-
ory: the RCFT partition function corresponds to an amplitude on M ¼ S1 � S1 � I, where time is tE 2 I
and the two spatial periods are on the same footing [8,25].

From the physical point of view, the S invariance amounts to a completeness condition for the spec-
trum of the RCFT: upon exchanging time and space, it roughly imposes that the set of states at any
time tE ¼ to is the same as that ensuring time propagation [3]. Furthermore, in RCFT partition func-
tions (2.6), the S transformation is realized by a linear transformation of the characters,
ha �
1
s
;� f

s

� 	
¼ eiu

XN

b¼1

Sab hb s; fð Þ; ð2:11Þ
(u is an overall phase to be specified later). Thanks to the Verlinde formula [7], the matrix Sab deter-
mines the fusion rules of the RCFT that express the consistency and completeness of the operator con-
tent of the theory.

Let us remark that the completeness of the operator content can also be enforced by solving the
crossing symmetry of 4-point functions, where the fusion rules determine the possible intermediate
channels. However, several examples in the literature show that crossing symmetry may be satisfied
on smaller set of sectors than those required by the S modular invariance; the latter is a stronger con-
sistency condition requiring ‘‘maximal” extension of the operator content [3].

The invariance under the T transformation has the following physical motivation. The partition
function should describe physical excitations of the whole sample that can be measured in conduction
experiments: these are electron-like and have integer or half-integer spin. Therefore, anyon excita-
tions should pair on the two edges to form them. This condition is enforced by,
T2 : Z sþ 2; fð Þ � Tr � � � e i2p 2 LL
0�LR

0ð Þ
h i

¼ Z s; fð Þ: ð2:12Þ
The presence of fermionic states in the QHE implies the weaker modular invariance T2: actually, S and
T2 generate a subgroup of the modular group, Ch � C, as discussed in Appendix A.

The partition function should also be invariant under independent transformations of the coordi-
nate f, that express its double periodicity: f � fþ 1 � fþ s. From the physical point of view, these
geometrical conditions correspond to requirements on the charge spectrum.

In absence of bulk quasiparticles, the edge excitations should have global integer charge,
QL þ QR 2 Z, which measures the number of electrons injected into the system by attaching leads
to the two edges. This condition reads,
U : Z s; fþ 1ð Þ � Tr � � � ei2p QRþQLð Þ
h i

¼ Z s; fð Þ: ð2:13Þ
It follows that fractionally charged excitations at one edge must pair with complementary ones on the
other boundary. Consider, for example, m ¼ 1=3; we can imagine to drop in an electron, which splits
into the pair ðQL;Q RÞ ¼ ð1=3;2=3Þ, or into the others, ð0;1Þ; ð2=3;1=3Þ; ð1;0Þ.

The different splittings should all be possible and be equally accounted by the partition function,
leading to a further invariance. They are related one to another by tuning the electric potential Vo

in (2.3): the change corresponding to adding one flux quantum inside the annulus is, Vo ! Vo þ 1=R
(in our notations e ¼ c ¼ �h ¼ 1), and corresponds to f! fþ s. The invariance of the partition function
is therefore,
V : Z s; fþ sð Þ ¼ Z s; fð Þ: ð2:14Þ
The transformation of the partition function under f! fþ s is called ‘‘spectral flow” [26,17,27], for
reasons that will be clear momentarily.

We now solve the conditions ðT2; S;U;VÞ for the c ¼ 1 theory. First consider the U condition,

QL þ QR 2 Z: we collect left dUð1Þ representations which have integer-spaced charges, Q L ¼ k=pþ Z,

and later combine them with the corresponding right representations. The sums of dUð1Þ characters
give theta functions with rational characteristics:
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hk ¼ e�
p
p

Imfð Þ2
Ims

1
g

Kk s; f; pð Þ ¼ e�
p
p

Imfð Þ2
Ims

1
g
X
k2Z

e
i2p

�
sðpkþkÞ2

2p þf k
pþkð Þ
	
; ð2:15Þ
indeed showing Q L ¼ k=pþ Z; k ¼ 1;2; . . . ; p. (The non-analytic prefactor is explained later). The
transformations T2; S;U;V of these generalized characters are found to be (see Appendix A),
T2 : hk sþ 2; fð Þ ¼ ei2p k2
p � 1

12

� �
hk s; fð Þ;

S : hk �
1
s
;� f

s

� 	
¼ eippRef2

sffiffiffi
p
p

Xp�1

k0¼0

ei2pkk0
p hk0 s; fð Þ; ð2:16Þ

U : hk s; fþ 1ð Þ ¼ ei2pk=p hk s; fð Þ;

V : hk s; fþ sð Þ ¼ e�i2pp RefþRes
2ð Þhkþ1 s; fð Þ:
These transformations show that the generalized characters hk carry a unitary representation of the
modular group, which is projective for f–0 (the composition law is verified up to a phase).

The corresponding sums of right dUð1Þ representations are given by hc
l carrying charge

Q R ¼ l=pþ Z. Finally, the U condition (2.13), applied to Zannulus (2.6), requires that left and right
charges obey: kþ l ¼ 0 mod p. This form of the partition function also satisfies the other modular con-
ditions, T2; S;V , by unitarity. We finally obtain the modular invariant annulus partition function of
Laughlin’s plateaus (c ¼ 1):
Zannulus ¼
Xp

k¼1

hk hk: ð2:17Þ
The coefficients, N k;l ¼ dðpÞkþl;0, specify the multiplicities and pairings of sectors.
Let us add some remarks on this result.

(i) The U condition on the charge spectrum dominates the other ones, because it is linear in the
character index k: it leads to a unique modular invariant partition function that is left–right
diagonal. In other applications of RCFTs, as e.g. in statistical mechanics, the f variable is not usu-
ally considered, as well as the corresponding U;V conditions. Therefore, the spectrum of solu-
tions of the remaining conditions, T; S, can be rather rich, leading to left–right non-diagonal
invariants, such as the ADE classification of c < 1 minimal theories [28,3]. In the QHE setting,
non-diagonal invariants could possible when neutral sectors of excitations (not constrained
by U) are included in the theory. Examples for multicomponent Luttinger liquids have been
found in [17], but their physical relevance is unclear. In this paper, we shall only consider diag-
onal modular invariants.

(ii) The V transformation illustrates the spectral flow: the addition of a quantum of flux through the
center of the annulus is a symmetry of the Hamiltonian but causes a drift of the quantum states
among themselves. Indeed, the Hamiltonian (2.3) was made invariant by adding a constant
capacitive energy in each sector, Ec ¼ RV2

o=2p, through the non-analytic prefactor in the charac-
ters (2.15), expð�mpðImfÞ2=ImsÞ [17,27]. The modified spectrum of excitations (2.1) is:
EnL ;nR ¼
v
R

1
2p

nL þ RVoð Þ2 þ nR � RVoð Þ2
h i

; ð2:18Þ
that has vanishing minimum in both edges for any value of Vo. The spectral flow, f! fþ s, was
actually first discussed in Laughlin’s thought experiment defining the fractional charge [29,27].
Since the charge transported between the two edges by adding a flux quantum is equal to the Hall
conductivity, we find that,hkðfþ sÞ / hkþ1ðfÞ, does correspond tom ¼ 1=p. This provides a check of
the normalization of f.

(iii) In the expressions (2.17) one can also verify that all the excitations have integer monodromies
with respect to the electrons:
J½ne� þ J½n� � J½ne þ n� 2 Z; ð2:19Þ
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where ðne ¼ p;nÞ are the integers in (2.1) corresponding to one electron and a generic excitation,
respectively.

(iv) The generalized characters hk (2.15) correspond to the extension of the dUð1Þ algebra by a chiral
current Jp. This field is included in the vacuum representation of the extended algebra, and can
be identified from the first non-trivial term in the expansion of h0 into dUð1Þ characters: Jp has
half-integer dimension L0 ¼ p=2 and unit charge. The highest-weight representations of this
extended RCFT algebra correspond to generalized primary fields /k, whose charge is defined mod-
ulo one (the charge of Jp); namely, they collect all chiral excitations with the same fractional
charge. The fusion rules for these fields are clearly given by the addition of charges modulo p,
/i � /j � Nk
ij /k; Nk

ij ¼ dðpÞiþj;k; i; j; k 2 Zp; ð2:20Þ
that closes on the finite set of p elements.
The same fusion algebra can be obtained by using the Verlinde formula [7],
Nijk ¼
Xp

n¼1

SinSjnSkn

S0n
: ð2:21Þ
Inserting the S modular transformation obtained in (2.16), we find: Nijk ¼ dðpÞiþjþk;0, that is equiv-
alent to (2.20) by lowering one index with the charge–conjugation matrix Cij ¼ Nij0 [17].

