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Abstract

Fragile X mental retardation protein (FMRP) belongs to a small family of RNA-binding proteins. Its absence or inactivity is responsible for

fragile X syndrome, the most common cause of inherited mental retardation. Despite its ubiquitous expression, FMRP function and

expression remain almost understudied in non-neuronal tissues, though previous studies on germline development during oogenesis may

suggest a special function of this protein also in ovarian tissue. In addition, the well-documented association of FMR1 premutation state

with fragile X-related premature ovarian insufficiency adds interest to the role of FMRP in ovarian physiology. The aim of the present

work was to investigate the expression of Fmr1 mRNA and its protein, FMRP, at different stages of rat follicular development.

By immunohistochemical studies we demonstrated FMRP expression in granulosa, theca and germ cells in all stages of follicular

development. In addition, changes in Fmr1 expression, both at the protein and mRNA levels, were observed. FMRP levels increased upon

follicular development while preantral and early antral follicles presented similar levels of Fmr1 transcripts with decreased expression in

preovulatory follicles. These observations suggest that Fmr1 expression in the ovary is regulated at different and perhaps independent

levels. In addition, our results show expression of at least four different isoforms of FMRP during all stages of follicular growth with

expression patterns that differ from those observed in brain and testis. Our study shows a regulated expression of Fmr1, both at mRNA

and protein levels, during rat follicular development.
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Introduction

Fragile X mental retardation protein (FMRP) belongs to a
small family of RNA-binding proteins. It contains several
motifs involved in binding to RNA: two heterogeneous
nuclear ribonucleoprotein (hnRNP)-K-homology (KH)
domains and an arginine–glycine–glycine (RGG box).
The protein is encoded by the FMR1 gene, which is
composed of 17 exons, spans about 40 kb and encodes
an mRNA of 3.9 kb that can be alternatively spliced
into a number of different isoforms (Eichler et al. 1993,
Verkerk et al. 1993). In addition, FMRP has been
shown to undergo two post-translational modifications:
phosphorylation and arginine methylation (Siomi et al.
2002, Stetler et al. 2006). It has been suggested that
phosphorylation might modulate FMRP properties
such as association with actively translating poly-
ribosomes and with Dicer (Ceman et al. 2003, Cheever
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& Ceman 2009) while methylation affects both its
protein–protein and protein–RNA interactions (Denman
2002, Dolzhanskaya et al. 2006, Stetler et al. 2006,
Blackwell et al. 2010, Blackwell & Ceman 2012). The
presence of a nuclear localization signal and a nuclear
export signal suggests shuttling between the nucleus and
the cytoplasm (Eberhart et al. 1996). Nevertheless, FMRP
is mostly in the cytoplasm (Devys et al. 1993), where it is
found associated with polyribosomes as part of large
messenger-ribounucleoprotein (mRNP) particles. The
FMRP–mRNP complex contains several other proteins
including fragile X mental retardation syndrome-related
protein 1; (FXR1P) and FXR2 (FXR2P) (Tamanini et al.
1996, Ceman et al. 1999, 2000). Notably, the absence or
inactivity of FMRP is responsible for fragile X syndrome
(FXS), the most common cause of inherited mental
retardation (for review, see O’Donnell & Warren
(2002)). Strong evidence supports a role of FMRP in the
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regulation of specific target mRNA translation; moreover,
dysregulation of protein synthesis at the neuronal
synapse has been proposed as one of the mechanisms
underlying FXS (Brown et al. 2001, Laggerbauer et al.
2001, Mazroui et al. 2002). Results obtained from several
studies suggest that the microRNA pathway may be one
of the mechanisms by which FMRP could modulate
mRNA translation. Studies in Drosophila have demon-
strated an interaction of Drosophila fmr1 (dFmr1) with
artgonaute 2 (AGO2) and Dicer, both components of
the iRNA machinery, which suggests that dFmr1 is part of
the RNA-induced silencing complex (RISC) inDrosophila
(Caudy et al. 2002, Ishizuka et al. 2002). Similarly,
mammalian FMRP has been shown to interact in vivo
with microRNA (miRNA) and with the components of the
miRNA pathway (Jin et al. 2004). Notably, though FMRP
expression is ubiquitous, it is most abundantly expressed
in neurons and testis (Devys et al. 1993, Tamanini et al.
1997, Bakker et al. 2000), both tissues affected in fragile
X patients. In mice, an enhanced expression of Fmr1
during germ cell proliferation was described, suggesting
a special function for Fmr1 in germ cells of both sexes
(Bachner et al. 1993). Interestingly, a more recent study
using Drosophila dFmr1 mutants demonstrated that
dFmr1 is required for germline stem cell maintenance
and repression of differentiation in the ovary, probably
via the miRNA pathway (Yang et al. 2007). Another
Drosophila FXS model showed that FMRP controls
germline proliferation during oogenesis by regulating the
expression ofcasitas B-lineage lymphomaproto-oncogene
(cbl) in the developing ovary (Epstein et al. 2009).

