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Let us write �Gf
u for the category whose objects are lattice-ordered abelian groups 

(l-groups for short) with a strong unit and finite prime spectrum endowed with a 
collection of Archimedean elements, one for each prime l-ideal, which satisfy certain 
properties, and whose arrows are l-homomorphisms with additional structure. In 
this paper we show that a functor which assigns to each object (A, ̂u) ∈ �Gf

u the 
prime spectrum of A, and to each arrow f : (A, ̂u) → (B, ̂v) ∈ �Gf

u the naturally 
induced p-morphism, has a left adjoint.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The algebraic counterpart of the infinite valued Łukasiewicz sentential calculus is the class of 
MV -algebras. This is probably the first historical motivation for the study of this class of algebras.

Furthermore, there is a close connection between the category of l-groups with a strong unit and the 
category of MV-algebras. In [8] Mundici established a categorical equivalence Γ between them. This equiv-
alence enables us to translate properties from one class to another. For example, for any l-group A with 
a strong unit u, the prime spectrum of A is order isomorphic to the prime spectrum of the MV-algebra 
Γ(A, u).

The correspondence that assigns to each (abelian) l-group A with a strong unit its prime spectrum 
Spec(A) can be extended to a functor from the category of (abelian) l-groups with a strong unit to the 
category of spectral root systems [1,3]. Since each categorical equivalence must reflect isomorphisms and 
Spec(Z, 1) = Spec(R, 1) although (Z, 1) is not isomorphic to (R, 1), it follows that Spec may be not part of 
a categorical equivalence. Hence, one may naturally wonder whether Spec (of a variant thereof) might yield 
an adjunction pair. In this paper a left adjoint of Spec is obtained by restricting it to a suitable category of 
(always abelian) l-groups with a distinguished strong unit.

In [7] the authors study a problem closely related to the one investigated here. The relationship between 
the results in [7] and the ones in the present paper will be explored mainly in last section.
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In what follows we will recall some basic definitions and properties used in this work, and notation will 
be fixed.

A partially ordered abelian group [2,6] is an abelian group (A, +, −, 0) endowed with a partial order 
relation ≤ which is compatible with the addition operation: thus, for all x, y, z ∈ A we have x + z ≤ y + z

whenever x ≤ y. When the order relation is total, A is said to be a totally ordered abelian group, or o-group
for short. When the order of A defines a lattice structure, A is called a lattice-ordered abelian group, or 
l-group, for short. In any l-group we have z + (x ∨ y) = (z + x) ∨ (z + y) and z + (x ∧ y) = (z + x) ∧ (z + y). 
For each element x ∈ A, we define |x| = x ∨ −x = x+ + x−, where x+ = x ∨ 0 and x− = −x ∨ 0. A strong 
(order) unit u of A is an Archimedean element of A, i.e., an element 0 ≤ u ∈ A such that for each x ∈ A

there exists a natural number n such that |x| ≤ nu, where nu := u + u + . . . + u (n times). An l-ideal (or 
convex subgroup) of an l-group A is a subgroup J of A such that if a, b ∈ J and a ≤ c ≤ b then c ∈ A. An 
l-ideal J of an l-group A is said to be prime if and only if J is proper (i.e., J �= A) and the quotient l-group 
A/J is totally ordered. We define the (prime) spectrum of A, Spec(A), as the set of prime l-ideals of A. 
Finally, if W is a subset of A we write 〈W 〉 to indicate the l-ideal generated by W .

The following remark is part of the folklore of l-groups [2,6]:

Remark 1. Let A be an l-group with a strong unit u.

(a) Let W ⊆ A. Then b ∈ 〈W ∪ {a}〉 if and only if there exist a natural number n and c ∈ W such that 
|b| ≤ n|a| + |c|.

(b) Let P ∈ Spec(A). Then u /∈ P , if x ≥ 0 and x ∈ P then x ∧ u ∈ P , if x ∈ P then |x| ∈ P , and if |x| ∈ P

then x ∈ P .
(c) Let P be a convex subgroup of A. Then P ∈ Spec(A) if and only if for every x, y ∈ A, if x ∧ y = 0 then 

x ∈ P or y ∈ P .
(d) Every proper l-ideal is an intersection of prime l-ideals.

Other elementary properties of l-groups can be found in [6].
A root system is a poset X such that for every x ∈ X the set

[x) := {y ∈ X : y ≥ x}

is a totally ordered subset of X. A p-morphism is a morphism of posets f : X → Y with the following 
property: given x ∈ X and y ∈ Y such that f(x) ≤ y there exists z ∈ X such that x ≤ z and f(z) = y. 
Inspired by the known fact that if A is an l-group then (Spec(A), ⊆) is a spectral root system, and taking 
into account some considerations done in [3], in this paper we focus on the link between the category of 
l-groups with a strong unit, and the category of root systems with p-morphisms as arrows.

Let us fix notation for some of the categories that appear in this paper:

�G = Category of l-groups with a strong unit,
�Gf = Category of l-groups with a strong unit and finite spectrum,
MV = Category of MV -algebras,
RS = Category of root systems with p-morphisms as arrows,
FRS = Category of finite root systems with p-morphisms as arrows.

The rest of the paper is organized as follows. In Section 2 we build up a functor from the category FRS
to the category �Gf . In Section 3 we show that it is possible to define a functor from the category �G to 
the category RS. In Section 4 we define the category of l-groups with local order units. The objects of this 
category are objects of �Gf together with a family of constants (a strong unit for each prime l-ideal) which 
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satisfy particular properties. Its morphisms are l-homomorphism preserving the strong units which also 
satisfy additional conditions involving the local units. We prove that there exists a functor from this new 
category to the category FRS, and conversely. In Section 5 we prove that these functors form an adjoint 
pair. In the last section we explore the relationship between our work and [7].

We believe it is interesting to note that all the results we obtain in this paper are proved using only basic 
algebraic facts coming from the theory of l-groups and the theory of posets.

2. Getting an l-group from a finite root system

In this section we build up a functor from FRS to �Gf . We start with some definitions and preliminary 
results.

Let F be a finite root system and Z the set of integer numbers. We write ZF for the set of functions from 
F to Z, FM for the set of maximal elements of F and Zn

lex = Z⊗ . . .⊗Z (n times) is Z × . . .×Z (n times) 
with the lexicographic order.

