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Abstract. We include the coupling of a heavy sterile neutrino with active neutrinos in the
calculation of primordial abundances of light-nuclei. We calculate neutrino distribution func-
tions and primordial abundances, as functions depending on a renormalization of the sterile
neutrino distribution function (a), the sterile neutrino mass (ms) and the mixing angle (φ).
Using the observable data, we set constrains on these parameters, which have the values
a < 0.60, sin2 φ = 0.15 and ms ≈ 4 keV, for a fixed value of the baryon to photon ratio.
When the baryon to photon ratio is allowed to vary, its extracted value is in agreement with
the values constrained by Planck observations and by the Wilkinson Microwave Anisotropy
Probe (WMAP). It is found that the anomaly in the abundance of 7Li persists, in spite of
the inclusion of a heavy sterile neutrino.
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1 Introduction

The observational data obtained by the WMAP Collaboration [1] and by Planck [2] signalled
the existence of a deficit in the abundance of primordial lithium, which cannot be explained
in the context of the standard Big Bang Nucleosynthesis (BBN). Several authors have studied
the problem from different points of view: i) the turbulent transport in the radiative zones
of stars [3]; ii) the existence of a stellar lithium depletion that depends on the mass of the
star [4, 5]; iii) the nuclear physics aspects of the abundance of 7Li [6–8]; iv) variation of
fundamental constants [9–13], among others, but the question is still open since none of these
possible explanations, although plausible, provides a complete solution to the problem.

In previous works, we have analysed the effect of the inclusion of light sterile-neutrinos
during the first three minutes of the Universe [14–17], to calculate primordial abundances
as a function of the active-sterile mixing parameters in the two-state scheme, the 3 + 1
scheme and in the 3 + 2 scheme. We have also analysed the case where the sterile-neutrino
might have a variable normalization constant in its occupation factor [17]. The results of the
calculations indicate that the value of the normalization constant should be of the order of
(or smaller than) 0.65 and that the mixing angle must be zero, in order to be consistent with
the observational data.

In this work, we extent our previous study [17], by considering a heavy sterile neutrino
coupled to the active ones. To perform the calculation we solve the evolution equation of an
expanding Universe, including neutrino oscillations in the decay rates. Using the available
observational data we set limits on the sterile-neutrino sector.

This work is organized as follows. In Section 2 we present the formalism and in Section
3 we present and discuss the results of primordial abundances as functions of the baryon
density, the sterile neutrino occupation factor, and the active-sterile mixing angle. Finally, in
Section 4, the conclusions are drawn.

2 Formalism

The matrix which relates neutrino mass-eigenstates and neutrino flavour-eigenstates is the
unitary matrix [18]

U =


c12c13 cosφ c13s12 cosφ s13 cosφ sinφ

α δ s23c13 0
ε λ c23c13 0

−c13c12 sinφ −c13s12 sinφ −s13 sinφ cosφ

 ,
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where i, j = 1, 2, 3 denote mass eigenstates, sij(cij) stands for sin θi(cos θij), α = −s12c23 −
s13c12s23, δ = c23c12 − s13s12s23, ε = s23s12 − s13c12c23, λ = −s23c12 − s13s12c23, and φ is
the mixing-angle of the lowest mass-eigenstate with the sterile neutrino. The inclusion of a
sterile-neutrino affects the statistical occupation factor of active neutrinos, quantities which
are crucial for the determination of primordial abundances. In order to compute these new
factors, one must solve the equation [19]

(
∂f

∂t
−Hp

∂f

∂p

)
= −ı [H0, f ] , (2.1)

where f is the 4× 4 matrix of the occupation factors, t is the time, H is the expansion rate of
the Universe (H = µPT2), and H0 is the unperturbed mass term of the neutrino Hamiltonian
in the rest frame. We have assumed that at the temperature T0 = 5 MeV the occupation
factors for all neutrinos in the usual flavour representation (namely electron-neutrino, muon-
neutrino and tau-neutrino, respectively) are Fermi-Dirac distributions for massless particles
with energy Eν = p (c = 1 everywhere). For the sterile neutrino, being massive, we assume
that its occupation factor is a Fermi-Dirac distribution with energies

(
Es =

√
m2
s + p2

)
. The

relationship between the sterile neutrino mass and the mass of the mass-eigenstates, mi, can
be written asms =

∑
imi |U4i|2. This occupation factor is further renormalized by a constant

factor a [20] which varies between 0 and 1. The initial condition for the occupation factors
in the mass-eigenstates representation is written


f11 f12 f13 f14
f21 f22 f23 f24
f31 f32 f33 f34
f41 f42 f43 f44


∣∣∣∣∣∣∣∣
T0

=
1

1 + ep/T0


cosφ2 0 0 − cosφ sinφ

0 1 0 0
0 0 1 0

− cosφ sinφ 0 0 sinφ2



+
a

1 + eEs/T0


sinφ2 0 0 cosφ sinφ

0 0 0 0
0 0 0 0

cosφ sinφ 0 0 cosφ2

 .