Notably, the UTR of the FMR1 gene presents a CGG
repeat that is unstable and therefore variable in the
population. Based on the size of the expansion,
individuals are classified as having normal (5–54
trinucleotide repeats), premutated (55–200 repeats), or
fully mutated (O200 repeats) alleles (Fu et al. 1991,
Oberle et al. 1991, Rousseau et al. 1995). Full mutated
alleles usually result in hypermethylation of the CpG site
in the promoter region of the FMR1 gene (Bell et al.
1991), which leads to gene silencing; the subsequent
absence of the protein is therefore responsible for
FXS. Conversely, carriers of the premutation have
increased levels of FMR1 mRNA (twofold to eightfold
in lymphocytes) due to increased transcription rate
of the gene (Tassone et al. 2000, 2007). Premutation
state is associated with two clinical disorders: fragile
X-associated tremor/ataxia syndrome (FXTAS), a late-
onset neurodegenerative disorder, and fragile X-related
premature ovarian insufficiency (FXPOI). The increased
levels of CGG-containing FMR1 mRNA along with the
presence of ubiquitin-positive intranuclear inclusions
observed in both neurons and astrocytes of FXTAS
patients and in animal models led to the suggestion that
a toxic RNA gain of function mechanism may underlie
FXTAS development. Indeed, inclusions were also
found in tissues other than the CNS in subjects with
Reproduction (2013) 145 335–343
FXTAS (e.g. testicles and peripheral nerve ganglia) (for
review, see Garcia- Arocena & Hagerman (2010)). FXPOI
is defined as premutation carriers having menopause
before the age of 40 years, ovarian dysfunction, and
decreased fertility (Allingham-Hawkins et al. 1999).
Based on several studies, w20% of premutation carriers
have FXPOI compared to only 1% in the general
population. Conversely, among women with idiopathic
sporadic premature ovarian failure, w2–14% are esti-
mated to carry a FMR1 premutation (Sherman 2000).

Despite its ubiquitous expression FMRP function and
expression remain almost understudied in non-neuronal
tissues. Though within the periphery FMRP is most
abundantly expressed in the testis, previous studies on
germline development during oogenesis may suggest a
special function of this protein in ovarian tissue as well.
Indeed, the well-documented association of premutation
state with FXPOI adds interest to the question of the role
of FMRP in ovarian physiology. Considering that to date
the function of this protein in the ovary has been barely
explored, a detailed description of the expression of
FMR1 during ovarian development seems necessary.
Thus, in the present work we aimed to investigate the
expression of Fmr1 mRNA and its protein, FMRP, at
different stages of rat follicular development.
Results

Follicular granulosa and theca cells express FMRP
at all stages of folliculogenesis

Results of immunohistochemical staining for FMRP in
ovarian sections from untreated, diethylstilbestrol (DES)-
or PMSG-treated prepubertal rats is shown in Fig. 1.
Follicles at different developmental stages can be
distinguished by their morphological features, such as
size and number of granulosa cell (GC) layers. Preantral
follicles (PAF) present an oocyte surrounded by two to
four layers of GC and are 120–200 mm in diameter,
whereas a small antral cavity and a thin theca layer can
be distinguished in early antral follicles (EAF), which are
about 300–400 mm in diameter. The oocyte becomes
acentrically displaced by the developing antrum in
preovulatory follicles (PF), which present a well-defined
and thick granulosa layer and are more than 450 mm in
diameter (Hirshfield & Midgley 1978).