Let h, k ∈ ZF . For every x ∈ F we define (h + k)(x) = h(x) + k(x) and 0(x) = 0. Let n be the cardinal 
of [x). Then there exist x1, . . . , xn such that [x) = {xn, xn−1, . . . , x1}, with x = xn < xn−1 < . . . < x1. We 
also define the following binary operations:

(h ∧ k)(x) is the nth coordinate of (h(x1), . . . , h(xn)) ∧ (k(x1), . . . , k(xn)) in Zn
lex ,

(h ∨ k)(x) is the nth coordinate of (h(x1), . . . , h(xn)) ∧ (k(x1), . . . , k(xn)) in Zn
lex .

Finally we define the map eF : F → Z by eF (x) = 1 for every x ∈ F .

Lemma 1. (ZF , eF ) is an object of �Gf .

It is worth mentioning that our construction, which is a sort of generalization of the lexicographic prod-
uct, is essentially the classical one used, for instance, in the Conrad–Harvey–Holland Theorem for abelian 
�-groups [4,5].

Let F, G ∈ FRS, and f : G → F a p-morphism. We define the map f̂ : (ZF , eF ) → (ZG, eG) by

f̂(h) := h ◦ f.

This definition amounts to asking that the following diagram commutes:

G
f

f̂(h)

F

h

Z.

Straightforward computations show that f̂ preserves +, − and that f̂(eF ) = eG.

Lemma 2. Let h, k ∈ ZF . Then

(a) f̂(h ∧ k) = f̂(h) ∧ f̂(k),
(b) f̂(h ∨ k) = f̂(h) ∨ f̂(k).

Proof. Let h, k ∈ ZF and x ∈ G. Let m be the maximum element of [x), so f(m) is the maximum element 
of [f(x)). In order to prove it, let y ≥ f(x). Since f is a p-morphism then there exists z ≥ x such that 
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f(z) = y. But m is the maximum of the chain [x), so m ≥ z. Thus, f(m) ≥ f(z) = y, i.e., f(m) is the 
maximum of [f(x)).

First case: suppose [f̂(h)](m) < [f̂(k)](m), i.e., h(f(m)) < k(f(m)). Since f(m) is the maximum in [f(x))
then (h ∧ k)(f(x)) = h(f(x)), i.e.,

[f̂(h ∧ k)](x) = [f̂(h)](x). (1)

Since m is the maximum of [x),

[f̂(h) ∧ f̂(k)](x) = [f̂(h)](x). (2)

It follows from equations (1) and (2) that [f̂(h ∧ k)](x) = [f̂(h) ∧ f̂(k)](x).
Second case: suppose h(f(m)) = k(f(m)).
If for every y ≥ x we have h(f(y)) = k(f(y)) then for every z ≥ f(x) we have h(z) = k(z). In order 

to prove it, let z ≥ f(x). Since f is a p-morphism then there exists y ≥ x such that f(y) = z. Then 
h(z) = h(f(y)) = k(f(y)) = k(z), which was our aim. Then [f̂(h ∧ k)](x) = [f̂(h) ∧ f̂(k)](x).

Finally let f(n) be the first natural number such that n ≥ x and h(f(n)) �= k(f(n)). Since f is a 
p-morphism then f(n) is the first natural number such that f(n) ≥ f(x) and h(z) �= k(z). Therefore, 
[f̂(h ∧ k)](x) = [f̂(h) ∧ f̂(k)](x). �

Then we have the following

Proposition 1. There exists a functor from FRS to �Gf .

In what follows we will prove that if F ∈ FRS, then there exists an order isomorphism between F and 
Spec(ZF ).

Proposition 2. Let F ∈ FRS. The map ηF : F → Spec(ZF ) given by

ηF (x) := {h ∈ ZF : h(y) = 0 for every y ≥ x}

is an order isomorphism. In particular, ηF is a p-morphism.

Proof. When F is clear from the context, we write η in place of ηF . First we will prove that η is a well 
defined map. Let x ∈ F . We have to prove that η(x) is a prime l-ideal of ZF . It is immediate that η(x)
is closed under −, 0, ∧ and ∨. In order to show that η(x) is a convex subset of ZF , let h ≤ k ≤ j with 
h, j ∈ η(x) and k ∈ ZF . Consider k /∈ η(x), so there exists y ≥ x such that k(y) �= 0. If k(y) > 0 then k � j, 
which is a contradiction. If k(y) < 0 then h � k, which is a contradiction again. Thus, η(x) is a convex subset 
of ZF . Hence, η(x) is an l-ideal of ZF which is proper because eF /∈ η(x). Let h, k ∈ ZF such that h ∧k = 0. 
We consider h, k /∈ η(x). Let yh be the maximum element of [x) such that h(yh) �= 0 (in a similar way we 
define yk). Since [x) is a chain, we can assume yk ≥ yh. If yk = yh then (h ∧ k)(yk) = h(yk) ∧ k(yk) �= 0, 
which is a contradiction. Now suppose yk > yh. If k(yk) < 0 then (h ∧ k)(yk) = k(yk) �= 0, which is an 
absurd. If k(yk) > 0 then (h ∧ k)(y) = h(y) for every y ≥ x. Hence, (h ∧ k)(yh) = h(yh) �= 0, which is 
impossible. Hence, h ∈ η(x) or k ∈ η(x). Thus, η(x) ∈ Spec(ZF ).

In what follows, we will prove that η is an injective map. For every x ∈ F we define the map

ux(z) =
{

1 if x ≤ z

0 if x � z.
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Take x, y ∈ F and assume x �= y; for example, consider x � y. Then ux ∈ η(x) and ux /∈ η(y), so 
η(x) �= η(y). Hence, η is an injective map.

Now we will show that η is a bijective map. It was proved in [3] that there exists an order isomorphism 
between F and Spec(RF ), where the order in the l-group RF agrees with the order given by us in the l-group 
ZF . Moreover, we can change Spec(RF ) by Spec(ZF ) in order to obtain an order isomorphism between F
and Spec(ZF ). Since η is an injective map and F is finite then F and Spec(ZF ) have the same cardinal. 
Hence, η is a bijective map.

