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ABSTRACT

Numerical simulations of seismic wave propagation in
fractured media are often performed in the framework of
the linear slip theory (LST). Therein, fractures are repre-
sented as interfaces and their mechanical properties are char-
acterized through a compliance matrix. This theory has been
extended to account for energy dissipation due to viscous
friction within fluid-filled fractures by using complex-val-
ued frequency-dependent compliances. This is, however,
not fully adequate for fractured porous rocks in which
wave-induced fluid flow (WIFF) between fractures and host
rock constitutes a predominant seismic attenuation mecha-
nism. In this letter, we develop an approach to incorporate
WIFF effects directly into the LST for a 1D system via a
complex-valued, frequency-dependent fracture compliance.
The methodology is validated for a medium permeated by
regularly distributed planar fractures, for which an analytical
expression for the complex-valued normal compliance is de-
termined in the framework of quasistatic poroelasticity.
There is good agreement between synthetic seismograms
generated using the proposed recipe and those obtained from
comprehensive, but computationally demanding, poroelastic
simulations.

INTRODUCTION

The seismic method is widely used for the detection and charac-
terization of fractures, mainly because seismic waves propagating in
fractured rocks show strong directional dependence and are also
significantly attenuated and delayed (e.g., Peacock et al., 1994;
Maultzsch et al., 2003; Clark et al., 2009). However, the explicit

representation of fractures in seismic forward modeling algorithms
is challenging because there is a huge length-scale contrast between
typical fracture apertures and seismic wavelengths. To overcome
this issue, a methodology referred to as the linear slip theory
(LST) has been proposed (Schoenberg, 1980; Pyrak-Nolte et al.,
1990). Therein, each fracture is replaced by an interface separating
two regions of solid material representing the host rock. Although
the stresses are considered to be continuous across such interfaces,
the seismic effect of the fracture manifests itself as a displacement
discontinuity. The displacement discontinuity vector ½u� and the
stress traction acting across the fracture τ · n are linearly related
through

½u� ¼ Zτ · n; (1)

where τ is the stress tensor, n is the unit normal to the fracture, and
Z is the compliance matrix characterizing the mechanical properties
of the fracture (e.g., Coates and Schoenberg, 1995). For a rotation-
ally symmetric fracture perpendicular to the z-axis embedded in an
elastic host rock, the compliance matrix is given by

Z ¼
 ZT 0 0

0 ZT 0

0 0 ZN

!
; (2)

where ZN and ZT are the normal and tangential compliances of the
fracture (e.g., Schoenberg, 1980). The LST allows to quantify the
seismic effects of various fracture characteristics, such as the spatial
distribution of fractures as well as their orientation, density, and
size (e.g., Bakulin et al., 2000; Vlastos et al., 2003; Hall and Wang,
2012).
The LST can be generalized to account for seismic attenuation

and dispersion through a complex-valued, frequency-dependent
compliance matrix Z (Coates and Schoenberg, 1995). Pyrak-Nolte
et al. (1990) consider discontinuities in the displacements and
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velocities across the fracture to model the viscous coupling between
the two surfaces of a fluid-filled fracture. Liu et al. (2000) present an
analytical expression for the complex-valued compliance of a frac-
ture modeled as a thin continuous layer of viscous fluid or soft
material. Chichinina et al. (2009) model seismic attenuation in frac-
tured media by considering complex-valued normal and tangential
compliances. In all of these studies, the imaginary part of the frac-
ture compliance is associated with viscous friction within the fluid-
filled fracture that leads to energy loss. Conversely, the host rock is
approximated by an elastic solid. A more realistic scenario is to
consider fractures as being embedded in a porous, permeable,
and fluid-saturated host rock (e.g., Chapman, 2003). In this case,
oscillatory fluid flow takes place between the fractures and the host
rock in response to the applied oscillatory normal stresses and, con-
sequently, the compliances of the fractures increase and become fre-
quency dependent (Worthington, 2008). This oscillatory fluid flow,
commonly referred to as wave-induced fluid flow (WIFF), also
causes energy dissipation and, thus, seismic attenuation (e.g., Ru-
bino et al., 2014). Moreover, Rubino et al. (2014) show that for the
frequency range at which seismic attenuation due to WIFF is strong,
the displacement discontinuity across fractures is complex valued
and frequency dependent. These results thus indicate that this
parameter may be interpreted as a proxy for attenuation and velocity
dispersion in fractured porous media. At present, it is, however, not
clear what the equivalent fracture compliance should be for this
scenario.
In this letter, we propose a methodology to include WIFF effects