In sections from untreated rats, FMRP staining was
seen in GC and theca cells (TC) as well as in the stroma
of PAF (Fig. 1A), but no differences in intensity could be
distinguished between different cell types. No staining
was observed in the ovarian cortex while the oocyte
cytoplasm in primordial follicles showed intense
labeling (Fig. 1D).

In ovaries from DES- and PMSG-treated rats, intense
FMRP immunostaining was observed in GC and TC as
well as in the few stromal cells that can be found at these
late stages of development (Fig. 1B and C).
www.reproduction-online.org
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In ovaries at all three stages of folliculogenesis, no
positive staining was detected in the stromal cells
surrounding the follicles; it is worth noting that these
stromal cells might belong to the vascular network
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(Fig. 1A, B and C). FMRP staining in atretic follicles was
weaker than in healthy ones (Fig. 1E). The oocyte showed
positive immunostaining in all follicular stages studied.
The FMRP expression pattern was similar among
follicles of the same type from prepubertal, DES- and
PMSG-treated rats. Furthermore, when analyzing
untreated 60-day-old postpubertal cycling rats we
observed a similar expression pattern of FMRP at each
follicular stage between hormonally untreated and
treated immature female rats. Expression of FMRP was
also detected in luteal cells of these adult rats (Fig. 1I).
In addition, FMRP labeling in the nucleus was
detected only in a small fraction of the cells (Fig. 1J,
and data not shown).
FMRP expression increases as the follicle grows

FMRP expression in isolated follicles and in whole
ovaries was analyzed by western blot (WB) in all three
experimental groups (untreated, DES- or PMSG-treated
prepubertal rats). When isolated follicles were analyzed
FMRP expression was low in PAF and increased
progressively in EAF and PF (Fig. 2A). Though the
differences did not reach statistical significance, a clear
tendency to a higher expression in PF was observed. Four
isoforms of the protein could be detected; all of them
proportionally increased their expression as folliculogen-
esis progressed. Considering that most expected isoforms
have similar molecular weights and might therefore
be hard to discriminate in a polyacrylamide gel, the
presence of additional variants cannot be ruled out.

The differences in FMRP expression observed during
folliculogenesis persisted when analysis was performed
relative to expression levels of S6, another ribosomal
protein (Fig. 2A), ruling out a generalized increment of
ribosomal protein synthesis during follicular develop-
ment. In addition when whole ovary proteins were
analyzed the same FMRP expression pattern was
observed (data not shown).

Given the well-documented high expression of FMRP
in testis and brain (Devys et al. 1993, Tamanini et al.
1997, Bakker et al. 2000), and the lack of FMRP
expression in skeletal muscle (Devys et al. 1993,
Khandjian et al. 1998, Bakker et al. 2000), these tissues
Figure 1 Immunohistochemical staining for FMRP during follicular
development in the rat ovary. (A) Untreated prepubertal rats.
(B) DES-treated prepubertal rats. (C) PMSG-treated prepubertal rats.
(D) Primordial follicles from untreated prepubertal rats. (E) Atretic
follicle from DES-treated rats. (F, G and H) Negative controls without
1C3 antibody (F, prepubertal rats; G, DES-treated rats; H, PMSG-treated
rats). (I) Untreated postpubertal cycling rats. (J) Nuclei from DES-treated
rats without hematoxylin counterstain (arrowhead, stained nucleus).
PAF, preantral follicle; PrF, primordial follicle; Oo, oocyte;
Gc, granulosa cells; Tc, theca cells; St, stroma; AtF, atretic follicle;
Lc, luteal cells; EAF early antral follicle; PF, preovulatory follicle.
Scale bars represent (A, B, C, D, E and I) 50 mm; (F, G and H)
100 mm; and (J) 20 mm.
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were used as positive and negative controls respectively
(Fig. 2B and C). As shown in Fig. 2B, a high expression of
the protein was observed in the testis. Four isoforms were
also expressed in this tissue but their relative expression
differed from that observed in the ovary. While no
significant differences were observed in the expression
levels of the diverse isoforms in the ovary, the high-
molecular-weight isoforms were more abundant in both
testis and brain (Fig. 2B).
Fmr1 mRNA expression