Finally we will prove that η is an order isomorphism, i.e., x ≤ y if and only if η(x) ⊆ η(y) for every 
x, y ∈ F . Let x ≤ y, h ∈ η(x) and z ≥ y. Since x ≤ y then z ≤ x. Hence, h(z) = 0, i.e. h ∈ η(y). Then we 
have η(x) ⊆ η(y). Conversely, let η(x) ⊆ η(y). If x � y then ux ∈ η(x) and ux /∈ η(y). Thus η(x) � η(y), 
which is a contradiction. Therefore x ≤ y. �
3. Getting a root system from an l-group

In this section we build up a functor from the category �G to the category RS.
The following result is part of the folklore of the subject. Although it follows as a consequence of [7, 

Lemma 13] (see Remark 2, below) through a suitable reframing, we opt to give an elementary and self 
contained proof of it.

Lemma 3. Let f : (A, u) → (B, v) be a morphism in �G. Then the map Spec(f) : Spec(B) → Spec(A) given 
by Spec(f)(P ) = f−1(P ) is a p-morphism.

Proof. Let P ∈ Spec(B) and Q ∈ Spec(A) be such that f−1(P ) ⊆ Q. Define the set

Σ := {Z ∈ Spec(B) : P ⊆ Z and f−1(Z) ⊆ Q}.

A routine application of Zorn’s Lemma shows that the set Σ has a maximal element M . Moreover, M is 
the maximum element of Σ. In particular, M ∈ Spec(B), P ⊆ M and f−1(M) ⊆ Q. In what follows we 
will see that f−1(M) = Q. In order to prove it, let a ∈ Q and define I = 〈M ∪ {f(a)}〉. We will show that 
f−1(I) ⊆ Q. Let b ∈ f−1(I), so there exist a natural number n and c ∈ M such that |f(b)| ≤ (n |f(a)|) + |c|. 
Thus, f(|b|) ≤ f(n |a|) + |c|. Then f(|b| − n |a|) ≤ |c|. Thus we have 0 ≤ f(((|b| − n |a|) ∧ u) ∨ 0) ≤ |c| ∧ v. 
Since 0, |c| ∧ v ∈ M and we have the inclusion f−1(M) ⊆ Q, it follows that ((|b| − n |a|) ∧ u) ∨ 0 ∈ M . Also

((|b| − n |a|) ∧ u) ∨ 0 = ((|b| − n |a|) ∨ 0) ∧ (u ∨ 0)
= ((|b| − n |a|) ∨ 0) ∧ u.

Since u /∈ Q then (|b| − n |a|) ∨ 0 ∈ Q. In addition, n |a| ∈ Q because a ∈ Q. Hence, ((|b| − n |a|) ∨ 0) +
n |a| ∈ Q. Furthermore,

((|b| − n |a|) ∨ 0) + n |a| = (|b| − n |a| + n |a|) ∨ (0 + n |a|)
= |b| ∨ n |a| .

Since 0 ∈ Q, |b| ∨ n |a| ∈ Q and 0 ≤ |b| ≤ |b| ∨ n |a| then |b| ∈ Q. So b ∈ Q and then f−1(I) ⊆ Q. Hence 
I = M because I ∈ Σ and M ⊆ I. Since f(a) ∈ I, a ∈ f−1(I) = f−1(M). Thus, Q ⊆ f−1(M). Therefore, 
f−1(M) = Q, which was our aim. �
Remark 2. It is possible to give another proof of Lemma 3 by considering [7, Lemma 13]. In order to show 
it, let f : (A, u) → (B, v) be a morphism in �G and Γ : �G → MV Mundici’s functor [2]. In particular, 
Γ(f) : Γ(a, u) → Γ(B, v) is an homomorphism in MV. Moreover, from [7, Lemma 13] it follows that 
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Spec : Spec(Γ(A, u)) → Spec(Γ(B, v)) is a p-morphism (here we also write Spec for the functor from MV to 
RS defined in the usual way [2,7]). Moreover, the correspondence φA : P �→ {x ∈ A : |x| ∧u ∈ P} defines an 
isomorphism from the poset (Spec(Γ(A, u)), ⊆) onto the poset (Spec(A), ⊆) [3, Corollary 1.3]. The inverse 
isomorphism is given by the correspondence ψA : Q �→ Q ∩ [0, u], where [0, u] = {x ∈ A : 0 ≤ x ≤ u}. We 
also have that φA and ψA are p-morphisms. Straightforward computations show the commutativity of the 
following diagram:

Spec(Γ(B, v))
Spec(Γ(f))

φB

Spec(Γ(A, u))

φA

Spec(B)
Spec(f)

Spec(A).

Therefore, Spec(f) = φA ◦ Spec(Γ(f)) ◦ ψB , and as a consequence, Spec(f) is a p-morphism.

As a straightforward consequence of Lemma 3, we have the following result.

Proposition 3. There exists a functor from �G to RS.

4. On l-groups with local order units

In this section we define a category whose objects are objects of �Gf together with local order units (a 
strong unit for each prime l-ideal) satisfying specific properties, and whose arrows are l-homomorphisms 
satisfying additional conditions. We prove that there exists a functor from this category to the category 
FRS, and conversely.

Let A be an l-group and P ∈ Spec(A). We define the set

IP := {Q ∈ Spec(A) : P � Q}.

If g : A → B is a morphism in �G, we also define the set

C(P,g) := {Q ∈ Spec(B) : g−1(Q) = P}.

We write Max(A) for the set of maximal l-ideals of A. If P /∈ Max(A), we write S(P ) for the successor 
of P . Let P ∈ Spec(A), so in particular P is an l-group. If uP is a strong unit of P we define

δP =
{

u− uP if P ∈ Max(A)
uS(P ) − uP if P /∈ Max(A).

Definition 1. The category �Gf
u of l-groups with local order units is defined as follows:

Objects: Structures (A, ̂u) with the following properties:
1. A is an l-group with finite spectrum.
2. û = {u} ∪ {uP }P∈Spec(A), where u is a strong unit of A and uP is a strong unit of P for each 

P ∈ Spec(A).
3. u =

∑
P∈Spec(A) δP , and δP ≥ 0 for each P ∈ Spec(A).

4. uP =
{∑

P�Q δQ if IP �= ∅
0 if IP = ∅.

Arrows: g : (A, ̂u) → (B, ̂v) is a morphism if it satisfies the following conditions:
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5. g : (A, u) → (B, v) is a morphism in �G.

6. g(δP ) =
{∑

Q∈C(P,g)
δQ if C(P,g) �= ∅

0 if C(P,g) = ∅.