(2.2)
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The solutions, for flavour-eigenstates, are

fee =
1

1 + e
p
T

{
1 +

1

2
cos2 θ12 cos2 θ13 sin2 2φ

e
p
T
−β0 − 1

1 + e−β0
[1− cos γ]

}
−1

2
cos2 θ12 cos2 θ13 sin2 2φ [1− cos γ]

1− a
1 + eβ0

,

fµµ =
1

1 + e
p
T

{
1 +

1

2
sin2 θ12 cos2 θ13 sin2 2φ

e
p
T
−β0 − 1

1 + e−β0
[1− cos γ]

}
−1

2
sin2 θ12 cos2 θ13 sin2 2φ [1− cos γ]

1− a
1 + eβ0

,

fττ =
1

1 + e
p
T

{
1 +

1

2
sin2 θ13 sin2 2φ

e
p
T
−β0 − 1

1 + e−β0
[1− cos γ]

}
−1

2
sin2 θ13 sin2 2φ [1− cos γ]

1− a
1 + eβ0

,

fss =
1

1 + eβ0

{
−1

2
sin2 2φ

eβ0−
p
T − 1

1 + e−
p
T

[1− cos γ]

}

+
1

2
sin2 2φ

λ

1 + eβ0
[1− cos γ] +

a

1 + eβ0
, (2.3)

where

γ =
1

µP

−m2
1T

6p

(
1

T 3
− 1

T 3
0

)
+
p

T

(
1

T
− 1

T0

)
− 1

2T 2

√
m2

4 + p2 +
1

2T 2
0

√
m2

4 +

(
pT0
T

)2

− p2

2m4T 2
ln

T0T m4 +
√
m2

4 + p2

m4 +

√
m2

4 +
(
pT0
T

)2

 ,

and β0 = T−1
0

√
m2
s +

(
pT0
T

)2
.

3 Results

In order to obtain the primordial abundances as functions of the active-sterile neutrino mixing
parameters, we have modified the numerical code of Kawano [21, 22]. The active neutrino
mixing parameters were extracted from the SNO, SK, GNO, CHOOZ, DAYA BAY and DOU-
BLE CHOOZ experiments [23–28]. The light-neutrino mass was fixed at the square root of
the lowest squared mass difference. The active-sterile mixing angle was fixed at the value
sin2 2φ = 0.15. We have considered two different cases; (i) by fixing the baryon density at
the value determined from WMAP [1], and (ii) varying ηB.

To obtain the best value for the parameters of the sterile-neutrino sector we have per-
formed a χ2 minimization in the corresponding parametric space. The observational data for
deuterium have been extracted from Refs. [29–33]. We use the data from Refs. [34–39] for
4He and, for 7Li we have considered the data given by Refs. [40–43]. Regarding the consis-
tency of the data, we have followed the treatment of Ref. [44] and increased the errors by a
fixed factor Θ4He = 1.30, for the other cases the errors were not changed.
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Figure 1. Likelihood and 1σ, 2σ and 3σ contour plots for the parameter a (renormalization of the
sterile neutrino occupation factor) and the sterile-neutrino mass, when all data are considered in the
χ2-test. The mixing angle φ has been fixed at the value sin2 2φ = 0.15.

3.1 Results with ηB fixed

In this section we present the results of the calculation of primordial abundances performed
as a function of two parameters: the sterile-neutrino mass and the renormalization factor a.
The value of baryon density was fixed at the WMAP value. We performed a χ2-analysis in
order to obtain the best-fit value of the parameters. The results are the following

• All data

a = 0.46+0.08
−0.06 ,

m4 = 0.003+0.022
−0.003 MeV ,

χ2/(N − 2) = 10.76 . (3.1)

• All data but 7Li

a = 0.37± 0.06 ,

m4 = 0.004+0.021
−0.004 MeV ,

χ2/(N − 2) = 3.23 . (3.2)

The first set of results have been obtained by taking all data on primordial abundances, and
the second one is the set of results obtained by removing the data on the abundance of lithium.
Figures 1 and 2 show the contour plots in the parametric-plane (m4, a) and the likelihood
contour plots.

The statistical analysis shows that the data on lithium may not be consistent with the
other data on primordial abundances, since χ2(with Li)

χ2(without Li)
≈ 3. However, both sets yield almost
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Figure 2. Likelihood and 1σ, 2σ and 3σ contour plots, in the same notation of Figure 1, when
the data of 7Li are not considered in the χ2-test. The mixing angle φ has been fixed at the value
sin2 2φ = 0.15.

the same value for the sterile-neutrino mass and comparable values for the renormalization
factor of the sterile-neutrino occupation.

3.2 Results with ηB variable

The results obtained by allowing the variation of the baryon to photon ratio, ηB, are the
following:

ηB = (6.20+0.06
−0.07)× 10−10 ,

a = 0.53± 0.09 ,

m4 = 0.000+0.040 MeV ,

χ2/(N − 3) = 11.40 . (3.3)

Figure 3 shows the contour plots resulting from the calculations. The extracted value for
ηB is in good agreement with data, the renormalization parameter a is somehow larger than
the one obtained with a fixed value of ηB [1, 2], but the fit favors a massless sterile-neutrino.
The χ2-value for this case is similar to the one corresponding to the minimization with a fix
ηB when all primordial species are considered. Since we have three parameters to adjust and
three set of data, we cannot, for the case of variable baryon to photon ratio, excluded the
data on lithium.

4 Conclusion

The presence of an extra heavy-neutrino affects the primordial abundances produced during
the first three minutes of the Universe. We have calculated the occupation factors for active
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Figure 3. Likelihood and 1σ, 2σ and 3σ contour plots for ηB , m4 and the parameter a. The mixing
angle φ has been fixed at the value sin2 2φ = 0.15.

and sterile-neutrinos (3+1 scheme) and the neutron to proton decay rates as a function of the
new mass eigenstate, the active sterile neutrino mixing angle, and the parameter a, in order
to obtain the primordial abundances of deuterium, helium and lithium. As in previous works,
we have found a sensitivity of the abundances to the active sterile neutrino mixing [14–16, 45].
The value for the parameter a remains lower than 0.60 at 1σ, in agreement with previous
calculations [17]. The results suggest that the primordial abundances are more affected by
changes in a and in the neutrino mass rather than in the mixing angle between active and
sterile neutrino species.
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