Following the analysis of protein expression, we aimed
to determine whether protein synthesis correlated with
gene expression rate at mRNA level. Fmr1-specific
primers amplify a region of mRNA in which no splicing
events occur and thus the results obtained correspond to
all possible transcribed isoforms. As shown, the Fmr1
mRNA expression pattern was opposite to the one
obtained for protein expression: the lowest values of
mRNA were observed in PMSG-treated rats, both in
isolated PF (Fig. 3A) and in the whole ovary (Fig. 3B), and
these differences were statistically significant (P!0.05).
When other tissues were analyzed as controls, a clear
tendency toward a higher expression was observed in the
testis, while similar levels were detected in muscle,
brain, and ovarian follicles (Fig. 3C).
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Discussion

The FMR1 gene is transcribed and translated in many
tissues including the ovary. Nevertheless, and despite
the well-documented association of FMR1 premutation
CGG trinucleotide repeats (range 55–200) and FXPOI
the physiological expression and function of the gene
in follicular development remain barely explored. So
far, the function of FMRP in the ovary has been studied
in Drosophila models, where it may be involved in
germ cell and oocyte specification (Costa et al. 2005,
Megosh et al. 2006) as well as in the maintenance of
germline stem cells, probably regulating the translation
of specific mRNAs via the miRNA pathway (Yang et al.
2007). A role in the control of germline proliferation
was also demonstrated (Epstein et al. 2009), thus
suggesting an early stage-specific function of Fmr1 in
germ cells.

In this study we demonstrated changes in Fmr1
expression, both at the protein and mRNA levels, and
described FMRP cellular localization at different stages
of follicular development in the rat ovary. We used
untreated, DES- and PMSG-treated prepubertal rats in
order to include the most representative stages of ovarian
follicular development. This rat model is suitable for our
purpose as in the immature ovary (mainly composed of
PAF/EAF), DES and PMSG hormonal treatment triggers
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the maturation of a large cohort of follicles that
synchronously progress through small- to medium-
sized antral and preovulatory stages respectively (Rani
et al. 1983, Karakji & Tsang 1995). The DES and PMSG
treatments are widely used as models to study follicular
dynamics under physiological conditions (Billig et al.
1993, Chun et al. 1996, Li et al. 1998).

By immnuhistochemical studies, we detected FMRP
expression at all stages of follicular development,
including the germ cell. GC and TC from untreated,
DES- and PMSG-treated rats showed positive FMRP
immunostaining. It is noteworthy that the changes
observed in the different follicular stages induced by
the hormonal treatments used are a reflection of data
www.reproduction-online.org
obtained in ovaries from adult cycling rats, suggesting
that these observations have a physiological correlate
and are not merely the result of the hormonal treatments.
In adult rats FMRP immunostaining was also observed
in luteal cell indicating a possible role of the protein
in corpus luteum function as well. Similarly, FMRP
expression was described in mouse female fetal
primordial cells and also in follicular cells in the adult
(Bakker et al. 2000). Recent works by Hoffman et al.
(2012) and Lu et al. (2012) described expression of
FMRP in murine granulosa and luteal cells as well as in
the oocyte. In addition, FMRP expression in ovaries from
women of different ages has also been described, mainly
in the oocyte and GCs (Schuettler et al. 2011, Willemsen
et al. 2011). In accordance with the nuclear localization
and export signals present in the protein (Eberhart et al.
1996), and consistently with the expression of the
protein mostly in the cytoplasm (Devys et al. 1993),
we detected only a small fraction of cells showing
positive FMRP immunostaining in the nucleus.