If (A, ̂u) ∈ �Gf
u , then Spec(A) ∈ FRS. If g : (A, ̂u) → (B, ̂v) is a morphism in �Gf

u , then, from Lemma 3, 
it follows that Spec(g) : Spec(B) → Spec(A) is a morphism in FRS. Hence, we have

Proposition 4. Spec is a functor from �Gf
u to FRS.

In what follows we will see that there exists a functor from FRS to �Gf
u .

Let F ∈ FRS. For every P ∈ Spec(ZF ) there exists a unique xP ∈ F such that ηF (xP ) = P . We define 
maps uP : F → Z by

uP (y) =
{

0 if xP ≤ y

1 if xP � y.

Lemma 4. Let F ∈ FRS. If F has n elements then {δP }P∈Spec(ZF ) is the canonical base of Zn, where δP
is defined as in Definition 1. Moreover, the structure (ZF , ̂uF ) is an object of �Gf

u , where ûF = {eF } ∪
{uP }P∈Spec(ZF ).

Proof. Let P be a maximal l-ideal in ZF , so δP = eF − uP . Let y ∈ F . If xP = y (i.e., xP ≤ y) then 
δP (y) = eF (y) − uP (y) = 1 − 0 = 1. If xP �= y (i.e. xP � y) then δP (y) = eF (y) − uP (y) = 1 − 1 = 0. Let 
P ∈ Spec(ZF ) be such that P is not maximal. Hence, δP = uS(P ) − uP . Let y ∈ F and consider y �= xP . If 
xP < y then xS(P ) ≤ y, so δP (y) = uS(P )(y) − uP (y) = 0 − 0 = 0. If xP = y then xP ≤ y and xS(P ) � y, 
so δP (y) = uS(P )(y) − uP (y) = 1 − 0 = 1. Let now xP � y. Hence, xS(P ) � y and as a consequence, 
δP (y) = uS(P )(y) − uP (y) = 1 − 1 = 0. Then, δP (y) = 1 if y = xP and δP (y) = 0 if y �= xP . Finally, take 
P, Q ∈ Spec(ZF ) such that P �= Q. In particular, xP �= xQ. Thus, δP (xP ) = 1 and δQ(xP ) = 0, so δP �= δQ. 
Thus, {δP }P∈Spec(ZF ) is the canonical base of Zn.

It is immediate that (ZF , ̂uF ) satisfies conditions 1, 2 and 3 of Definition 1. In what follows we will see 
that condition 4 is also verified. Let P ∈ Spec(ZF ) such that IP �= ∅. For y ∈ F , we have

uP (y) = 0 if and only if

⎛⎝∑
P�Q

δQ

⎞⎠ (y) = 0. (3)

In order to prove it, consider uP (y) = 0, i.e., xP ≤ y. Let Z ∈ Spec(ZF ) such that P � Z. Thus, xP � xZ , 
so y �= xZ . Hence, δZ(y) = 0 and as a consequence, (

∑
P�Q δQ)(y) = 0. Conversely, let (

∑
P�Q δQ)(y) = 0, 

i.e., for every Q ∈ Spec(ZF ) such that P � Q we have δQ(y) = 0 (i.e., xQ �= y). Since xη(y) = y then 
P ⊆ η(y), i.e., xP ≤ y. Thus, uP (y) = 0. Then we have proved condition (3). For every y ∈ F we have 
uP (y) ∈ {0, 1} and (

∑
P�Q δQ)(y) ∈ {0, 1}, so if IP �= ∅ then uP =

∑
P�Q δQ. Finally consider IP = ∅, and 

suppose that there exists y ∈ F such that uP (y) = 1. Thus, xP � y. So P � ηf (y), which is a contradiction. 
Then, uP = 0 whenever IP = ∅. Therefore, we have proved the condition 4 of Definition 1. �

Let ηF : F → Spec(ZF ) and ηG : G → Spec(ZG) be the isomorphisms given in Proposition 2, where F
and G are objects in FRS. Let f : F → G be a morphism in FRS. We will prove the commutativity of the 
following diagram:



8 J.L. Castiglioni, H.J. San Martín / Journal of Applied Logic 15 (2016) 1–15
F
ηF

f

Spec(ZF )

Spec(f̂)

G
ηG Spec(ZG).

Note that previous diagram commutes if and only if for every x ∈ F ,

(Spec(f̂))(ηF (x)) = ηG(f(x)).

For x ∈ F we have

(Spec(f̂))(ηF (x)) = (f̂−1)(ηF (x))
= {h ∈ ZG : f̂(h) ∈ ηF (x)}
= {h ∈ ZG : h(f(y)) = 0 for every y ≥ x}

and

ηG(f(x)) = {h ∈ ZG : h(z) = 0 for every z ≥ f(x)}.

In order to prove that (Spec(f̂))(ηF (x)) = ηG(f(x)), let h ∈ (Spec(f̂))(ηF (x)), i.e., h(f(y)) = 0 for every 
y ≥ x. Assume z ≥ f(x). Since f is a p-morphism then there exists y ≥ x such that f(y) = z. Since y ≥ x, 
h(f(y)) = 0, i.e., h(z) = 0. Thus, h ∈ ηG(f(x)).

Conversely, let h ∈ ηG(f(x)), i.e., h(z) = 0 for every z ≥ x. Let y ≥ x, so in particular f(y) ≥ f(x). 
From the assumption we have that h(f(y)) = 0. Hence, h ∈ (Spec(f̂))(ηF (x)). Then, (Spec(f̂))(ηF (x)) =
ηG(f(x)), which was our aim. Therefore, we obtain the following

Lemma 5. Let F, G be objects in FRS and f : F → G a morphism in FRS. Then (Spec(f̂))(ηF (x)) =
ηG(f(x)) for every x ∈ F .

Lemma 6. Let f : F → G be a morphism in FRS. Then f̂ : (ZG, ̂uG) → (ZF , ̂uF ) is a morphism in �Gf
u .

Proof. Let P ∈ Spec(ZF ). We will argue by cases.
First case: If C(P,f̂) = ∅ and there exists x ∈ F such that [f̂(δP )](x) = δP (f(x)) �= 0 then δP (f(x)) = 1. 