2.3. Disk geometry

From the annulus partition function (2.17), we can deduce the disk partition function by letting the
inner radius to vanish, RL ! 0 (see Fig. 2(b)). To this effect, the variable s in hk should be taken inde-
pendent of s: Ims–� Ims;vR=RR–vL=RL. The annulus partition function is no longer a real positive
quantity but remains modular invariant, up to irrelevant global phases. In the limit RL ! 0, the hk

are dominated by their jqj ! 0 behavior: therefore, only the ground state sector remains in (2.17),
leading to hk ! dk;0, up to zero-point energy contributions. We find: Zð0Þdisk ¼ h0. If, however, there are
quasiparticles in the bulk with charge, Q Bulk ¼ �a=q, the condition of total integer charge selects an-
other sector, leading to:
ZðaÞdisk ¼ ha: ð2:22Þ
Therefore, the disk partition functions are given by the chiral generalized characters ha, whose index is
selected by the bulk boundary conditions. The set of functions is modular covariant, i.e. it carries a uni-
tary finite-dimensional representation of the modular group, as shown by (2.16).

These partition functions describe the edge physics of isolated Hall droplets with static bulk quasipar-
ticles. Note that each sector has a specific lower-state energy that has been discarded in (2.22): indeed, it
is difficult to compare edge energies of different sectors in the disk geometry, because they depend on the
external work for adding gapful bulk quasiparticles and other environmental effects [26]. We also re-
mark that the identification of ZðaÞdisk from Zannulus is unique because the sectors relative to the chiral exci-
tations on the outer edge of the annulus (accounted by hk) are paired to those of the inner edge (hk).

3. Coulomb blockade in Abelian states

3.1. Conductance peaks in Laughlin states

The Coulomb blockade takes place when an electron tunnels in a small quantum dot: the current
cannot flow freely because the charging energy may overcame the work done by the electric potential,
DEðnÞ ¼ �neV þ ðneÞ2

2C
; DQ ¼ �ne; ð3:1Þ
where C is the capacitance and V the potential. It follows that tunneling is possible when the two terms
compensate exactly, DEðnÞ ¼ 0, leading to isolated peaks in the current because the charge is quantized.
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In QHE droplet of Fig. 1, the corresponding stationary condition for Coulomb blockade peaks is:
Fig.
ES;Bðnþ 1Þ ¼ ES;BðnÞ: ð3:2Þ
Here, ES;BðnÞ are the energies for adding n electrons to the edge, that depend on external parameters
such as the droplet area S and the magnetic field B.

The dependence on area deformations DS can be included in the edge spectrum of Laughlin states
(2.1) as follows [23]. The variation of the droplet area induces a deviation of the background charge
Q bkg with respect to its (vanishing) equilibrium value, yielding a contribution to the charge accumu-
lated at the edge, Q ! ðQ � Q bkgÞ. The edge energies acquire a electrostatic contribution that can be
derived near equilibrium by observing that, E / ðQ � Q bkgÞ2. For m ¼ 1=p, we obtain:
Ek;rðnÞ ¼
v
R

kþ pn� rð Þ2

2p
; r ¼ BDS

/o
; ð3:3Þ
where r is a dimensionless measure of area deformations.
The Coulomb peaks are obtained by looking for degenerate energy values with DQ ¼ n, i.e. within the

same fractional charge sector k: in Fig. 3(a), we show the dependence of E0;rðnÞonr: the degeneracy con-
dition (3.2) is satisfied at the midpoints between two consecutive parabolas; there, the electrons can tun-
nel into the dot yielding the conductance peaks. The separation between two consecutive peaks is:
Dr ¼ p ¼ 1
m
; DS ¼ e

no
: ð3:4Þ
This result is consistent with the classical picture for which the change in the area precisely matches
the value required for incorporating one electron at the average density no [22].

We now reobtain the conductance peaks from the analysis of the disk partition function, illustrat-
ing the method that will be extensively used in the following sections. The disk partition function for
m ¼ 1=p (2.22) including the area deformation reads, up to irrelevant factors:
hk ¼ Kkðs; f; pÞ ¼ 1
g
X1

n¼�1
exp i2p s ðnpþ k� rÞ2

2p
þ f

npþ k
p

 !" #
: ð3:5Þ
Consider the Hall droplet without quasiparticles in the bulk corresponding to k ¼ 0: from the charac-
ter K0 (3.5), we can extract the energies and charges of the electron excitations as the factors multi-
plying s and f, respectively. Upon deformation of the dot area, the ground state energy,
E � r2=2p;Q ¼ 0, and that of the one-electron state, E � ðr� pÞ2=2p;Q ¼ 1, become degenerate at
the midpoint r ¼ p=2, leading again to (3.4). In the presence of quasiparticles in the bulk with charge
Q ¼ �a=p, one should repeat the analysis using the partition functions ha (2.22): one obtains the same
peak separations, because the energies in the different k sectors are related by global shifts of r.

We see that the disk partition function is rather convenient for studying the Coulomb blockade: its
decomposition into sectors clearly indicates the allowed electron transitions and considerably simpli-
fies the analysis of more involved theories of the following sections. The strategy will be to first obtain
the modular invariant Zannulus and then analyze the deformed energy spectra within each disk sector.
3. Energy levels as a function of the area deformation Dr: (a) Laughlin states and (b) m ¼ 2 Jain hierarchical states.



474 A. Cappelli et al. / Annals of Physics 325 (2010) 465–490
We now discuss the peaks for variations of the magnetic field DB. The chiral Luttinger RCFT is sen-
sitive to flux changes, d ¼ D/=/o ¼ SDB=/o, as follows [17]: the partition functions are deformed by
Kk ! Kkþd, in (3.5) with r ¼ 0, i.e. the energies and charges of all states are changed. For one quan-
tum of flux, d ¼ 1, each k-sector (hk) goes into the following one: this is the spectral flow discussed in
the previous section. For example, the ground state h0 becomes the one-anyon sector h1, meaning that
the higher B has induced a quasi-hole of charge �1=q in the bulk and the edge states have adjusted
correspondingly [27].

As a matter of fact, the dependence of conductance peaks on variations of B is the same as that for
variations of S, because the edge energies depend of the combined variable ðd� rÞ,
Ek;r;dðnÞ ¼
v
R

kþ pnþ d� rð Þ2

2p
: ð3:6Þ
It is nevertheless important to stress the difference between S and B deformations: the former is a
non-relativistic electrostatic effect, causing no change in the quantization of the Luttinger liquid the-
ory. The latter is the relativistic effect of the chiral anomaly, leading to charge nonconservation at the
edge and the spectral flow [26].

3.2. Partition functions of hierarchical states

The multi-component generalization of the Abelian theory of the previous section is obtained as
follows [10]: the electron fluid is assumed to have m independent edges, each one described by a Lutt-
inger liquid, altogether yielding the dUð1Þ	m affine algebra [3]. Its representations are labeled by a vec-
tor of (mathematical) charges ra; a ¼ 1; . . . ; m, which spans an m-dimensional lattice, ~r ¼

P
i
~v ðiÞni,

ni 2 Z, that is the closed set for the addition of charge vectors (the Abelian fusion rules). The physical
charge is a linear functional of~r and the Virasoro dimension is a quadratic form, both parameterized
by the metric of the lattice, K�1

ij ¼ ~v ðiÞ �~v ðjÞ. The spectrum is therefore:
Q ¼
Xm

i;j¼1

ti K�1
ij nj; ni 2 Z;

L0 ¼
1
2

Xm

i;j¼1

ni K�1
ij nj;

m ¼
Xm

i;j¼1

ti K�1
ij tj: ð3:7Þ
In these expressions, K is an arbitrary symmetric matrix of couplings, with integer elements, odd on
the diagonal, due to requirement that the spectrum contains m electron-like excitations [10]. The vec-
tor~t can be set to,~t ¼ ð1; . . . ; 1Þ, in a standard basis [10]. The spectrum (3.7) is very general due to the
many free parameters in the K matrix: these can actually be chosen to reproduce the results of all
known hierarchical constructions of wave functions [1].