in the LST for a 1D system. For simplicity, we consider a medium
composed by a regular distribution of fractures and derive an ana-
lytical expression for their complex-valued, frequency-dependent
normal compliances. We also develop a recipe for the generation
of synthetic seismograms in fractured media based on a space-fre-
quency domain implementation of the elastodynamic wave equa-
tion (Castromán and Zyserman, 2013), in which complex-valued
frequency-dependent fracture compliances can be readily incorpo-
rated. We validate our approach by comparisons with comprehen-
sive poroelastic simulations.

THEORY

Fractures conceptualized as thin poroelastic layers

In analogy with the geometry analyzed byWhite et al. (1975), we
consider a periodic 1D system of relatively thick horizontal layers
of porous host rock alternating with very thin layers representing the
fractures. The direction of wave propagation is along the z-axis and,
thus, perpendicular to the fractures. The distance between consecu-
tive fractures L is assumed to be much smaller than the seismic
wavelengths. Elastic scattering effects are thus negligible, whereas
attenuation and velocity dispersion due to WIFF can be significant.
Following Brajanovski et al. (2006), we model the seismic response
of fractured rocks in the framework of Biot’s (1962) theory of po-
roelasticity. Therein, a fracture is conceptualized as a highly com-
pliant and highly permeable poroelastic layer. Because we are
interested in computing the effects of WIFF on the displacement
discontinuity produced by an applied normal stress (equation 1),
we solve the 1D consolidation equations

∂τzz
∂z

¼ 0; (3)

iω
η

κ
wz ¼ −

∂pf

∂z
: (4)

In these equations, pf is the fluid pressure, ω is the angular fre-
quency, η is the fluid shear viscosity, and κ is the permeability,
whereas wz denotes the relative fluid-solid displacement in the di-
rection of the z-axis, and τzz is the corresponding total stress tensor
component. These two equations are coupled through the stress-
strain relations

τzz ¼ H
∂uz
∂z

þ αM
∂wz

∂z
; (5)

pf ¼ −αM
∂uz
∂z

−M
∂wz

∂z
; (6)

where uz denotes the solid displacement in the direction of the z-
axis. The undrained P-wave modulus H, the Biot-Willis parameter
α, and the fluid storage modulus M can be expressed in terms of
poroelastic end-member properties (Biot, 1962).

Frequency-dependent fracture compliance

The representative elementary volume (REV) of the 1D periodic
fracture system is shown in Figure 1. We choose the center of the
REV as the origin of the z-axis and therefore, the positions of the
upper and lower boundaries of the fracture are z ¼ Lf and z ¼ −Lf ,
respectively. The thicknesses of the two embedding regions are Lhr

and, thus, the total thickness of the REV is L ¼ 2ðLf þ LhrÞ. The
REV is subjected to a time-harmonic compression of the form
ΔPeiωt at its top and bottom boundaries, which emulates the stress
field of a monochromatic P-wave with a wavelength that is much
larger than L. Due to the model’s symmetry, fluid flow is zero at the
boundaries of the REV, and no solid or fluid displacements occur at
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Figure 1. Schematic representation of the REV considered to study
WIFF effects on fracture normal compliance.
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its center. Given the inherent 1D character of the equations, the frac-
ture normal compliance is then given by