As a result of the alternative splicing of the Fmr1
mRNA numerous isoforms of the protein can be
synthesized, an argument in favor of particular cellular
roles for the individual isoforms (Ashley et al. 1993,
Sittler et al. 1996, Denman & Sung 2002). In addition,
phosphorylation and methylation have been described
as post-translational modification of FMRP (Siomi et al.
2002, Stetler et al. 2006). Our results showed expression
of at least four different isoforms in the rat ovary during
all stages of follicular growth. The differences observed
in isoform expression patterns in the ovary compared to
brain and testis might suggest a specific function for
some of the isoforms in this tissue. Strikingly, different
levels of all FMRP isoforms are detected by WB during
follicular development; a lower protein level was
observed in PAF, while expression increased in EAF
and PF, and these differences were even more evident
during preantral to early antral transition. The preantral
to early antral transition is the one most susceptible to
atresia (Hirshfield 1991); important changes in protein
translation may thus occur during this period to over-
come atresia and continue with folliculogenesis.
Considering that FMRP is a major cellular translational
repressor protein that binds to multiple transcripts
thereafter controlling their translation rate (Laggerbauer
et al. 2001, Schaeffer et al. 2001, Schuettler et al. 2011),
low amounts of the protein during the preantral stage
could allow a more permissive translation of target
mRNAs, while a progressive repressing state would be
expected in developing follicles. As FMRP has been
shown to interact with miRNA and the components of
the miRNA pathway (Caudy et al. 2002, Ishizuka et al.
2002, Jin et al. 2004), and considering that miRNAs have
an important role in post-transcriptional gene regulation
in the ovary and in the female reproductive tract in
general (Fiedler et al. 2008, Carletti & Christenson 2009,
Christenson 2010), it seems natural to assign to the
Reproduction (2013) 145 335–343
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protein a crucial role in the adequate functioning of
the gonad. Defects in regulatory control can lead to
ovarian failure due to disruption of folliculogenesis,
block of ovulation and corpus luteum insufficiency,
among others (Carletti & Christenson 2009). Moreover,
ovarian follicle development largely depends on the
proliferation of GCs. GC proliferation commences
from primary follicle formation, and the follicle growth
is characterized by increasing layers of GCs (Zhang
et al. 2011). Considering that the GC is the follicular
cell type that undergoes the greatest changes in size
and number during the development of the follicle,
our results could also be a measure of the contribution
of the expression of FMRP in this cell type to the
regulation of ovarian physiology.

Contrary to results obtained at the protein level, PAF
and EAF presented similar levels of Fmr1 transcripts,
while decreased expression was observed in PF,
suggesting that Fmr1 expression in the ovary is regulated
at different and perhaps independent levels. Supporting
this idea, even though no FMRP could be detected in
muscle, mRNA was expressed in this tissue. Similarly,
increased FMRP levels found in the barrel cortex after
unilateral whisker stimulation were not accompanied
by changes in Fmr1 mRNA (Todd et al. 2003). An
increment in either mRNA stability or protein translation
rate in the late stages of folliculogenesis might account
for the discrepancies found between RNA and protein
levels. In line with this contention, the fact that FMRP
has been shown to bind to a significant percentage
of brain mRNAs, including Fmr1 mRNA itself
(Brown et al. 2001, Darnell et al. 2001, Schaeffer et al.
2001, Didiot et al. 2008), and that FMRP has been
implicated as a direct modulator of mRNA turnover, has
led to suggestion of a possible role for FMRP in mRNA
stability (De Rubeis & Bagni 2010, 2011). However,
a direct effect of FMRP on its own mRNA stability
remains to be established. Ultimately, our in vivo data
could indicate a putative regulation of Fmr1 mRNA
levels of enhanced FMRP expression in advanced
follicular development.

Several mouse models carrying human FMR1 repeats
in the premutation range have been developed. Histo-
logical analysis in a knock-in model with 130 CGG
repeats revealed ovarian abnormalities (Hoffman et al.
2012). In addition, the characterization of a transgenic
mouse carrying a premutation of 90 CGG repeats
showed that premutated RNA impaired female fertility,
reduced the number of growing follicles and altered
selective serum hormone levels, thus resembling
FXPOI in humans (Lu et al. 2012). Given the advanced
technologies in transgenic and knock-in models in rat,
and taking into account the data presented in our work,
it would be an interesting challenge to develop a rat
model of FXPOI to further contribute to the better
understanding of the influence of FMR1 CGG repeats in
ovarian pathophysiology.
Reproduction (2013) 145 335–343
Conclusions

This study shows for the first time, to our knowledge
the regulated expression of Fmr1, both at the mRNA
and protein levels, during rat follicular development.
Further studies may be necessary to confirm whether this
protein is involved in the functional changes that occur
during folliculogenesis.
Materials and Methods

Animal preparation

All procedures in this study were approved by the Ethics
Committee of the Institute of Biology and Experimental
Medicine (IByME-CONICET) and are in accordance with
National Institute of Health standards, as described in the
guide for Care and Use of Laboratory Animals.

Prepubertal female Sprague–Dawley rats (18- to 23-days old)
and 60-days -old rats were allowed access to food and water
ad libitum and kept at room temperature (21–23 8C) on a 12 h
light:12 h darkness cycle.