The prominent Jain hierarchical states [15], with filling fraction m ¼ m=ðms
 1Þ;m ¼
2;3; . . . ; s ¼ 2;4; . . ., where shown to correspond to the matrices Kij ¼ 
dij þ s Pij, where s > 0 is an
even integer and Pij ¼ 1; 8 i; j ¼ 1; . . . ; m [10]. The Jain spectrum is:
m ¼ m
ms
 1

; s > 0 even integer; c ¼ m;

Q ¼ 1
ms
 1

Xm

i¼1

ni;

L0 ¼ 

1
2

Xm

i¼1

n2
i �

s
ms
 1

Xm

i¼1

ni

 !2
0@ 1A: ð3:8Þ
(Let us first disregard the case with the minus signs, corresponding to antichiral neutral excitations).
The spectrum (3.8) is rather peculiar because it contains mðm� 1Þ neutral states with unit Virasoro



A. Cappelli et al. / Annals of Physics 325 (2010) 465–490 475
dimension, ðQ ; L0Þ ¼ ð0;1Þ. By using a bosonic free field construction, one can show that these are chi-
ral currents J~b, that can be labeled by the simple roots of SUðmÞ and generate the dUð1Þ 	 dSUðmÞ1 affine
algebra at level one (c ¼ m) [10,13].

The annulus partition functions for multicomponent Luttinger liquids were obtained in [17]: we
recall their expressions, first for general K-matrix theories and then for the Jain hierarchy.

As in the previous section, the U modular condition is the most relevant one. In order to solve it, we
first group the states with integer-spaced charges in the K lattice (3.7). These are clearly parameterized
by~n ¼ K~‘þ~k, with ~‘ 2 Zm. Since K is an integer matrix, there is a finite number of~k values (the sectors
of the RCFT), belonging to the quotient of the ~n lattice by the ~‘ lattice:
~k 2 Zm

KZm : ð3:9Þ
As in Section 2.2, the dUð1Þ characters in each sector sum up into m-dimensional generalization of the
theta functions (2.15):
h~k ¼ e�p ~t T K�1~t Imfð Þ2
Ims � 1

gðqÞm
X

~‘ 2 Zm

ei2p s
2 K~‘þ~kð ÞT K�1 K~‘þ~kð Þþf ~t T ~‘þK�1~kð Þ
� �

: ð3:10Þ
Their T2; S;U;V transformations are straightforward generalizations of (2.16) and can be found in [17]:
again, the characters (3.10) carry a finite-dimensional unitary projective representation of the modu-
lar group. The dimension of the representation is jdet Kj from (3.9) and matches the Wen topological
order.

The U invariance of the annulus partition function, written as a sesquilinear form of the characters
(3.10), implies the equation~t T K�1ð~kþ~lÞ 2 Z for the left and right weights. Its solutions depend on
the specific form of K; here, we shall only discuss the diagonal solution, ~kþ ~l ¼ 0, that also solves
the other ðT2; S;VÞ conditions. Therefore, the modular invariant partition function is:
Z
cUð1Þ	m

annulus ¼
X

~k2Zm=KZm

h~k h~k: ð3:11Þ
In the Jain hierarchical case, the dSUðmÞ1 symmetry can be used to rewrite sums of ðm� 1Þ-dimensionaldUð1Þ characters into generalized characters pertaining to representations of this extended symmetry:
indeed, all states in the ðm� 1Þ-dimensional sectors have integer-spaced dimensions. The dSUðmÞ1 rep-
resentations and characters were described in Ref. [30]: there are m highest-weight representations,
corresponding to completely antisymmetric tensor representations of the SUðmÞ Lie algebra. They are
characterized by an additive quantum number modulo m, the so-called m-ality, a ¼ 1; . . . ; m: thus, thedSUðmÞ1 fusion rules are isomorphic to the Zm group. Since the dSUðmÞ1 excitations are neutral, we shall
need their characters for f ¼ 0, denoted by vaðs;0Þ: they clearly obey vaðs;0Þ ¼ va
mðs;0Þ. The Viras-
oro dimension of dSUðmÞ1 representations is:
ha ¼
aðm� aÞ

2m
; a ¼ 0; . . . ; m� 1; ð3:12Þ
The explicit form of the dSUðmÞ1 characters will not be necessary in the following, but their leading
jqj ! 0 behavior:
vaðsÞ �
m

a

� 	
exp i2psvn

v
aðm� aÞ

2m
�m� 1

24

� 	� �
þ � � � ; a ¼ 0;1; . . . ; m� 1: ð3:13Þ
In this expression we introduced a different Fermi velocity vn for neutral edge excitations, whose
experimental value is expected to be, vn � v=10 [22].

The modular transformations of dSUðmÞ1 characters are [30],
T2 : va sþ 2ð Þ ¼ ei2p aðm�aÞ
m �m�1

12ð Þ va sð Þ;

S : va �
1
s

� 	
¼ 1ffiffiffiffiffi

m
p

Xm

a0¼1

e�i2paa0
m va0 sð Þ; ð3:14Þ
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while U;V do not act on neutral states.
Furthermore, the dUð1Þ states in dUð1Þ 	 dSUðmÞ1 theories can be described by the Zp characters (2.15)

of Section 2.2, with free parameter p;Kkðs; f; pÞ, with k ¼ 1; . . . ; p. In summary, the modular invariance
problem can be reformulated in the two-dimensional basis of Kkva characters. The derivation of the
partition functions in this basis [17] is rather instructive for the analysis of Read–Rezayi states of
the next section.

The Jain spectrum (3.8) can be rewritten in a basis that makes apparent the decomposition intodUð1Þ and dSUðmÞ1 sectors: upon substitution of,
n1 ¼ lþ
Xm

i¼2

ki 
 a; ni ¼ l� ki; i ¼ 2; . . . ; m; ð3:15Þ
where l; ki 2 Z and a is the dSUðmÞ1 weight, we find:
m ¼ m
ms
 1

; Q ¼ ml
 a
ms
 1

; L0 ¼
ml
 að Þ2

2mðms
 1Þ 

aðm� aÞ

2m
þ r; r 2 Z: ð3:16Þ
Consider these formulas with the upper signs, the other choice will be discussed later. One recognizes
the dSUðmÞ1 contributions to L0 (3.12), while the dUð1Þ part identifies the parameters of Kk as
p ¼ mp̂; p̂ ¼ ðmsþ 1Þ and k ¼ mlþ a mod ðmp̂Þ; note that p̂ ¼ 1 mod m and k ¼ a mod m, and that
p̂;m are coprime numbers ðp̂;mÞ ¼ 1. The normalization of f is chosen for Kk (2.15) to reproduce
the spectrum (3.16): this is, Kkðs;mf; pÞ.

The tensor characters Kkva form a ðm2p̂Þ dimensional basis on which the S transformation act as the
Zmp̂ � Zm Fourier transform. The analysis of the spectrum shows that charged and neutral excitations
are paired by the condition k ¼ a mod m: therefore, we should choose a subspace of tensor characters
that obeys this condition and is closed under modular transformations. The dimension of this sub-
space is the topological order p̂. A well-known trick to reduce the space of the discrete Fourier trans-
form by a square factor m2 [28] is to consider the following m-term linear combinations of characters
obeying k ¼ a mod m [17],
Chk s; fð Þ ¼
Xm

b¼1

Kkþbp̂ s;mf; mp̂ð Þ vkþbp̂ mod m s;0ð Þ; k ¼ 1; . . . ; mp̂: ð3:17Þ
These characters satisfy Chkþp̂ ¼ Chk; thus, there are p̂ independent ones, which can be chosen to be
(due to p̂ ¼ 1 mod m):
ha ¼ Chma; a ¼ 1; . . . ; p̂; p̂ ¼ msþ 1: ð3:18Þ
One can check that these generalized characters ha carry a p̂ dimensional representation of the mod-
ular transformations ðT2; S;U;VÞ, with Sab / expði2p mab=p̂Þ=

ffiffiffî
p

p
. The modular invariant annulus par-

tition function is therefore the diagonal expression in these characters:
Z
cUð1Þ� dSUðmÞ1

annulus ¼
X̂p

a¼1

ha ha ¼
X̂p

a¼1

Xm

a¼1

Kmaþap̂ va

 ! Xm

b¼1

Kmaþbp̂ vb

 !
: ð3:19Þ
Indeed, the characters ha can be shown to be equal to the v~k in (3.10) for K ¼ 1þ sC, once the corre-
sponding dUð1Þ charges are identified [17].