ZNðωÞ ¼
½uz�
τzz

¼ uzðLfÞ − uzð−LfÞ
−ΔP

: (7)

Solving equations 3–6 under the aforementioned boundary condi-
tions yields

ZNðωÞ ¼ Znf
N þ 2BfðBf − BhrÞ

Nfkf cothðkfLfÞ þ Nhrkhr cothðkhrLhrÞ
;

(8)

where Znf
N ¼ 2Lf∕Hf , N ¼ Mð1 − αBÞ, and k ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

iηω∕Nκ
p

is the
wavenumber of Biot’s slow P-wave. The parameter B ¼ αM∕H is
the uniaxial Skempton coefficient, that is, the ratio of the fluid pres-
sure increase to the applied stress for undrained conditions. The
subscripts “f” and “hr” refer to the parameters of the fracture
and the host rock, respectively.
Equation 8 is the main result of this study. We observe that the

fracture normal compliance consists of two components. Znf
N is the

expression used in the LST when the fracture is modeled as a thin
layer of soft material and WIFF does not exist. Hence, the super-
script “nf” for no-flow. The second term in equation 8 represents the
WIFF component, which causes an increase of the fracture compli-
ance as a consequence of fluid pressure diffusion between fracture
and host rock in response to the applied compression.

Characteristics of the fracture normal compliance

The frequency-dependent fracture normal compliance given by
equation 8 has the following low- and high-frequency limits

lim
ω→0

ZNðωÞ ¼ Znf
N þ 2Bf

Bf − Bhr

ðNf∕LfÞ þ ðNhr∕LhrÞ
; (9)

and

lim
ω→∞

ZNðωÞ ¼ Znf
N : (10)

These limits are separated by the so-called characteristic transition
frequency ωc (Brajanovski et al., 2006). For very high frequencies,
that is, ω ≫ ωc, the diffusion lengths are very small compared with
the thickness of the host rock. Therefore, there is not enough time
during an oscillatory half-cycle to equilibrate the induced pressures
between the fracture and the host rock. In this unrelaxed case, the
fracture normal compliance is real valued and corresponds to that of
a thin layer of soft material with WIFF being neglected (equa-
tion 10). Conversely, for ω ≪ ωc, the diffusion lengths are much
larger than the dimensions of the host rock and, thus, there is
enough time for the fluid pressure to equilibrate at a common value.
A large amount of fluid flows from the fracture into the host rock
during the compression cycle, thus resulting in maximum deforma-
tion of the fracture. This, in turn, produces an increase of the solid
displacement discontinuity and, consequently, of the fracture com-
pliance. This increase is quantified by the second term of the right
side of equation 9. For frequencies close to ωc, the diffusion lengths
are comparable with the dimensions of the host rock and, thus,
WIFF is significant. The corresponding energy dissipation finds

its expression in the solid displacement discontinuity and renders
the fracture compliance to a complex quantity. Therefore, expres-
sion 8 for the fracture normal compliance encodes wave attenuation
and dispersion due to WIFF.
To illustrate the properties of ZNðωÞ, we consider a rock model

composed of a large number of regularly distributed fractures with a
uniform aperture of 0.04 cm. The separation between consecutive
fractures is 10 cm. The host rock is a quartz sandstone with a poros-
ity ϕhr of 0.1, a solid grain bulk modulus Khr

s of 37 GPa, and a grain
density ρhrs of 2.65 g∕cm3. For the dry frame, we consider a bulk
modulus Khr

m of 26 GPa, a shear modulus μhrm of 31 GPa, and a per-
meability κhr of 1 mD. We assume that the grain-scale solid material
properties of the fracture are identical to those of the host rock. Fol-
lowing Rubino et al. (2014), we use for the dry frame fracture prop-
erties ϕf ¼ 0.9, Kf