To obtain ovaries enriched with follicles at different
developmental stages, rats were injected s.c. either with DES
(1 mg/rat, Sigma Chemical Co.) dissolved in corn oil, daily, for
3 days, to stimulate the development of EAF or with a single
injection of equine chrorionic gonadotropin (PMSG, 25 IU/rat,
Novormon, Syntex S.A. Buenos Aires, Argentina) 48 h before
the experiment, to stimulate the development of PF (Li et al.
1998). Ovaries enriched with PAF were obtained from
untreated prepubertal rats. Rats were killed by CO2 asphyxia-
tion and ovaries were removed and cleaned of adhering tissue.
Follicle isolation

For isolation of PAF ovaries obtained from six to twelve
18-day-old rats were minced using 26G1/2 syringe needles
according to the method of Flaws et al. (1994). Briefly, minced
tissuewasdissociated by incubation in2.5 mlDMEM-F12 (Gibco
Laboratories) with HEPES (Sigma Chemical Co.) containing
collagenase (4800 units; 217 U/mg; Gibco), DNase (1910
units, 10 mg/ml, D4527, Sigma), and 1% BSA (A7888, Sigma),
in a water shaking bath at 37 8C for 20 min. The dissociated
tissue was then washed three times in DMEM-F12 HEPES and
passed through a nylon filter with 210 mm pores (Small Parts
CMN-210, Miramar, FL, USA). All excluded structures (follicles
O210 mm in diameter and corpora lutea) were discarded and
follicles smaller than 210 mm were considered PAF.

Ovaries from DES- and PMSG-treated rats were used to
obtain EAF (300–400 mm) and PF (O450 mm) follicles respect-
ively. In both cases, individual ovarian follicles were dissected
from the ovary under a stereoscopic microscope using fine
needles, as described previously (Parborell et al. 2002,
Abramovich et al. 2009).
Immunohistochemistry

Sections of formalin-fixed paraffin-embedded tissue were
deparaffinized in xylene and rehydrated in graded ethanol
www.reproduction-online.org
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washes. Endogenous peroxidase activity was blocked with 3%
hydrogen peroxide in PBS (pH 7.2) for 20 min followed by
successive PBS washes. For antigenic exposure, slides were
heated in a microwave oven in citric acid buffer 0.01 M
(pHZ6) for 10 min at 600 W. Nonspecific binding was blocked
with 2% BSA for 20 min. Sections were incubated overnight at
4 8C in a humidified chamber with or without (negative control)
anti-FMRP antibody in PBS (1/400, clone 1C3, Millipore,
Billerica, MA, USA). Slides were washed in PBS and FMRP
detected with a biotin-conjugated goat anti-mouse IgG (1/400,
30 min, RT, Vector Laboratories, Burlingame, CA, USA)
followed by avidin-biotinylated HRP complex (Vectastain
ABC system; Vector Laboratories) for 30 min. Immunoreactivity
was visualized with diaminobenzidine staining. The reaction
was stopped with distilled water, stained with hematoxylin,
dehydrated in graded alcohols and mounted. For a better
visualization of the putative expression in the nucleus, no
hematoxylin counterstain was used. The appearance of a
brown reaction product was observed by light microscope.
Western blot

For WB analyses, either ovarian tissue from three or four
rats or isolated follicles from 12 to 24 ovaries per treatment
were pooled and resuspended in 600 ml lysis buffer (20 mM
Tris–HCl, pH 8, 137 mM NaCl, 1% NP-40 and 10% glycerol)
supplemented with protease inhibitors (104 mM 4-(2-Amino-
ethyl) benzenesulfonyl fluoride hydrochloride (AEBSF) 80 mM
aprotinin, 4 mM bestatin, 1.4 mM E-64, 2 mM leupeptin, and
1.5 mM pepstatin A, Sigma) and homogenized with an
Ultra-Turrax (IKA Werk, Breisgau, Germany) homogenizer.
The results obtained from each pool of ovarian tissue or follicles
were considered a single datum.

Assays were performed according to the methodology
described by Feng et al. (1997), with slight modifications. Briefly,
samples were centrifuged at 4 8C for 15 min at 16 000 g, and
the resulting supernatant centrifuged at 4 8C for 1 h at 150 000 g
to obtain a pellet enriched in ribosomes. The supernatant
was discarded and the pellet was resuspended in urea buffer
(1% Triton-X, 100 mM Tris–HCl, pH 6.8, and 6 M urea). Protein
concentration was measured by the Bradford assay.

