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ABSTRACT

We present a method to produce mock galaxy catalogues with efficient perturbation the-
ory schemes, which match the number density, power spectra and bispectra in real and in
redshift space from N-body simulations. The essential contribution of this work is the way in
which we constrain the bias parameters in the PATCHY-code. In addition of aiming at repro-
ducing the two-point statistics, we seek the set of bias parameters, which constrain the univari-
ate halo probability distribution function (PDF) encoding higher-order correlation functions.
We demonstrate that halo catalogues based on the same underlying dark matter field with a
fix halo number density, and accurately matching the power spectrum (within 2%), can lead
to very different bispectra depending on the adopted halo bias model. A model ignoring the
shape of the halo PDF can lead to deviations up to factors of 2. The catalogues obtained addi-
tionally constraining the shape of the halo PDF can significantly lower the discrepancy in the
three-point statistics, yielding closely unbiased bispectra both in real and in redshift space;
which are in general compatible with those corresponding to an N-body simulation within
10% (deviating at most up to 20%). Our calculations show that the constant linear bias of
∼2 for Luminous Red Galaxy (LRG) like galaxies seen in the power spectrum, mainly comes
from sampling halos in high density peaks, choosing a high density threshold rather than from
a factor multiplying the dark matter density field. Our method contributes towards an efficient
modelling of the halo/galaxy distribution required to estimate uncertainties in the clustering
measurements from galaxy redshift surveys. We have also demonstrated that it represents a
powerful tool to test various bias models.

Key words: (cosmology:) large-scale structure of Universe – galaxies: clusters: general –
catalogues – galaxies: statistics

1 INTRODUCTION

Mock galaxy catalogues have become an essential tool to assess
systematics in the interpretation of galaxy surveys, to test and de-
velop large-scale structure analysis tools, and to understand struc-
ture and galaxy formation.

However, the new generation of galaxy surveys with increas-

? E-mail: kitaura@aip.de, Karl-Schwarzschild-fellow

ing volumes and number densities, such as WiggleZ1 (Drinkwater
et al. 2010), VIPERS2 (Guzzo & The Vipers Team 2013), BOSS3

(White et al. 2011), DESI4/BigBOSS (Schlegel et al. 2011), DES5

1 http://wigglez.swin.edu.au/site/
2 http://vipers.inaf.it/
3 http://www.sdss3.org/surveys/boss.php
4 http://desi.lbl.gov/
5 http://www.darkenergysurvey.org
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(Frieman & Dark Energy Survey Collaboration 2013), LSST 6

(LSST Dark Energy Science Collaboration 2012), J-PAS7 (Benitez
et al. 2014), 4MOST8 (de Jong et al. 2012) or Euclid9 (Cimatti et al.
2009; Laureijs 2009), require challenging computational resources
to produce the corresponding mock galaxy catalogues necessary
to accurately assess the uncertainties in the measurements. Some
remarkable attempts producing large N -body simulations can be
found in the recent literature (see e.g. Kim et al. 2009; Angulo et al.
2012; Prada et al. 2012; Alimi et al. 2012; Watson et al. 2013). Nev-
ertheless, these simulations do not go beyond the high mass end of
haloes modelling luminous red galaxies (LRGs). Moreover, they
provide a limited number of realizations, which cannot be used to
make a proper study of the cosmic variance because the estimation
of covariance matrices requires a large number of mock catalogues
(Percival et al. 2014).

Interesting alternatives to produce large numbers of N -body
simulations have been recently proposed, such as re-scaling N -
body simulations to account for a change in the cosmological pa-
rameters (Angulo & White 2010), computing covariance matrices
from a small set of simulations (Schneider et al. 2011), or including
Lagrangian perturbation theory (LPT) within the Vlasov equations
solver to speed up N -body codes (COLA, Tassev, Zaldarriaga &
Eisenstein 2013; Koda, Kazin & Blake 2014).

As an alternative to run N -body cosmological simulations,
one can calibrate approximate structure formation models to N -
body solutions and scan the parameter space using more efficient
schemes, as the one presented in this work.