Hence, ηG(f(x)) = P . By Lemma 5 (Spec(f̂))(ηF (x)) = P . Hence ηF (x) ∈ C(P,f̂), which is a contradiction 

because C(P,f̂) = ∅. Thus, if C(P,f̂) = ∅ then [f̂(δP )](x) = 0 for every x ∈ F .
Second case: Consider C(P,f̂) �= ∅, and let x ∈ F . First we will prove that

[f̂(δP )](x) = 1 if and only if

⎛⎝ ∑
Q∈C(P,f̂)

δQ

⎞⎠ (x) = 1. (4)

Suppose that [f̂(δP )](x) = δP (f(x)) = 1. From Lemma 5, we have P = ηG(f(x)) = (Spec(f̂))(η(x)) =
(f̂)−1(ηF (x)) and as a consequence, ηF (x) ∈ C(P,f̂). Then, 

(∑
Q∈C(P,f̂)

δQ

)
(x) = 1. Conversely, suppose 

that 
(∑

Q∈C(P,f̂)
δQ

)
(x) = 1. Hence, there exists Q ∈ C(P,f̂) such that f̂−1(Q) = P and δQ(x) = 1, i.e., 

ηF (x) = Q. From Lemma 5, it follows that P = f̂−1(Q) = f̂−1(ηF (x)) = ηG(f(x)). Thus, [f̂(δP )](x) =
δP (f(x)) = 1. Hence, we have proved (4). Since [f̂(δP )](x) ∈ {0, 1} and 

(∑
Q∈C(P,f̂)

δQ

)
(x) ∈ {0, 1}, we 

have that C ˆ �= ∅ implies [f̂(δP )](x) =
(∑

δQ

)
(x) for every x ∈ F . �
(P,f) Q∈C(P,f̂)
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If F ∈ FRS, we define Λ(X) = ZF . If f : F → G is a morphism in FRS, we define Λ(f) : (ZG, ̂uG) →
(ZF , ̂uF ) as Λ(f) = f̂ . Then, from Lemmata 4 and 6 we have

Corollary 7. Λ is a functor from FRS to �Gf
u .

5. An adjunction

We prepare the necessary material for the proof that the functor Λ : FRSop → �Gf
u is left adjoint to 

Spec.
Let (A, ̂u) ∈ �Gf

u . For every P̃ ∈ Spec(ZSpec(A)), let P ∈ Spec(A) the unique element of Spec(A) such 
that ηSpec(A)(P ) = P̃ . From Lemma 4 we have that the assignment δP̃ �→ δP from ZSpec(A) to A can be 
extended to a unique morphism of groups

εA : ZSpec(A) → A.

We define ũ := eSpec(A) and û := {ũ} ∪{uP̃ }P∈Spec(ZSpec(A)). From Proposition 4 and Corollary 7 we conclude 
that (ZSpec(A), ̂u) ∈ �Gf

u .

Lemma 8. If P̃ ∈ Spec(ZSpec(A)) then εA(uP̃ ) = uP . Moreover, εA(ũ) = u.

Proof. Let P̃ ∈ Spec(ZSpec(A)). Suppose that IP �= ∅. Then uP̃ =
∑

P̃�Q̃ δQ̃. Thus,

εA(uP̃ ) =
∑
P̃�Q̃

εA(δQ̃) =
∑
P�Q

δQ = uP .

If IP = ∅ (equivalently, IP̃ = ∅) then uP = 0 and uP̃ = 0, so we also have εA(uP̃ ) = uP .
In order to prove that εA(ũ) = u, note that ũ =

∑
δP̃ . Hence,

εA(ũ) =
∑

εA(δP̃ ) =
∑

δP = u. �
In what follows we will give some technical results which we need for this section.

Lemma 9. Let (A, ̂u) ∈ �Gf
u . Then

(a) If P ∈ Spec(A) is such that nu ∈ P , then n = 0.
(b) If α0, α1, . . . , αj ∈ Z, Pj+1 ⊂ Pj ⊂ . . . ⊂ P1 are in Spec(A) and α0u + α1u1 + . . . + αjuj ∈ Pj+1 then 

αk = 0 for every k = 0, . . . , j, where uj = uPj
.

(c) Let A be an o-group, and {0} ⊂ Pn ⊂ Pn−1 ⊂ . . . ⊂ P1 all the elements of Spec(A). Let αi, βi ∈ Z for 
i = 0, . . . , n. Then α0u +α1u1 + . . .+αnun ≤ β0u + β1u1 + . . .+ βnun if and only if (α0, α1, . . . , αn) ≤
(β0, β1, . . . , βn) in Zn+1

lex .

Proof. We first settle item (a). If there exists n > 0 such that nu ∈ P then −nu ≤ u ≤ nu. Since −nu ∈ P

and nu ∈ P then u ∈ P , which is a contradiction. The case n < 0 is similar. Hence, n = 0.
In order to prove (b), suppose Pj+1 ⊂ Pj ⊂ . . . ⊂ P1 and a = α0u +α1u1+. . .+αjuj ∈ Pj+1. Since a ∈ P1

and α1u1 + . . . + αjuj ∈ P1 then α0u ∈ P1, so α0 = 0 follows from item (a). Since α1u1 + . . . + αjuj ∈ P2
and α2u2 + . . . + αjuj ∈ P2, α1u1 ∈ P2 and hence, α1 = 0. We can repeat this reasoning, and in the final 
step we obtain αjuj ∈ Pj+1, so αj = 0.

We finally settle (c). Suppose (α0, α1, . . . , αn) ≤ (β0, β1, . . . , βn) in Zn+1
lex , and suppose that there exists 

0 ≤ i ≤ n − 2 such that α0 = β0, . . . , αi = βi and αi+1 < βi+1. Hence,
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αi+1 + 1 ≤ βi+1. (5)

Further, (αi+2 − βi+2)ui+2 + . . . + (αn − βn)un ∈ Pi+2 and

(αi+2 − βi+2)ui+2 + . . . + (αn − βn)un < ui+1. (6)

In order to prove the inequality (6), suppose (αi+2−βi+2)ui+2 + . . .+(αn−βn)un ≥ ui+1. Since 0 ≤ ui+1 ≤
(αi+2 − βi+2)ui+2 + . . . + (αn − βn)un ∈ Pi+2, then ui+1 ∈ Pi+2. Then Pi+1 ⊆ Pi+2 ⊂ Pi+1, which is a 
contradiction. From equations (5) and (6) it follows that

αi+1ui+1 + (αi+2 − βi+2)ui+2 + . . . + (αn − βn)un < αi+1ui+1 + ui ≤ βi+1ui+1.