The V transformation,
V : ha s; fþ 1ð Þ ¼ e�i2pm
p̂ RefþRes

2ð Þ haþ1 s; fð Þ; ð3:20Þ
shows that the minimal transport of charge between the two edges is m times the elementary frac-
tional charge; this is the smallest spectral flow among the states contained in (3.17) which keeps b
constant, namely which conserves the dSUðmÞ1 quantum number carried by the neutral excitations.
The Hall current, m ¼ m=p̂, is thus recovered.
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We now give the partition functions for Jain states with charged and neutral excitations of opposite
chiralities on each edge, corresponding to m ¼ m=ðms� 1Þ in (3.8) [17]. The chirality of the neutral
excitations can be switched by a simple modification of the characters (3.17),
Chð�Þk ¼
Xm

b¼1

Kkþap̂ s;mf; mp̂ð Þ vkþbp̂ mod m; k ¼ 1; . . . ; mp̂ ¼ mðms� 1Þ: ð3:21Þ
This gives again a representation of the modular group for p̂ ¼ ms� 1 > 0. The U condition implies the
partition function:
Zð�Þannulus ¼
X̂p

a¼1

Xm

a¼1

Kmaþap̂ va

 ! Xm

b¼1

Kmaþbp̂ vb

 !
: ð3:22Þ
that is modular invariant and reproduces the spectrum (3.8) for m ¼ m=ðms� 1Þ.

3.3. Coulomb peaks in hierarchical states

The following disk partition functions can be extracted from the annulus expressions (3.19),
Z
cUð1Þ	 dSUðmÞ1

disk;a ¼ ha ¼
Xm

b¼1

Kmaþbp̂ðs;mf; mp̂Þ vbðsÞ; a ¼ 1; . . . ; p̂; ð3:23Þ
where p̂ ¼ msþ 1. The novelty w.r.t. the Laughlin case of Section 3.1, is that each sector contains com-
bined charged and neutral excitations, that are described by the Kk (3.5) and vaðsÞ (3.13) characters,
respectively. For example, in the m ¼ 2=5 case, ðm ¼ 2; p̂ ¼ 5Þ, there are two neutral characters that
combine with ten charged ones to obtain the following five sectors:
h0 ¼ K0ðs;2f; 10Þ v0 þ K5ðs;2f; 10Þ v1;

h
1 ¼ K
2ðs;2f; 10Þ v0 þ K5
2ðs;2f; 10Þ v1;

h
2 ¼ K
4ðs;2f; 10Þ v0 þ K5
4ðs;2f; 10Þ v1: ð3:24Þ
We now search for degeneracy of energy levels differing by the addition of one electron, DQ ¼ 1. Con-
sider for definiteness the m ¼ 2=5 case without any bulk quasiparticle, i.e. h0 above. From the expres-
sions (3.5), (3.23) and (3.24), one finds that the first term K0 resumes all even integer charged
excitations, while K5 the odd integer ones. Therefore, the first conductance peak is found when the
lowest energy state in K0 v0, i.e. the ground state, with E ¼ ðvc=RÞð2rÞ2=20;Q ¼ 0, becomes degener-
ate with the lowest one in K5 v1, with E ¼ ðvc=RÞð�5þ 2rÞ2=20þ vn=4R;Q ¼ 1. The next peak occurs
when the latter becomes degenerate with the first excited state (Q ¼ 2) in K0 v0, and so on. Owing to
the contribution of the neutral energy in v1 (cf. (3.13)), the level matching is not midway and there is a
bunching of peaks in pairs, with separations r ¼ 5=2� vn=2v (see Fig. 3(b)). Note that in the previous
energies we modified r! 2r, (cf. (3.5)), in order to respect the flux-charge relation, DQ ¼ mD/=/o.

For general m values, the result can be similarly obtained by comparing the energies in consecutive
pairs of terms, b and bþ 1, in h0 (3.23). One finds:
Drb ¼ rbþ1 � rb ¼
p̂
m
þ vn

v hbþ2 � 2hbþ1 þ hb

� �
: ð3:25Þ
where hb are the dSUðmÞ1 dimensions (3.12). Since they are quadratic in b, the discrete second deriv-
ative in (3.25) is constant, except for one value at the border of the m period. This implies that there
are groups of m equally spaced peaks, with a larger spacing between groups.

An important fact shown by the dSUðmÞ1 character (3.13), is that the low-lying neutral states occur

with characteristic multiplicities db ¼
m
b

� 	
. This means that db degenerate states are simultaneously

made available for the b-th electron to tunnel into the droplet. These multiplicities can be easily
understood in a classical model of m superposed fluids, where the one-electron excitation is m times
degenerate, the two-electron one is mðm� 1Þ=2 times and so on.
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Summarizing, in the Jain hierarchical states, m ¼ m=p̂, the peak pattern is the following: the sepa-
ration Drk between the k-th and ðkþ 1Þ-th peaks and the level multiplicity dk read (r ¼ BDS=/o):
Drk ¼
p̂
m
� vn

v
1
m
; dk ¼

m

k

� 	
; k ¼ 1; . . . ; m� 1;

Drm ¼
p̂
m
þ vn

v
m� 1

m
; dm ¼ 1: ð3:26Þ
The pattern repeats with periodicity m. It is independent of the presence of quasiparticles in the bulk,
because the corresponding sectors, ha; a–0, have linearly shifted energies w.r.t those of h0 (cf. (3.23))
[18]. Note that the bulk quasiparticles have the same multiplicities dk: for example, at m ¼ 2=5 there
are two quasiparticles with Q ¼ 1=5 (cf. (3.24)). In presence of quasiparticles with multiplicity

m
k� 1

� 	
, the sequence of peaks (3.26) starts from Drk (instead of Dr1) and goes on periodically.

We remark that the results (3.26) can also be obtained from the analysis of the m-dimensional lattice
of excitations (3.8), where the multiplicities dk are found by counting the shortest vectors with integer
charge k.

The multiplicities dk of low-lying edge excitations could be experimentally observed in the Cou-
lomb peaks as follows. We expect that the degeneracy is broken by finite-size effects, such as pertur-
bations of the CFT by irrelevant operators, that could be non-negligible for small droplets, with sizes of
the order of one micron, where Coulomb blockade effects are expected to be found [24]. (Further level
splittings could arise for unequal values of the ðm� 1Þ neutral modes velocities.) If the symmetry
breaking is small, the levels have a fine structure and the electrons tunneling into them yield peaks
at different, slightly displaced distances: upon superposing several periods of Coulomb peaks, one
can observe the patterns shown in Fig. 4 for m ¼ 3;4. The single peak at the end of the periods can
be taken as a reference point for the superpositions and as a measure of experimental errors.

In conclusion, the multiplicities of Jain hierarchical fluids are observable if the experimental preci-
sion is sufficiently high and the dSUðmÞ1 symmetry is not strongly broken. Note that decays among the
fine-structured levels are possible and could take place on short time scales; higher levels in the mul-
tiplets are nevertheless populated due to thermal fluctuations (earlier discussions [18] of experimen-
tal signatures of level multiplicities were not completely correct).

We now consider the Jain hierarchical states with mixed chiralities, m ¼ m=ðms� 1Þ, described by
the disk partition functions (3.21). These were obtained by the replacement, vb ! vb, that does not
affect the earlier discussion of energetics. Therefore, the formulae (3.26) also hold in these cases, upon
replacing p̂ ¼ ms� 1, and predict the same peak multiplicities.