A number of approaches has been proposed in the literature
for the generation of mock galaxy catalogues based on LPT, such
as PINOCCHIO (Monaco et al. 2002, 2013), PTHALOS (Scocci-
marro & Sheth 2002; Manera et al. 2013), and PATCHY (Kitaura,
Yepes & Prada 2014). Alternatively, approximate particle mesh
based codes: QPM (White, Tinker & McBride 2014) can be ap-
plied. Another approach consists of producing low resolution N -
body simulations and augment them with a bias model (de la Torre
& Peacock 2013; Angulo et al. 2013). We note that the bias model
adopted in PATCHY can be applied for such kind of approaches as
well. It has been shown that perturbation theory can provide an ac-
curate approach to model the Baryon Acoustic Oscillations (BAOs)
(Tassev & Zaldarriaga 2012).

In the era of precision cosmology we need to produce mock
catalogues that yield the right matter statistics to high accuracy not
only in terms of the number density and correlation function (or
power spectrum), but also in terms of the higher-order statistics.
The three-point function is essential for an accurate description of
the clustering, as it represents a measure of gravitationally induced
non-Gaussianities, which characterises the morphology of the cos-
mic web (Frieman & Gaztanaga 1994) and has a long history ap-
plied to galaxy surveys (see e. g. Gaztanaga & Frieman 1994;
Scoccimarro et al. 2001a; Verde et al. 2002a; Jing & Börner 2004;
Müller & Maulbetsch 2004; Müller, Hoffmann & Nuza 2011). It
can be used to test gravity (Shirata et al. 2007; Gil-Marı́n et al.
2011), to break degeneracies in the galaxy bias (Matarrese, Verde &
Heavens 1997; Verde et al. 1998; Scoccimarro et al. 2001b; Verde
et al. 2002b; Hoffmann et al. 2014, Gil-Marı́n et al., in prep.), or
to test the existence of primordial non-Gaussianities (Sefusatti &

6 http://www.lsst.org/lsst/
7 http://j-pas.org/
8 http://www.aip.de/en/research/research-area-ea/
research-groups-and-projects/4most
9 http://www.euclid-ec.org

Komatsu 2007; Jeong & Komatsu 2009). We note that recent ef-
forts have been performed to constrain the dark matter three-point
statistics based on an effective field theory description of the large-
scale structure (Angulo et al. 2014; Baldauf et al. 2014). An ef-
ficient method based on perturbation theory able to produce halo
catalogues with the right three-point statistics is still missing.

The distribution of haloes is statistically determined by all its
moments. Nevertheless, a method imposing all the corresponding
correlation functions (assuming that they are known) to a distribu-
tion of haloes is far from trivial and hardly numerically efficient
(see Kitaura 2012). Instead, one tries to encode the physics encap-
turing all the higher-order statistics in the generation of the halo
distribution. This is naturally given in a N -body simulation (al-
though the specific halo-finder can lead to some discrepancies, see
Knebe et al. 2011). However, when trying to produce thousands of
mock halo catalogues on huge volumes, N -body simulations turn
out to be computationally very expensive, as they require to solve
the interaction between dark matter particles on small scales and
high resolutions to resolve the different populations of haloes.

As an alternative one can obtain the large-scale structure cos-
mic density field (at scales larger than the diameter of the largest
haloes, i.e., larger than a few Mpc) with approximate gravity
solvers (or from low resolution N -body simulations) and model
its relation to the halo distribution with a parametrised statistical
bias description to produce the full halo catalogue or augment the
missing populations of haloes. The advantage of such an approach
is that it is much faster and less memory consuming, as one does
not require high resolutions since the individual haloes do not need
to be resolved. Moreover, one can get insights into the halo bias and
find accurate descriptions, useful for the analysis of the large-scale
structure.

This paper is structured as follows: in the next section (§2) we
present our method. We then show (§3) our numerical experiments
calibrating our mock catalogues with N -body simulations. Finally
(§4) we present our conclusions and discussion.

2 METHOD

Let us start defining the generation of a halo distribution as a statis-
tical problem.

2.1 Statistical problem

The distribution of haloes is statistically determined by its mean
number density (ξh1 : one-point correlation function), (ξh2 : two-
point) correlation function, skewness (ξh3 : three-point correlation
function), kurtosis (ξh4 : four-point correlation function), and all the
rest of higher-order correlation functions:

Nh x P(Nh|ξh1 , ξh2 , ξh3 , ξh4 , . . . ), (1)

where Nh are the number counts of haloes per cosmic sub-volume
(per cells when dividing the cosmic volume in a grid), ξhi the dif-
ferent correlation functions corresponding to the halo distribution
and P the corresponding probability distribution function (PDF).
The halo population is defined in a particular mass range (Nh =
Nh[∆Mh]) or alternatively in a maximum circular velocity range
(Nh = Nh[∆vmax]) and consequently all correlation functions
also depend on that range (ξhi = ξhi [∆Mh] or ξhi = ξhi [∆vmax],
for i = 1, . . . ,m until the highest considered order m).