m ¼ 0.024 GPa, μfm ¼ 0.012 GPa, and κf ¼
100 D. Fractures and host rock are fully saturated with water having
a bulk modulus Kw of 2.25 GPa, a density ρw of 1.09 g∕cm3, and a
shear viscosity ηw of 0.01 P.
Figure 2 shows the fracture normal compliance ZNðωÞ according

to equation 8. We observe that its real part decreases significantly
with frequency. Indeed, for the particular physical and geometric
characteristics of the materials considered in this study, the normal
compliance corresponding to the low-frequency limit is ∼16 times
that corresponding to the high-frequency limit, where fluid flow is
negligible. In this specific example most of the transition between
these two end-member scenarios takes place for frequencies be-
tween 1 and 100 Hz, where the magnitude of the imaginary part
of ZNðωÞ assumes significant values.

NUMERICAL RECIPE

Space-frequency domain formulation

Numerical simulations of seismic wave propagation based on the
LST can be implemented in the space-frequency domain (Castro-
mán and Zyserman, 2013), which allows us to readily include com-
plex-valued frequency-dependent fracture normal compliances. To
this end, we solve the elastodynamic equation of motion

−ω2ρhrb u
hr
z −

∂τhrzz
∂z

¼ fðz;ωÞ; (11)
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Figure 2. Fracture normal compliance ZNðωÞ for a regular distri-
bution of parallel fractures characterized by an aperture of
0.04 cm and a separation of 10 cm.
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with fðz;ωÞ denoting an external source term and ρhrb , u
hr
z , and τhrzz

being the density, vertical displacement, and stress component of
the host rock, respectively. We note that by using equation 11
the porous host rock is represented by an equivalent elastic solid.
Thus, the bulk density of this elastic medium is given by ρhrb ¼
ϕhrρw þ ð1 − ϕhrÞρhrs . Moreover, the stress is related to the displace-
ment by Hooke’s law

τhrzz ¼ Hhr

∂uhrz
∂z

; (12)

where Hhr is the plane-wave modulus. Given that we seek a simple
way to include WIFF within the LST, we assume that the host rock
behaves in an undrained manner independent of the fluid pressure
exchange between fracture and host rock. This means that we use
Gassmann’s (1951) equation to compute Hhr. Our modeling recipe
is then as follows: The host medium is modeled using equations 11
and 12. The fractures are replaced by interfaces characterized by

½uhrz ðzj;ωÞ� ¼ ZNðωÞτhrzzðzj;ωÞ; (13)

with zj denoting the position of the jth fracture and ZNðωÞ being its
normal compliance (equation 8). This way, we account for seismic
attenuation and dispersion due to WIFF between fractures and the
host rock, even though the latter is modeled as an equivalent elastic
solid. That is, the use of equation 13 results in the overall model
behaving like an effective viscoelastic medium.

Validation for a 1D model of a fractured zone

To illustrate and validate the proposed extension of the LST, we
consider the model shown in Figure 3 consisting of a 700-m-thick
sandstone formation with properties similar to those specified in the
previous section. At its center, it contains a fractured zone of thick-
ness E having regularly distributed fractures with properties similar
to those given above. The separation between consecutive fractures

is 10 cm, and their aperture is of 0.04 cm. The material between the
individual fractures is identical to that of the host rock above and
below the fractured region and, hence, it is characterized by an un-
drained P-wave modulus Hhr ¼ 69 GPa. Thus, the fracture normal
weakness ΔN ¼ ZNHhr∕ð1þ ZNHhrÞ ranges from 0.013 at high
frequencies to 0.18 at low frequencies. This change of fracture
weakness is associated with maximum values of 1∕Q of approxi-
mately 0.3. These arguably very high maximum attenuation levels
are largely due to the idealized characteristics of the considered
fracture set, which consists of a regular distribution of planar frac-
tures of infinite horizontal extension composed of very soft porous
material. In the given context, it is, however, important to note that
such high attenuation levels serve as an extreme scenario for explor-
ing the overall validity and robustness of the proposed meth-
odology.
To generate synthetic seismograms, we solve equations 11–13