Then αi+1ui+1 + . . .+ αnun < βi+1ui+1 + . . .+ βnun. Therefore, α0u + α1u1 + . . .+ αnun ≤ β0u + β1u1 +
. . . + βnun.

Conversely, suppose α0u +α1u1 + . . .+αnun ≤ β0u +β1u1 + . . .+βnun, i.e., γ0u +γ1u1 + . . .+γnun ≤ 0, 
where γi = αi − βi for i = 0, . . . , n. We have two possible cases.

First case: suppose γ0u + γ1u1 + . . . + γnun /∈ P for any P ∈ Spec(A). If γi = 0, for i = 0, . . . , n, then 
(α1, . . . , αn) = (β1, . . . , βn). Thus we can assume there exists a maximum number i such that γi �= 0. We will 
prove that γi < 0. In order to prove it, suppose γi > 0. Then 0 ≤ ui ≤ γiui. Thus, γi+1ui+1 + . . . + γnun ≤
−γiui ≤ 0 and γi+1ui+1 + . . . + γnun ∈ Pi+1 and as a consequence, γiui ∈ Pi+1. Hence, from item (a) we 
get γi = 0, which is a contradiction. Then, γi < 0 and (α0, α1, . . . , αn) ≤ (β0, β1, . . . , βn).

Second case: suppose there exists Pi ∈ Spec(A) such that γ0u + γ1u1 + . . . + γnun ∈ Pi.
Suppose i = n. Since γ0u +γ1u1+ . . .+γnun ∈ Pn and γnun ∈ Pn, then γ0u +γ1u1+ . . .+γn−1un−1 ∈ Pn. 

From item (b) we get γ0 = . . . = γn−1 = 0. Hence, γnun = γ0u + γ1u1 + . . . + γnun ≤ 0. We also have 
un > 0 because Pn �= {0}. If γn > 0 then un ≤ γnun ≤ 0, which is a contradiction. Thus, γn ≤ 0 and we 
have (α0, α1, . . . , αn) ≤ (β0, β1, . . . , βn).

Now, suppose i �= n. Then we can assume there exists a natural number k with the property γ0u +
γ1u1 + . . . + γnun ∈ Pk − Pk+1. Let k be the maximum natural number with the previous property. Since 
γkuk+. . .+γnun ∈ Pk then γ0u +. . . γk−1uk−1 ∈ Pk. Hence, from item (b) the equalities γ0 = . . . = γk−1 = 0
follow. Since γkuk + . . . + γnun /∈ Pk+1, then γk < 0. In order to show it, assume γk ≥ 0. Then we have 
γk+1uk+1 + . . .+γnun ≤ γkuk + . . .+γnun ≤ 0 and γk+1uk+1 + . . .+γnun ∈ Pk+1. Thus, γkuk + . . .+γnun ∈
Pk+1, which is a contradiction. Hence, γk < 0. Therefore, (α0, α1, . . . , αn) ≤ (β0, β1, . . . , βn). �

For later purposes, let us recall that if M and N are lattices, N is totally ordered and f : N → M is a 
morphism of posets then f preserves ∧ and ∨.

Lemma 10. Let (A, ̂u) ∈ �Gf
u , with A an o-group. The map εA : ZSpec(A) → A is a morphism of l-groups.

Proof. We will prove that εA preserves ∧ and ∨. The conclusion of the lemma is immediate if Spec(A)
has only one element, so we can assume that Spec(A) has more than one element. Let {P1, . . . , Pn+1}
be the set of elements of Spec(A), with Pn+1 the zero l-ideal and Pn+1 ⊂ Pn ⊂ . . . ⊂ P1. Let h, j ∈
ZSpec(A). Thus, h =

∑n
i=1 aiδP̃i

and j =
∑n

i=1 biδP̃i
, where ai, bi ∈ Z for i = 1, . . . , n. In particular, 

h = a1(ũ−ũ1) +a2(ũ1−ũ2) +. . .+(an−an−1)ũn−1 = a1ũ+(a2−a1)ũ1+. . .+(an−an−1)ũn−1, where ũi = uP̃i
. 

Hence, ε(h) = a1(u −u1) +a2(u1 −u2) + . . .+(an−an−1)un−1 = a1u +(a2 −a1)u1 + . . .+(an−an−1)un−1, 
where we write ui in place of uPi

. Put ε(h) = a and ε(j) = b. In order to prove that ε preserves ∧ and ∨, 
we only need to show that εA preserves the order (because ZSpec(A) is totally ordered). Suppose that h ≤ j. 
From Lemma 9 it follows that (a1, a2 − a1, . . . , an − an−1) ≤ (b1, b2 − b1, . . . , bn − bn−1) in the lexicographic 
order. Then, applying Lemma 9 again, we conclude that a ≤ b, which was our aim. �

Let A be an l-group and P ∈ Spec(A). Consider the map ρ : A → A/P given by ρ(a) := a/P .
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Remark 3. Let A be an l-group and P, Q ∈ Spec(A) such that P ⊆ Q. Then ρ−1(ρ(Q)) = Q and ρ(Q) ∈
Spec(A).

Let (A, ̂u) ∈ �Gf
u and P ∈ Spec(A). We define

û/P = {u/P} ∪ {uρ−1(Z)/P}Z∈Spec(A).

We next prove that

u/P :=
∑

Z∈Spec(A/P )

δρ−1(Z)/P. (7)

Since u =
∑

Q∈Spec(A) δQ then u/P =
∑

Q∈Spec(A) δQ/P . The proof of (7) amounts to proving

∑
Q∈Spec(A)

δQ/P =
∑

Z∈Spec(A/P )

δρ−1(Z)/P. (8)

In order to show equality (8), we need to prove that Q ∈ Spec(A) and Q �= ρ−1(Z) for every Z ∈
Spec(A/P ) implies δQ ∈ P (i.e., δQ/P = 0). Let Q ∈ Spec(A) and suppose that Q �= ρ−1(Z) for every 
Z ∈ Spec(A/P ). From Remark 3, it follows that P � Q. Hence uP =

∑
P�R δR ≥ δQ. Thus, we have 

0 ≤ δQ ≤ uP , whence from 0 ∈ P and uP ∈ P we finally get δQ ∈ P .
A routine variant of the proof above now yields,

Lemma 11. Let (A, ̂u) ∈ �Gf
u . Then (A, ̂u/P ) ∈ �Gf

u . Moreover, the map ρ : (A, ̂u) → (A, ̂u/P ) is a morphism 
in �Gf

u .