The dynamics of these m-composite edge theories was much discussed in the literature, starting
from the experimental result [31]. Actually, the presence for m ¼ m=ðms� 1Þ of neutral and charged
excitations of opposite chiralities on the same edge may allow for destabilizing interactions, leading
to edge reconstruction effects [32]. Several deformations of, or additions to the Luttinger liquid Ham-
iltonian, have been put forward; as these break the dSUðmÞ1 symmetry and possibly the conformal
symmetry, they may lift the peak degeneracy. Therefore, it is interesting to find their predictions
for the Coulomb peak patterns and compare with the present results of the m-component Abelian
theory.
Fig. 4. Coulomb peaks in m ¼ 3 and m ¼ 4 Jain hierarchical states; the extra separation is r ¼ vn=v � 0:1.
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3.4. Coulomb peaks in alternative hierarchical theories

In this subsection we discuss the Coulomb peaks in two alternative theories of the Jain states: the
W1þ1 minimal models [13], introduced by Trugenberger and some of the authors, and the three-fluid
theory [14] by Fradkin and Lopez. Both theories:

(i) possess a reduced number of currents and more generally less degrees of freedom w.r.t. the m
component Luttinger theory;

(ii) are not rational CFT, i.e. their partition function are not modular invariant. Nevertheless, these
theories are projections of RCFTs and the partition function can be found by working out the
reduction of degrees of freedom; the Coulomb blockade peaks are then found by the same
methods as before.

We first discuss the minimal W1þ1 models [13]: these theories were introduced by exploiting the
main geometrical feature of incompressible Hall fluids, which is the symmetry under area-preserving
diffeomorphisms of the plane, the local coordinate transformations that keep the density constant
[33]. The edge excitations can be seen as infinitesimal area-preserving deformations of the Hall drop-
let, and can be naturally described by the representations of the symmetry algebra. In the mathemat-
ical literature, this is called the W1þ1 algebra and its representations on the circle, i.e. on the edge CFT,
have been completely classified [34].

The mathematical results are the following: for generic parameters, the W1þ1 representations are
isomorphic to those of the multicomponent Luttinger theory and their m dimensional K lattices. How-
ever, for special lattices, there exist degenerate representations, with a reduced set of excitations: as
shown in [13], these correspond one-to-one with the dSUðmÞ1 symmetric lattices of the Jain states dis-
cussed before. For these theories, it is thus possible to project out states of the Luttinger theory and
obtain the minimal W1þ1 models made of irreducible representations only. The main features of these
models are [13]:

(i) the multiplicities due to the SUðmÞ symmetry are completely eliminated; in particular, there is
only one conserved Uð1Þ current, the electric current, a single electron state (not m) and no fur-
ther degeneracies in the spectrum. The charges and conformal dimensions are still given by the
formulas (3.8), but the integer labels are constrained within the wedge,
n1 P n2 P . . . P nm; ð3:27Þ
(ii) the conformal symmetry is maintained, but the partition function is not modular invariant. The
projection from the m component Luttinger liquid to the minimal models can be realized by
introducing a non-local, dSUðmÞ1 breaking interaction in the Luttinger Hamiltonian, that com-
mutes with Virasoro [35]. This term is diagonal in the SUðmÞ basis and gives higher energies
to the unwanted states; at infinite coupling the projection is realized leading to the W1þ1 min-
imal theory. The non-locality of the interaction term in the Hamiltonian explains the lack of
modular invariance in these theories.

The conductance peaks in the minimal W1þ1 theories are easily obtained: since the projection pre-
serves the structure of the Hilbert space of the ðc ¼ mÞ Luttinger theory, it does not modify the struc-
ture of disk partition functions (3.23), but only replaces the neutral characters va by other expressions
whose leading terms (3.13) have no multiplicity factors [36]:
vW1þ1
a ðsÞ � exp i2psvn

v
aðm� aÞ

2m
�m� 1

24

� 	� �
þ � � � ; a ¼ 0;1; . . . ; m� 1: ð3:28Þ
The absence of multiplicities can also be understood from the charge lattice (3.8) as due to the con-
straint (3.27). We conclude that the W1þ1 minimal models predict conductance peaks in Jain states
with the same pattern (3.26) as the Luttinger theory but without any multiplicity.
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The Lopez–Fradkin theory of Jain’s states is a variant of the multicomponent Luttinger liquid and
can be formulated in the charge lattice approach introduced before: all Jain states, m ¼ m=ðmsþ 1Þ; s
even, are described by the same three-dimensional K matrix and charge vector t,
K ¼
�s 1 o
1 m 0
0 0 1

0B@
1CA; t ¼ ð1;0; 0Þ: ð3:29Þ
The first component clearly describes the charged excitations; the other two sectors are called topo-
logical, because their neutral excitations do not propagate, i.e. vn ¼ 0. This choice modifies the time
scaling of the electron correlator: for 1=3 < m < 1=2, the multicomponent Luttinger theory predicts
a constant exponent a ¼ 3, while the Lopez–Fradkin theory a varying one, a ¼ 1=m, which is in better
agreement with the experimental results [31]. Note, however, that the m component Luttinger theory
also predicts a ¼ 1=m in the limit vn ¼ 0, while other experiments would favor 0 < vn � v [37].

Another feature of Lopez–Fradkin theory is that the excitations are described by a subspace of the
three-dimensional charge lattice (3.7): the integers ðn1;n2;n3Þ labeling excitations are constrained by
the condition of physical states, n2 ¼ �n3. Therefore, the partition function has the general charge-lat-
tice form (3.11), but it is not modular invariant due to this constraint.

The Coulomb peaks in this theory are equidistant because the modulations are proportional to
vn=v ¼ 0: moreover, there is a single electron excitation and no level multiplicities because the
two-dimensional sublattice of (3.29) has no symmetries. For the same reason, the Coulomb peaks
would be equally spaced even for vn > 0.

In conclusion, we have shown that three proposed theories for the Jain states predict rather differ-
ent patterns of conductance peaks that would be interesting to test experimentally. Other edge theo-
ries have been proposed whose peak patters remain to be investigated [32].

4. Coulomb blockade in Read–Rezayi states

The Pfaffian (k ¼ 2) [38] and Read–Rezayi (k ¼ 3;4; . . .) [11] theories are prominent candidates for
describing spin-polarized Hall plateaux observed in the second Landau level [39]. The wave functions
of these theories describe electrons that first bound themselves into k-clusters and then form incom-
pressible fluids. In particular, the k ¼ 2 state corresponds to a two-dimensional p-wave superconduc-
tor [40] and should be realized at m ¼ 5=2. These states are the best candidates for observing
excitations with non-Abelian statistics [4] and for manipulating them to realize the unitary transfor-
mations of quantum computation, following the proposal of topological quantum computation [5].
Therefore, Coulomb blockade and interferometry of edge excitations are actively investigated in these
states both theoretically and experimentally [22,23,19,24].

The filling fractions are:
m ¼ 2þ k
kM þ 2

; k ¼ 2;3; . . . ; M ¼ 1;3; . . . ð4:1Þ
The RCFT description is based on a charged Luttinger field and the neutral Zk parafermion theory,dUð1Þ � PFk, with central charge c ¼ 1þ 2ðk�1Þ
kþ2 [12]. The best observable plateaus correspond to M ¼ 1

but we shall provide formulas for the general case. From the wave function constructions and earlier
analyses, the following spectrum has been found [20]:
Q ¼ m
kM þ 2

þ s; s 2 Z;

L0 ¼
mþ sðkM þ 2Þð Þ2

2kðkM þ 2Þ þ h‘m; ð4:2Þ
where h‘m is the dimension of parafermion states to be described momentarily. The topological order,
i.e. the number of sectors of the RCFT, is:
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ðkþ 1ÞðkM þ 2Þ
2

; ð4:3Þ
and it is obtained as follows. The fractional charge, Q ¼ k=ðkM þ 2Þ, implies ðkM þ 2Þ Abelian sectors,
and the Zk parafermions possess kðkþ 1Þ=2 sectors: the Zk parity rule [20],
k ¼ m mod k; k mod ðkM þ 2Þ; m mod 2k; ð4:4Þ
relates the fractional charge k to the parafermion charge m, leading to the multiplicity of ðk;mÞ pairs in
(4.3). One physical motivation for the parity rule is the requirement of locality (analyticity) of all exci-
tations w.r.t. electrons in the wave functions (cf. (2.19)) [20].