using the discontinuous Galerkin finite-element method (Castromán
and Zyserman, 2013). We consider a plane-wave source with a
Ricker-type amplitude spectrum centered at 50 Hz, and two receiv-
ers recording seismic waves reflected from and transmitted through
the fractured zone (Figure 3).
To validate our modeling approach, we solve Biot’s (1962)

propagation equations for the same model setup. That is, we solve

−ω2ρbuz − ω2ρwwz −
∂τzz
∂z

¼ fsðz;ωÞ; (14)

−ω2ρwuz − ω2gwz þ iω
η

κ
wz þ

∂pf

∂z
¼ ffðz;ωÞ; (15)

where ρb is the bulk density, g is the mass coupling coefficient, and
the terms fs and ff compose the external source. The host rock and
the fractures are represented as fluid-saturated poroelastic solids.
Therefore, WIFF effects are fully accounted for. The governing

equations 14 and 15, coupled through the constit-
utive relations (equations 5 and 6), are solved by
means of a finite-element method, employing
∼160 times the number of degrees of freedom
used by the corresponding LST. Four numerical
cells are used to represent each fracture to
adequately capture WIFF effects. We use absorb-
ing boundary conditions at the edges of the
numerical domain for the simulations based on
the extension of the LST as well as for those
based on Biot’s theory.
The black lines in Figure 4 denote the seismic

traces recorded at receiver 2 using Biot’s propa-
gation equations for different thicknesses of the
fractured zone. We observe that transmitted sig-
nals experience a strong amplitude decay and
pulse broadening as the thickness of the fractured
zone increases. This is due to attenuation and
velocity dispersion in response to WIFF between
the fractures and the host rock. The dots in Fig-
ure 4 show the responses obtained with our ex-
tension of the LST using the fracture normal
compliance ZNðωÞ depicted in Figure 2. Overall,
there is very good agreement. This suggests that
ZNðωÞ given by equation 8 captures almost all

2L f = 0.04 cm
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Receiver 2

90 m

225 m

600 m

700 m

0 m Surface

Source

Fracture

Host rock

L = 10 cm

z

E

Figure 3. Model setup considered to validate the inclusion of WIFF effects in the LST.
The star denotes the depth level of the considered plane-wave source.
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attenuation and velocity dispersion experienced by the seismic
wave. We do, however, observe that the discrepancies between
the results increase with increasing fractured zone thickness, as
quantified by the red lines. In particular, we observe that for
E ¼ 150 m, the amplitude decay is slightly overestimated and
the velocity is underestimated by the LST. These discrepancies
are expected because the plane-wave modulus for the host rock
is constructed from the undrained bulk modulus given by Gass-
mann’s equation. This means that the host rock plane-wave modu-
lus is constant, whereas WIFF implies a change of the host rock
properties.
Figure 5 shows the seismic traces recorded at receiver 1. The sol-

utions based on Biot’s propagation equations indicate that the re-
flected signal strongly depends on the thickness E of the fractured
zone. Indeed, when E is relatively small compared with the seismic
wavelength, a single pulse is observed. Conversely, when E is com-
parable or larger than the wavelength, two pulses are observed
which correspond to reflections from the top and bottom boundaries
of the fractured zone. The seismogram for E ¼ 150 m shows strong
amplitude decay and pulse broadening for the reflection from the
bottom of the fractured zone. We see that for the reflected signals,
attenuation and velocity dispersion effects can be successfully in-
cluded in the LST by using the fracture normal compliance given by
equation 8. Again, there are slight discrepancies between the two
solutions, as indicated by the red lines. In particular, the amplitudes
of the reflections from the top of the fractured zone are overesti-
mated by the LST. This is expected because the phase velocity
of the fractured zone is underestimated when using the LST, which
in turn produces an overestimation of the acoustic impedance con-
trast between the fractured zone and the medium above it.