As control tissues, testis, brain and muscle were obtained,
homogenized, and centrifuged as described earlier. Lysis buffer
for muscle homogenization contained 50 mM Tris–HCl (pH
7.5), 1 mM EDTA, 1 mM EGTA, 150 mM NaCl, 10% glycerol,
1% NP-40, 0.1% SDS, and 1 mM MgCl2. Brain buffer
contained 40 mM Tris–HCl, 120 mM NaCl, 2 mM Na3VO4,
1% Triton-X 100, and 1 mM PMSF. For testis homogenization,
the same buffer as for follicles and ovaries was used. A total of
12 mg protein was loaded on 7.5% SDS–PAGE was performed
at 25 mA for 1.5 h. Proteins were transferred into a nitrocellu-
lose membrane for 1 h. FMRPand b-actin blots were blocked at
4 8C overnight in PBS containing low-fat powdered milk (5%)
and Tween 20 (0.2%) followed by incubation with mouse
monoclonal anti-FMRP 1C3 (1/4000) or mouse anti-b-actin
(1/10 000 ab-6276 Abcam; Cambridge Science Park, UK) for
2 h at room temperature in 0.2% Tween 20 in PBS. S6 blots
were blocked in the same blocking solution as described earlier
for 1 h at room temperature and incubated with anti-mouse
www.reproduction-online.org
monoclonal S6 antibody (1/1000, 54D2, Cell Signaling,
Danvers, MA, USA) in blocking solution overnight at 4 8C.
Anti-mouse antibody conjugated to HRP was used as a
secondary antibody, and the signal was detected by chemi-
luminescence and autoradiography. For quantification
screening was performed with X-ray film using different times
of exposure to optimize the signal. Protein levels were
compared and analyzed by densitometry using the Image J
software (NIH). The density of each band was normalized to the
density of the b-actin band used as an internal control. Three
independent protein extracts were obtained for each experi-
mental group.
Real-time RT-PCR

To quantify Fmr1 mRNA levels in DES- or PMSG-treated rats,
whole ovaries or isolated follicles from four rats were used.
Each rat extract was assayed individually. For the prepubertal
group, four rats were used when the whole ovary was assayed,
while three groups of six rats each were used for isolated
follicles.

Total RNA was extracted using Trizol reagent (MRC, Cincinatti
OH, USA)according tomanufacturer’s instructions. Purified RNA
was stored at K70 8C until cDNA synthesis. Complementary
DNA templates for PCR amplification were synthesized from
1 mg total RNA using random primers and M-MLV Reverse
Transcriptase (Promega) in a total volume of 25 ml. Before
real-time PCR studies, cDNA synthesis was verified by regular
PCR using primers for Fmr1 and running at 94 8C for 1.5 min,
following with 35 cycles at 94 8C for 40 s, 56 8C for 30 s, 72 8C
for 1.5 min, and a final extension at 72 8C for 10 min. Results
were monitored by agarose gel electrophoresis.

Real-time PCR was performed using SYBR GREEN
PCR Master Mix (Applied Biosystems) and the forward
5 0-agatcaagctggaggtgcca-3 0 and reverse 5 0-cagagaaggcac-
caactgcc-3 0 primers (Brouwer et al. 2007). Cycling conditions
were as follows: 1 cycle of 50 8C for 2 min, 95 8C for 10 min,
40 cycles of 95 8C for 15 s, and 60 8C for 1 min. Results were
normalized to the HPRT1 gene (forward primer 5 0-gctgaaga-
tttggaaaaggtg-3 0; reverse primer 5 0-aatccagcaggtcagcaaag-3 0)
(Hvid et al. 2011) using the Pffafl mathematical model
for relative quantification. Each cDNA sample was run in
triplicate. RNA was obtained in three independent experiments
for the three groups of rats, and each extract assayed at least
two times.
Statistical analysis

Data are expressed as the meanGS.E.M. of three experiments.
Representative gels of WB are shown in the figures. Statistical
analysis was performed by ANOVA followed by the Bonferroni
test or by Kruskal–Wallis followed by the Dunn test. Values of
P!0.05 were considered significant.
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