4.1. Partition functions

The partition functions of Read–Rezayi states have been already obtained in [20] from a physically

motivated construction involving the projection from the Abelian theory with dUð1Þ � dSUðkÞ1 � dSUðkÞ1
symmetry. In particular, the Zk parafermionic theory for neutral excitations was described by the coset

construction PFk ¼ dSUðkÞ1 � dSUðkÞ1= dSUðkÞ2.
In the following, the annulus partition functions will be found by solving the modular conditions as

in Section 3.2; the parafermions will be described by the standard coset, PFk ¼ dSUð2Þk= dUð1Þ2k, that
characterizes their sector by the quantum numbers ð‘;mÞ, equal to twice the spin and spin component,
respectively [41].

The dimensions of parafermionic fields /‘
m are given by:
h‘m ¼
‘ð‘þ 2Þ
4ðkþ 2Þ �

m2

4k
; ‘ ¼ 0;1; . . . ; k; �‘ < m 6 ‘; ‘ ¼ m mod 2: ð4:5Þ
For example, the Z3 parafermion fields are shown in Fig. 5(a): the coset construction implies that the
m charge is defined modulo 2k [41], thus the fields are repeated once outside the fundamental ð‘;mÞ
domain (4.5) by the reflection–translation, ð‘;mÞ ! ðk� ‘;mþ kÞ,
Diagram of Z3 parafermion fields: (a) field symbols; (b) on the green line, fields involved in ‘ ¼ 1 sectors of the k ¼ 3
ezayi partition function.
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/‘
m ¼ /k�‘

m�k; ‘ ¼ 0;1; . . . ; k; l < m 6 2k� l: ð4:6Þ
The fusion rules are given by the addition of the dSUð2Þk spin and dUð1Þ2k charge:
/‘
m � /

‘0

m0 ¼
Xminð‘þ‘0 ;2k�‘�‘0 Þ

‘00¼j‘�‘0 j
/‘00

mþm0 mod 2k: ð4:7Þ
In particular, the parafermions wj ¼ /0
2j; j ¼ 1; . . . ; k� 1, obey Abelian fusion rules w.r.t. the index j

mod k. In the Read–Rezayi states, w1 represents the neutral component of the electron and the fusion,
ðw1Þ

k ¼ I, describes the k-clustering property of the ground state wave function [11].
In order to find the annulus partition function, we need the expressions and modular transforma-

tions of parafermionic characters, denoted by v‘mðs; kÞ: they obey,
v‘m ¼ v‘mþ2k ¼ vk�‘
mþk; m ¼ ‘ mod 2; v‘m ¼ 0 m ¼ ‘þ 1 mod 2: ð4:8Þ
The transformations can be obtained from those of dSUð2Þk and dUð1Þ2k characters, respectively denoted
by H‘ðs; kÞ and Kmðs; 0; 2kÞ, by using the coset relation [41]:
H‘ðs; kÞ ¼
Xk�1

m¼�k

Kmðs;0;2kÞ v‘mðs; kÞ: ð4:9Þ
The Luttinger sectors Kk were described in Section 3 and the dSUð2Þk characters and transformations are
well known [3]: the dSUð2Þk S matrix has a simpler form if we extend the domain of the index ‘ to
L ¼ ‘þ 1 mod N ¼ 2ðkþ 2Þ, by defining, HL ¼ HLþN ¼ �H�L (note that HL ¼ 0 for L ¼ 0;N=2) [28]. In
the extended domain the transformation reads: HLð�1=sÞ ¼ �i

P
L0 mod N expði2pLL0=NÞHL0 ðsÞ=

ffiffiffiffi
N
p

. It
follows that:
vL
m �1=s; kð Þ ¼ �iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

4kðkþ 2Þ
p X

L0

mod 2ðkþ2Þ

X
m0

mod 2k

e�i2pmm0
2k ei2p LL0

2ðkþ2Þ vL0

m0 ðs; kÞ: ð4:10Þ
The Zk parity rule (4.4) should now be used to couple the neutral characters v‘m to the charged ones,
given by Kkðs; kf; kp̂Þ, p̂ ¼ kM þ 2, in agreement with the spectrum (4.2). As in the case of hierarchical
states of Section 3.2, we should find the p̂ðkþ 1Þ=2 sectors of the Read–Rezayi theory within the Kkv‘m
tensor basis of dimension k2 times larger. It is thus natural to introduce analogous sums of k terms,
h‘a ¼
Xk

b¼1

Kaþbp̂ðs; kf; kp̂Þ v‘aþ2bðs; kÞ;
a ¼ 0;1; . . . ; p̂� 1; p̂ ¼ kM þ 2;
‘ ¼ 0;1; . . . ; k;

a ¼ ‘ mod 2;
ð4:11Þ
that obey the parity rule (4.4) and reproduce the spectrum (4.2). Their periodicity, h‘aþp̂ ¼ hk�‘
a , justifies

the indicated ranges for the indices and checks the value of the topological order.
The S transformation of the generalized characters h‘a can be found by using the previous formulas;

after returning to the ‘ index, it reads:
h‘að�1=sÞ ¼ 2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ 2Þp̂

p X̂p

a0¼1

Xk

‘0¼0

e�i2paa0M
2p̂ sin

pð‘þ 1Þð‘0 þ 1Þ
kþ 2

� 	
h‘
0

a0 ðsÞ; a ¼ ‘ mod 2; ð4:12Þ
and h‘að�1=sÞ vanishes for a ¼ ‘þ 1 mod 2 (hereafter, we disregard the global phase / Reðf2=sÞ in the
characters). The annulus partition function of Read–Rezayi states is given by the diagonal sesquilinear
form,
ZRR
annulus ¼

Xk

‘¼0

X̂p�1

a¼0
a¼‘ mod 2

h‘a
 2; ð4:13Þ
that solves the ðS; T2;U;VÞ conditions of Section 2.2. One can check that these partition functions are
equal to those found in [20].
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Let us give some examples. In the Pfaffian state, the Z2 parafermions are the three fields of the Ising
model: /0

0 ¼ /2
2 ¼ I;/1

1 ¼ /1
3 ¼ r and /0

2 ¼ /2
0 ¼ w, of dimensions h ¼ 0;1=16;1=2, respectively. For

m ¼ 5=2, i.e. M ¼ 1 in (4.1), the Pfaffian theory possesses 6 sectors. The partition function is as follows:
denoting the neutral characters with the same symbol of the field and the charged ones by
Kk ¼ Kkðs;2f; 8Þ;Kk ¼ Kkþ8, with charge Q ¼ k=4þ 2Z, we rewrite (4.13) as,
ZPfaffian
annulus ¼ K0I þ K4wj j2 þ K0wþ K4Ij j2 þ K1 þ K�3ð Þrj j2

þ K2I þ K�2wj j2 þ K2wþ K�2Ij j2 þ K3 þ K�1ð Þrj j2: ð4:14Þ
The first term describes the ground state and its electron excitations, such as those in K4w with
Q ¼ 1þ 2Z; in the third and sixth terms, the characters K
1r contain the basic quasiparticles with
charge, Q ¼ 
1=4, and non-Abelian fusion rules r � r ¼ I þ w. The other sectors are less familiar: the
second term contains a Q ¼ 0 Ising-fermion excitation (in K0w) and the 4th and 5th sectors describe
Q ¼ 
1=2 Abelian quasiparticles.

The k ¼ 3 Read–Rezayi state is also interesting because it is the simplest of these systems that
could perform universal quantum computations by braiding non-Abelian quasiparticles [5]. It could
be observable at m ¼ 13=5, i.e M ¼ 1, and possibly at m ¼ 12=5 by charge conjugation. The 6 Z3 para-
fermion fields are listed in Fig. 5(a) with the corresponding ð‘;mÞ labels (the complete list of their
quantum numbers can be found in [20]). The characters obey: v‘m ¼ v‘mþ6 ¼ v3�‘

mþ3. The charged sectors
are given by Ka ¼ Kaðs;3f; 15Þ, with charge Q ¼ a=5þ 3Z, and the topological order is equal to 10. The
annulus partition function can be written:
ZZ3
annulus ¼

X
a¼0;
2

X
‘¼0;2

Kav‘a þ Kaþ5v‘aþ2 þ Ka�5v‘a�2

 2
þ
X
a¼
1

X
‘¼1;3

Kav‘a þ Kaþ5v‘aþ2 þ Ka�5v‘a�2

 2: ð4:15Þ
As in the Pfaffian case, the basic quasiparticles are represented by spin fields, r1K1;r2K�1, with small-
est charges Q ¼ 
1=5 and Virasoro dimensions; since these excitations have the smallest SUð2Þ spin,
ð‘;mÞ ¼ ð1;
1Þ, we can interpret the index ‘ as counting the number of quasi-holes in the system.