DISCUSSION

We propose a model for the fracture normal compliance that al-
lows to account for WIFF effects related to the strong compressibil-
ity contrasts typically observed between fractures and host rock. In
this context, it is important to note that our approach is conceptually
different from the work of Nakagawa and Schoenberg (2007), who
propose a generalization of the LST to poroelasticity through the
derivation of suitable boundary conditions for a single fracture.
In contrast, our approach is based on a frequency-dependent com-
plex-valued fracture compliance obtained by solving, either analyti-
cally or numerically, a poroelastic boundary value problem for a set
of parallel fractures. Thus, the inferred fracture compliance can
be included into an LST-based wave propagation algorithm formu-
lated in the space-frequency domain. As such, the proposed meth-
odology can be regarded as a recipe to include poroelastic effects in
the LST without the requirement of a poroelastic generalization
thereof.
A simplification used in this work is that the 1D fracture system

consists of several very thin, highly compliant porous layers ori-
ented perpendicularly to the direction of P-wave propagation.
Moreover, the fractures are regularly distributed, and the separation
between consecutive fractures is small compared with the prevailing
seismic wavelengths which, in turn, implies that elastic scattering
effects are not considered in our model. Despite these simplifica-
tions, the proposed method is valuable because it is a first step to-
ward the inclusion of WIFF, arguably the predominant seismic
energy dissipation mechanism in fractured media, into the LST.
This, together with the fact that the LST is the most common theo-

retical framework to model the seismic response of fractured media
point to the importance of the results shown in this work.
The methodology presented in this study can possibly be general-

ized to fractures of finite length through the use of 2D numerical os-
cillatory compressibility tests. These tests would also allow us to
explore the effects of different characteristics of the fracture contact
areas on the normal compliance (Rubino et al., 2014). Additionally
tangential compliances could be obtained by applying oscillatory
shear tests to 2D samples containing horizontal fractures. The result-
ing parameters would then permit us to account for the effects of con-
tact areas and WIFF associated with both P- and S-waves impinging
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Figure 4. Transmitted signals recorded at receiver 2 obtained using
Biot’s propagation equations and the extended version of the LST.
Red lines indicate 10 times the absolute value of the difference be-
tween the two solutions. The model setup is illustrated in Figure 3.

 0.04  0.06  0.08  0.1  0.12  0.14

So
lid

 d
is

pl
ac

em
en

t

Time (s)

Biot
Extended LST

10 × absolute difference

E = 150 m 

E = 50 m 

E = 4 m 

Figure 5. Same as Figure 4, but for seismograms recorded at
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at different angles on fractured zones. Such 2D oscillatory tests may
also permit to compute average complex-valued, frequency-depen-
dent compliances for fractures composing an REVof a reservoir con-
taining irregularly distributed fractures. A potential complication
arising in the context of such generalizations is, however, that in these
cases, the normal and tangential compliances do not fully determine
the properties of fractures embedded in a saturated porous host rock
(Gurevich, 2003).

CONCLUSIONS

We have obtained an analytical expression for a complex-valued
and frequency-dependent fracture compliance that allows to include
WIFF effects into the LST for a 1D system of regularly distributed
fractures. By solving the elastodynamic wave equation in the space-
frequency domain, the thus derived fracture compliance was
employed to generate synthetic seismograms for a 1D model con-
taining a fractured zone embedded in an otherwise homogeneous
rock. Comparisons with corresponding simulations based on a
numerical solution of the poroelastic equations of motion demon-
strate that most of the fairly pronounced WIFF-related seismic at-
tenuation and velocity dispersion characteristics are successfully
captured by this extension of the classical LST. Therefore, we con-
clude that the proposed methodology can be applied to accurately
and efficiently generate synthetic seismograms of 1D fractured me-
dia, notably in the presence of significant WIFF between the frac-
tures and the host rock.
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