Lemma 12. Let (A, ̂u) ∈ �Gf
u . Then for every P ∈ Spec(A) the map εP : ZSpec(A) → A/P given by 

εP (h) = εA(h)/P is a morphism of l-groups.

Proof. Let (A, ̂u) ∈ �Gf
u and P ∈ Spec(A). Then, A/P is a chain. Consider the morphism ρ in �Gf

u given in 

Lemma 11. In particular, ̂Spec(ρ) is a morphism in �Gf . Furthermore, from Lemmata 10 and 11 we have 
that εA/P : ZSpec(A/P ) → A/P is a morphism of l-groups. Thus, εA/P ◦ Ŝpec(ρ) : ZSpec(A) → A/P is a 

morphism of l-groups. In what follows, we will prove that εA/P ◦ Ŝpec(ρ) = εP , which amounts to proving 

(εA/P ◦ ̂Spec(ρ))(δQ̃) = εP (δQ̃) for every Q ∈ Spec(A).
Let Q ∈ Spec(A). If there exists Z ∈ Spec(A/P ) such that Q = ρ−1(Z) (this Z is necessarily unique) 

then straightforward computations show that δQ̃ ◦ Spec(ρ) = δQ/P , so (εA/P ◦ ̂Spec(ρ))(δQ̃) = εP (δQ̃). If 
for every Z ∈ Spec(A/P ) we have Q �= ρ−1(Z) then, from Remark 3, it follows P � Q. In particular, 
δQ ∈ P . Then (εA/P ◦ ̂Spec(ρ))(δQ̃) = εP (δQ̃) = 0. Hence, we have (εA/P ◦ ̂Spec(ρ))(δQ̃) = εP (δQ̃) for every 

Q̃ ∈ Spec(ZSpec(A)). Therefore, εP is a morphism of l-groups. �
Lemma 13. Let (A, ̂u) ∈ �Gf

u . If P, Q ∈ Spec(A) are such that ε−1
A (Q) = P̃ , then P = Q. Moreover, for 

every P ∈ Spec(A) we have ε−1
A (P ) = P̃ .

Proof. Let P, Q ∈ Spec(A) such that ε−1
A (Q) = P̃ . We have uP̃ ∈ P̃ and by Lemma 8, εA(uP̃ ) = uP ∈ Q. 

Hence, P ⊆ Q. On the other hand, εA(uQ̃) = uQ ∈ Q. Thus, uQ̃ ∈ ε−1
A (Q) = P̃ . So, uQ̃ ∈ P̃ . Then we have 

Q̃ ⊆ P̃ , i.e., Q ⊆ P . Therefore P = Q.
Finally, we will see that ε−1

A (P ) = P̃ for every P ∈ Spec(A). We have εA(uP̃ ) = uP ∈ P , so uP̃ ∈ ε−1
A (P ). 

Then P̃ ⊆ ε−1
A (P ). On the other hand, let u ˜ be a strong unit of ε−1

A (P ). Hence, εA(u ˜) = uQ ∈ P . Since 
Q Q
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uQ ∈ Q then Q ⊆ P and Q̃ ⊆ P̃ . However uQ̃ is a strong unit of ε−1
A (P ) and Q̃. Thus, ε−1

A (P ) = Q̃ ⊆ P̃ . 
Then we have ε−1

A (P ) = P̃ . �
Now, we give the first main result of this section.

Proposition 5. Let (A, ̂u) ∈ �Gf
u . Then, εA : (ZSpec(A), ̂u) → (A, ̂u) is a morphism in �Gf

u .

Proof. Let (A, ̂u) be an object of �Gf
u . By Lemma 12, we have εA(h ∧ j)/P = (εA(h)/P ) ∧ (εA(j)/P ) and 

εA(h ∨ j)/P = (εA(h)/P ) ∨ (εA(j)/P ), for every P ∈ Spec(A). Since the intersection of all prime l-ideals 
of A is the zero l-ideal then εA(h ∧ j) = εA(h) ∧ εA(j) and εA(h ∨ j) = εA(h) ∨ εA(j). From Lemma 8, it 
follows that εA is a morphism in �G. By Lemma 13, we have C(P,εA) �= ∅ and

εA(δP̃ ) = δP =
∑

Q∈C(P,εA)

δQ.

Therefore, εA is a morphism in �Gf
u . �

Remark 4. Let g : (A, ̂u) → (B, ̂v) be a morphism in �Gf
u , and P ∈ Spec(A). Then

̂Spec(g)(δP̃ ) =
{∑

Q∈C(P,g)
δQ̃ if C(P,g) �= ∅

0 if C(P,g) = ∅.

Let εA : (ZSpec(A), ̂u) → (A, ̂u) and εB : (ZSpec(B), ̂v) → (B, v) be the morphisms in �Gf
u we have defined 

above. Let g : (A, ̂u) → (B, ̂v) be a morphism in �Gf
u . We will prove the commutativity of the following 

diagram:

(ZSpec(A), û)
εA

̂Spec(g)

(A, û)

g

(ZSpec(B), v̂)
εB (B, v̂).

The commutativity of the previous diagram is equivalent to proving

(g ◦ εA)(δP̃ ) = (εB ◦ ( ̂Spec(g))(δP̃ ),

for every P̃ ∈ Spec(ZSpec(A)).
Let us first note that

(g ◦ εA)(δP̃ ) = g(εA(δP̃ )) = g(δP ).

If C(P,g) �= ∅, then, by Remark 4,

(εB ◦ ( ̂Spec(g))(δP̃ ) = εB

⎛⎝ ∑
Q∈C(P,g)

δQ̃

⎞⎠ =
∑

Q∈C(P,g)

δQ.

Since g is a morphism in �Gf
u then (g ◦ εA)(δP̃ ) = (εB ◦ ( ̂Spec(g))(δP̃ ).

Finally, if C(P,g) = ∅, then g(δP ) = (εB ◦ ( ̂Spec(g))(δ ˜) = 0.
P
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Therefore, we have proved that (g ◦ εA)(δP̃ ) = (εB ◦ ( ̂Spec(g))(δP̃ ).
The second main result of this section is the following one.