4.2. Coulomb blockade

The analysis of degenerate energies and conductance peaks under area variations DS can be ob-
tained from the disk partition functions (4.11),
Zða;‘Þdisk ¼h‘a ¼
Xk

b¼1

Kaþbp̂ðs; kf; kp̂Þ v‘aþ2bðs; kÞ; a ¼ 1; . . . ; p̂ ¼ ðkM þ 2Þ;

‘ ¼ 0;1; . . . ; k; a ¼ ‘ mod 2: ð4:16Þ
As seen in the previous examples, each ð‘; aÞ sector involves the parafermion fields of same ‘ value
(along the vertical line in Fig. 5(b)), each one associated to charges mod kZ. Therefore, adding one elec-
tron corresponds to going from b! bþ 1 in the corresponding sector h‘a (4.16). The distance between
the conductance peaks is given by:
Dr‘
b ¼ r‘

bþ1 � r‘
b ¼

p̂
k
þ vn

v h‘aþ2bþ4 � 2h‘aþ2bþ2 þ h‘aþ2b

� �
; ð4:17Þ
that generalizes the earlier Abelian formula (3.25).
The peak distances are modulated by the energies of neutral parafermions h‘m through their discrete

second derivative. This is constant, D2h‘m ¼ �2=k, up to discontinuities at the boundaries of the do-
mains in the ð‘;mÞ plane, which are the diagonals, ‘ ¼ 
m;m mod 2k (see Fig. 5(a).). Whenever
aþ 2bþ 2 in (4.17) stays on one diagonal, the result is D2h‘m ¼ 1� 2=k; at the crossing of two diago-
nals, ð‘;mÞ ¼ ð0;0Þ; ðk; kÞ, mod ð0;2kÞ, it reads D2h‘m ¼ 2� 2=k. Therefore, the peak patterns are the
following,
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‘ ¼ 0; k : Dr ¼ Dþ 2r;D; � � � ;Dð Þ; ðkÞ groups;
‘ ¼ 1; . . . ; k� 1 : Dr ¼ Dþ r;D; � � � ;Dþ r;D; . . . ; Dð Þ; ð‘Þðk� ‘Þ groups;

D ¼ 1
m
� vn

v
2
k
; r ¼ vn

v : ð4:18Þ
In these non-Abelian Hall states, the peak patterns depend on the number of basic r1 quasiparticles in
the bulk: for ‘ of them, there are groups of ‘ and ðk� ‘Þ equidistant peaks separated by a larger gap,
Dþ r; r ¼ vn=v . The patterns are symmetric by ‘$ ðk� ‘Þ and depends on the other quantum number
a only in the (irrelevant) starting point of the sequence. In particular, for the Pfaffian state ðk ¼ 2Þ, the
peaks group in pairs when the number of bulk quasiparticles is even, and are equidistant when it is
odd, the so-called ‘‘even–odd effect” [22]. The analysis of v‘a characters also shows that there are no
degenerate states in parafermionic excitations, and thus the Coulomb peaks have no multiplicities.

The peak patterns repeat periodically with period Dr ¼ k=m ¼ kM þ 2, apart from the case k even
and ‘ ¼ k=2, where it is halved. The same results were found by the direct analysis of parafermion Hil-
bert space in [23,19].

The peak pattern in the ground state sector of Read–Rezayi states is actually the same as in the Jain
hierarchical Hall states of Section 3.2, up to a factor of 2 in the neutral energies. However, the Abelian case
is characterized by specific peak multiplicities and is independent of the sector, i.e. of bulk excitations.

4.3. Peak patterns in the ðS;BÞ plane

We now analyze the peak patterns in the ðS; BÞ plane, i.e. by simultaneous changes of area and mag-
netic field. Let us first discuss DB changes at DS ¼ 0: from Section 3.1, we recall that varying the field
causes a chiral anomaly and a drift of all charges in the theory. The addition of one flux quantum,
d ¼ SDB=/o ¼ 1 modifies the charged characters in the disk partition functions (4.16) by
Kkðs; kf; qÞ ! Kkþk, i.e. by a charge equal to the filling fraction. The spectral flow of Read–Rezayi sectors
is therefore:
h‘a ! hk�‘
aþk ¼ h‘a�2�ðM�1Þk: ð4:19Þ
Namely, the sector ‘ goes into itself with a shift of the a index: the peak pattern already found for S vari-
ations at DB ¼ 0 repeats itself at DB ¼ /o=S with an upward translation (see Fig. 6). This continues for
d ¼ 2; . . .: eventually the sector ‘ goes to the ðk� ‘Þ one, with the same pattern, and then back to itself.

This behavior of peaks in B was also found for the Laughlin states and actually holds in full generality:
the peaks only depend on the combined variation ðr� dÞ. The proof is very simple: the magnetic field
does not couple to the neutral characters, that are unchanged; since they determine the peak modula-
tions, the pattern remains the same. The only effect is a rigid shift of the DS peak pattern at DB ¼ 0.

In general, a magnetic flux induces a localized charge excitation inside the Hall droplet, but this has
to combine with a neutral excitation to form a physical state: in non-Abelian states, there might be
several possibilities. The result of the present analysis is that neutral parts are not created and the ‘
sector does not change: there is a drift of states within the same sector or the conjugate ðk� ‘Þ.
One could naively think that DB > 0 would create the lowest charge quasiparticle r1, but this would
Fig. 6. Coulomb peaks in the area ðSÞ and magnetic field ðBÞ plane.
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require a transition ðD‘;DmÞ ¼ ð1;1Þ that cannot be induced in isolated droplets within the relativistic
CFT description. Maybe it could be realized by engineering a antidot inside the disk and by charging it,
if further non-relativistic effects are taken into account [22].

In conclusion, the peak patterns in the ðS;BÞ plane are not different from those on the S axis. In ref.
[24], it was observed that, for m > 2, increasing B causes a depletion of electrons in the second Landau
level, that go into available states in the first level; this is another effect that rigidly translate upwards
the peak patterns in the B plane, i.e. it is of the same sign as the spectral flow described here.

4.4. Bulk-edge relaxation

In reference [19], a mechanism for relaxation of edge excitations has been proposed. While the
electric charge is locally conserved at the edge, the neutral charge is (expected to be) only globally
conserved: therefore, a (slow-time) process can be conceived in which neutral excitations at edge
and bulk fuse together thus achieving a lower energy state at the edge. In this mechanism, the electron
added at the boundary decays into another excitation with same charge but different neutral content.
This process is possible whenever the theory possess two or more excitations with same electric
charge but different neutral parts, among which the relaxation transition can take place.

In non-Abelian theories, there are necessarily many-to-one combinations of neutral and charged
parts. Consider the following example of fusion rules:
/1 � /2 ¼ wþ w0: ð4:20Þ
Both /1; /2 fields contain charged and neutral components, and electric charge is conserved: thus, the
fields w;w0 have same electric charge but different neutral parts. A possible relaxation at the edge is,
w! w0, by absorption of one neutral bulk excitation, call it e, via the fusion, w � e ¼ w0 þ � � �. It is rather
natural to expect that the e field exists in the theory.

In the Read–Rezayi states, the parafermionic parts can change as follows: the m quantum number
should stay fixed because it is related to the charge by the Zk parity rule, thus ‘ can change by an even
integer: the minimal value is ðD‘; DmÞ ¼ ð
2;0Þ. These transitions should reduce the value of the edge
energy, i.e. of h‘m. The plot in Fig. 7 shows that the smallest values are found on the diagonals m ¼ 
‘
mod 2k: therefore, the peak patterns are analyzed starting from the low-lying states ð‘; m ¼ 
‘Þ.

Let us consider for example the initial state ð‘; mÞ ¼ ð1; 1Þ, as drawn in the parafermion diagram of
Fig. 8. The first peak is found by comparing with the energy levels of the next term in the same ‘ ¼ 1
sector, i.e in h1

1, which is ð1; 3Þ (joined by a green line in Fig. 8); then the higher energy of the latter
allows the relaxation, ð1; 3Þ ! ð3; 3Þ, (red line), bringing to the ‘ ¼ 3 sector. The next peak is therefore
obtained by comparing ð3; 3Þ to ð3; �1Þ, followed by the relaxation ð3; �1Þ ! ð1; �1Þ; the next peak
compares ð1; �1Þ with ð1; 1Þ and so on.
Fig. 7. Conformal dimension h‘m of parafermion fields.



Fig. 8. Zig-zag path connecting the Z3 parafermion fields involved in the evaluation of Coulomb peaks with relaxation: the read
segments are relaxation transitions.
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Therefore, the peak patterns with relaxation are obtained by comparing points in the ð‘; mÞ plane
that are reached by zig-zag walking along the diagonals, that correspond to minimal edge energies
(Fig. 8). The relaxations are achieved by fusing the edge fields with the ð‘; mÞ ¼ ð2; 0Þ parafermion that
is always present in the spectrum (higher D‘ transitions have larger energies and are never reached).
The peak distances Dr are computed as in Section 4.2:
Dr ¼ r‘
2
bþ1 � r‘

b ¼
p̂
k
þ vn

v h‘
2
2bþ4 � h‘
2

2bþ2 � h‘2bþ2 þ h‘2b

� �
; ð4:21Þ
where the ‘
 2 point is along the zig-zag path. These derivatives are independent of ‘ and their values
are already known: the separations Dr acquire the extra contribution vn=v when the midpoint
m ¼ 2bþ 2 stays on a diagonal.

The resulting peak patterns are the following,
k even; any ‘ :
k
2

� 	
k
2

� 	
groups;

k odd; any ‘ :
kþ 1

2

� 	
k� 1

2

� 	
groups:

ð4:22Þ
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They do not depend on the (starting) ‘ value; in particular, the even–odd effect in the Pfaffian state doe
not take place in presence of bulk-edge relaxations. Form the experimental point of view, relaxations
could take place on long time scales, and thus be controlled, but this is still unclear [19].

Let us remark that in the Jain hierarchical states of Section 3, bulk-edge relaxations corresponding
to change of sectors ha (3.23) are not possible, because any charge component, Kk, appears only once in
the spectrum (cf. (3.24)), so it is uniquely coupled to a neutral part.
5. Discussion and conclusions

In this paper, we described the CFT partition functions of quantum Hall states: we introduced and
solved the modular invariance conditions of the annulus geometry, and obtained the disk expressions
describing isolated Hall droplets. We stressed that the partition functions are defining quantities of
rational CFTs: they clearly display the sectors of the Hilbert space, and account for the multiplicities
of states and the fusion rules.

We used the disk partition functions to readily analyze the degenerate edge states leading to Cou-
lomb blockade conductance peaks. We found that the peak patterns can be non-trivial whenever the
edge excitations involve neutral components; generically, the modulation in the peak distances are of
the order Oðvn=vÞ, the ratio of velocities of neutral and charged excitations.

The peak modulations can occur both in Abelian and non-Abelian Hall states, but they can have dif-
ferent characteristics. In the case of the Abelian Jain hierarchical states, the patterns are independent
of the presence of quasiparticles in the bulk and bulk-edge relaxation phenomena are not possible.
Furthermore, the multiplicities of edge excitations, due to the extended symmetry of the multicompo-
nent edge, could be observed by a careful analysis of the peak sequences. Two alternative theories for
the Jain states were also considered, that have no multiplicities.

The Coulomb peak patterns of non-Abelian Read–Rezayi states do depend on the presence of
bulk quasiparticles; however, bulk-edge relaxation processes could be possible that would erase
such dependence. We remark that relaxation phenomena are generically possible in non-Abelian
states.

Although the modulation of conductance peaks is not by itself a characteristic feature of non-Abe-
lian statistics of excitations, the detailed features of the patterns can test the CFT description, in par-
ticular the qualitative properties of its Hilbert space. Isolated droplets, such as those involved in
Coulomb blockade experiments, can provide rather clean experimental signals, that may not reveal
many features of Hall states but are nevertheless very interesting. In particular, the fine structure of
conductance peaks in the Jain states is a signature of the composite edge structure: from its lifting,
one could check additional interactions in the Hamiltonian, inter-edge couplings and edge reconstruc-
tion effects etc. [32].

The chiral partition functions are useful in many contexts, besides the study of Coulomb blockade
presented in this paper. In the future, we want to use them for further model building of non-Abelian
states and for the description of the topological entanglement entropy of Hall droplets [6]. The deter-
mination of Zdisk for other relevant Hall states, such the Ardonne–Schoutens non-Abelian spin singlet
states [42], will also be presented in another publication.

While writing this report, we received the paper [43] where Coulomb blockade patterns were also
found for several Hall states.
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Appendix A. Modular forms and functions

In this appendix, we briefly review some of the properties of modular invariant functions [17].
Form Section 2.2, we recall that annulus partition functions of quantum Hall states should contain fer-
mionic excitations and be invariant under the S and T2 transformations. They generate the subgroup
Ch � C which is isomorphic to C0ð2Þ ¼ TChT�1 ¼ fða; b; c; dÞ 2 Cjb ¼ 0 mod 2g. The transformations
ST2S and S generate the subgroup Cð2Þ of the modular group C ¼ SLð2;ZÞ=Z2 of transformations
(2.8) which are subjected to the conditions ða; dÞ odd and ðb; cÞ even [44].

In the study of the functions on the torus, one naturally encounters the modular forms FðzÞ, which
transform under (2.8) as:
F
asþ b
csþ d

� 	
¼ e csþ dð ÞbFðsÞ; ðA:1Þ
where e is a phase and b is the weight of the modular form. A modular function has weight b ¼ 0. The
simplest example of a modular form is the Dedekind function,
g sð Þ ¼ q1=24
Y1
k¼1

1� qk
� �

¼ q1=24
X
n2Z
ð�1Þnq

1
2nð3nþ1Þ; q ¼ ei2ps: ðA:2Þ
The last equality is known as Euler’s pentagonal identity, and it is a consequence of Jacobi’s triple
product identity [3]:
Y1

n¼1

ð1� qnÞð1þ qn�1=2wÞð1þ qn�1=2w�1Þ ¼
X
n2Z

qn2=2wn; ðA:3Þ
after replacing in (A.3) q! q3 and w! �q�1=2. Under the two generators T : s! sþ 1 and
S : s! �1=s of the modular group, the transformations laws of gðsÞ are,
T : gðsþ 1Þ ¼ e 2ip=24gðsÞ; ðA:4Þ
S : gð�1=sÞ ¼ �isð Þ1=2gðsÞ: ðA:5Þ
The proof of Eq. (A.4) is straightforward, and that of Eq. (A.5) follows from the application of Poisson’s
resummation formula,
X

n2Z
f ðnÞ ¼

X
p2Z

Z þ1

�1
dx f ðxÞ e2ippx; ðA:6Þ
to the r.h.s. of Eq. (A.2). Under a general transformation (2.8) we therefore have
g
asþ b
csþ d

� 	
¼ eA csþ dð Þ1=2gðsÞ; ðA:7Þ
where eA is a 24-th root of unity. Thus, the Dedekind is a modular form of weight 1=2.
Another important example of a modular form considered in section two is the theta function with

characteristics a and b, which is a map F � C! C defined by:
H
a

b

� �
fj sð Þ ¼

X
n2Z

eipsðnþaÞ2þi2pðnþaÞðfþbÞ: ðA:8Þ
In the case of Laughlin fluids, one has b ¼ 0 and a ¼ k=p, with k ¼ 1;2; . . . ; p. The transformation prop-
erties of (2.15), (2.16) follow easily from its definition. The only non-trivial calculation regards the S
transformation, which can be done following the example of the Dedekind function. It is also easy
to verify that (A.8) is a modular form of weight 1=2. It follows that the quotient of the theta function
(A.8) by the Dedekind function (A.2) is a modular function. In Section 2 we introduced the notation:
K s; f; qð Þ ¼ 1
g

H
k=q

0

� �
fjqsð Þ: ðA:9Þ
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