Theorem 14. The functor Λ : FRSop → �Gf
u is left adjoint to Spec.

6. Final remarks

In [7] the authors study a problem closely related to the one investigated here. In what follows, we study 
some connections between the results in [7] and those in the present paper.

Let F be a finite root system. Since F is finite, the set of minimal elements of F , say min(F ), is also finite. 
We associate to F another root system F+ such that any root in F+ is a chain. If min(F ) = {m1, . . . , mn}, 
we can take

F+ :=
∐

m∈min(F )

[m).

Moreover, there is a unique surjective p-morphism κ : F+ → F making, for every m ∈ min(F ), the following 
diagram commute,

F+ κ
F

[m).
im jm

(9)

Here, im and jm are the natural inclusions of [m) into F+ and F respectively. We call such a morphism 
κ : F+ → F a covering of F .

Given a covering κ : F+ → F , the functor Λ : FRSop → �Gf
u defines a monomorphism Λ(κ) : Λ(F ) →

Λ(F+). Applying Λ to diagram 9, we get the following commutative diagram,

Λ(F )
Λ(κ)

Λ(jm)

Λ(F+)
∏

m Λ([m))

prm

Λ([m)).

(10)

Here, pm :
∏
m

Λ([m)) → Λ([m)) is the corresponding projection map.

Note that for every h ∈ Λ([m)), there exists h′ ∈ Λ(F ) such that (prm ◦Λ(κ))(h′) = h. Hence, Λ(F ) is a 
subdirect product of the totally ordered groups Λ([m)), for m ∈ min(F ).

We have seen that Λ is part of an adjunction, more precisely, Λ � Spec. If we restrict the codomain of Λ
to its image, we get a dual equivalence

Λ : FRSop Λ(FRS) : Spec.

Here, Λ(FRS) is the full subcategory of �Gf
u whose objects are certain free ordered Z-modules, as described 

in Lemma 4.
Let F be a finite root system. A labelling on F is a function λ : F+ → Z>0. A pairs (F, λ), with F a finite 

root system and λ a labelling on F , is called a labelled root system. For two labelled root systems (F, λ) and 
(G, μ), we say that a p-morphism ϕ : F → G is a morphism of labelled root systems. Let us consider the 
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category lFRS, whose objects are labelled root systems and whose morphisms are morphisms of labelled 
root systems.

Let (F, λ) be a finite labelled root system. We associate to (F, λ) a lattice ordered group with order unit 
in the following way.

Recall that {δx | x ∈ Λ([m))} is a basis for Λ([m)), and their union a basis for Λ(F+). Let us define 
λm : Λ([m)) → Λ([m)) as the unique morphism in �Gf

u given by λm(δx) := λ(x)δx. Let us write A(λm) for 
the subobject of the ordered group Z⊗km ∼= Λ([m)), obtained by considering im(λm) ≤ Λ([m)) ∼= Z⊗km . The 
group A(λm) is totally ordered, with basis {λm(δx) | x ∈ Λ([m))}. In particular, we have that A(λm) ∼= Z⊗km

in �Gf
u .

Let us now consider the inclusion

Λ(F )
Λ(κ)

Λ(F+) ∼=
∏

m Λ([m)) ∼=
∏

m Z⊗km

and the product morphism λ̃ :=
∏
m

λm :
∏
m

Λ([m)) →
∏
m

Z⊗km . We have im(λ̃) ∼=
∏
m

A(λm). Write λ̂ for 

the composition λ̂ := λ̃ ◦ Λ(κ). Since λ̃ and Λ(κ) are both injective, so is λ̂. Then im(λ̂) is a �Gf
u subobject 

of 
∏

m A(λm), whose spectrum is isomorphic to F . Write A(λ) for im(λ̂). Any algebra of the form A(λ) for 
some labelled root system (F, λ) is called a QF -group. We have to define now what a morphism between 
QF -groups is.

Let (F, λ) and (G, μ) be two labelled root systems and ϕ : F → G a morphism between them. Since λ̂
and μ̂ are isomorphisms, there exists a unique morphism ϕl yielding the following commutative diagram in 
�Gf

u

Λ(F ) λ̂
A(λ)

Λ(G)
μ̂

Λ(ϕ)

A(μ).

ϕl

A morphism of QF-groups is one of the form ϕl, for some ϕ between their spectra.
Let us now consider the subcategory QF of �Gf

u , whose objects are QF -groups and whose morphism are 
the QF -groups morphisms defined above. Let us notice that this category resembles the category QFC of 
[7]. However, since we are taking subdirect products in �Gf

u , we do not get a full subcategory of �G, contrary 
to QFC , which is a full subcategory of MV.

A straightforward computation shows that Λ � Spec is a dual equivalence between the categories lFRS
and QF . While this result is not equivalent to the main result of [7], it follows the same lines of thought.

We end this section by giving an alternative elementary proof of [7, Lemma 13] which could be of interest 
in itself.

Lemma 15. Let A, B be MV-algebras and f : A → B a homomorphism, then, Spec(f) : Spec(B) → Spec(A)
is a p-morphism.

Proof. Let P ∈ Spec(B) and Q ∈ Spec(A) such that f−1(P ) ⊆ Q. Write Σ := {Z ∈ Spec(B) : P ⊆
Z and f−1(Z) ⊆ Q}. It has a maximal element M . Moreover, M ∈ Spec(B), P ⊆ M and f−1(M) ⊆ Q.

In order to see that f−1(M) = Q, let us take a ∈ Q and the ideal I of MV -algebras generated by 
M ∪ {f(a)}. We will show that f−1(I) ⊆ Q.

Let b ∈ f−1(I). There are a natural number n and an element c ∈ M such that f(b) ≤ nf(a) ⊕ c =
f(na) ⊕ c = ¬(¬f(na) � ¬c) = ¬(f(¬na) � ¬c). Thus, f(b � ¬na) = f(b) � f(¬na) ≤ c ∈ M , and 
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f(b � ¬na) ∈ M . Since f−1(M) ⊆ Q, it follows that b � ¬na ∈ Q. Hence, there is an element d ∈ Q such 
that b ≤ ¬na → d = na ⊕ d ∈ Q, which implies that b ∈ Q. Thus, f−1(I) ⊆ Q, and we have I = M , so 
f(a) ∈ M , i.e., a ∈ f−1(M). Hence, f−1(Q) = M . �
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