Let us suppose that the expected continuous halo density field

c© 0000 RAS, MNRAS 000, 000–000
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ρh = 〈Nh〉 and the PDF relating it with the discrete halo num-
ber count per cell are known. Then we could get the discrete halo
distribution by sampling from this PDF:

Nh x P(Nh|ρh). (2)

This PDF deviates in general from Poissonity, due to the non-
vanishing correlation of haloes producing over- or under-dispersed
distributions depending on the halo population and density regime
(see Somerville et al. 2001; Casas-Miranda et al. 2002; Neyrinck
et al. 2014). Under-dispersion is a sub-dominant effect, which ap-
pears when the correlation function becomes negative (see also Bal-
dauf et al. 2012, 2013). Therefore we focus on modelling over-
dispersion with the negative binomial distribution function, which
requires a single stochastic bias parameter β (see Kitaura, Yepes
& Prada 2014; Neyrinck et al. 2014). Stochasticity in the bias rela-
tion has since long been studied (see e. g. Press & Schechter 1974;
Peacock & Heavens 1985; Bardeen et al. 1986; Fry & Gaztanaga
1993; Mo & White 1996; Dekel & Lahav 1999; Sheth & Lemson
1999; Seljak 2000; Berlind & Weinberg 2002; Smith, Scoccimarro
& Sheth 2007; Desjacques et al. 2010; Beltrán Jiménez & Durrer
2011; Valageas & Nishimichi 2011; Elia, Ludlow & Porciani 2012;
Chan, Scoccimarro & Sheth 2012; Baldauf et al. 2012, 2013) and
has a non-trivial relation to the non-local bias (see discussion at the
end of next section).

To obtain the expected halo density field one needs to control
the bias of the particular halo population, which in general is a non-
linear, scale-dependent, and non-local function of the dark matter
density field ρM: B(ρh|ρM).

From a statistical perspective, this bias relation is not
only a function of the underlying dark matter field, but also
of all the moments of the halo distribution: B(ρh|ρM) =
B(ρh|ρM, ξ

h
1 , ξ

h
2 , ξ

h
3 , ξ

h
4 , . . . ). Hence, the haloes are sampled from

the following PDF:

Nh x P(Nh|B(ρh|ρM, ξ
h
1 , ξ

h
2 , ξ

h
3 , ξ

h
4 , . . . )). (3)

There is no apparent advantage in the last expression with respect
to Eq. 1, as we still need all the moments of the halo distribution
and in addition the dark matter field together with the halo bias.
However, there is a striking difference, since we have extended the
purely statistical problem with a physical model. The physics is en-
coded in the large-scale structure density field dominated by dark
matter and its biased relation to the halo population. While the rela-
tion in Eq. 1 does not tell us how to obtain the halo distribution (for
some attempts based on expansions of Gaussian/Lognormal fields
including higher-order statistics see Kitaura 2012), Eq. 3 gives us
a straightforward approach. In principle we just need to define a
parametrised bias model and constrain the corresponding param-
eters with the halo correlation functions extracted from N -body
simulations.

2.2 Deterministic bias relations

Let us define the parametrised deterministic bias relation.

(i) One could follow Fry & Gaztanaga (1993) and expand the
dark matter overdensity field δM ≡ ρM/ρ̄M−1 (with ρ̄M being the
mean dark matter density) in a Taylor series:

ρh = fah
∑
i

aiδ
i
M, (4)

with fah = N̄h/〈
∑
i aiδ

i
M〉 and ai being the corresponding bias

coefficients. The ensemble average over the quantity X: 〈X〉 can

be approximated by the following average:
∑
iXi/Ncells for suf-

ficiently large volumes (with Ncells being the number of cells di-
viding the entire volume). This bias model has been proposed to
augment the resolution of an N -body simulation, populating lower
mass haloes than originally resolved in the simulation (see Angulo
et al. 2013).

(ii) Alternatively one could follow Cen & Ostriker (1993) and
expand the series based on the logarithm of the density field (avoid-
ing in this way negative densities allowed in the previous expan-
sion):

ρh = fbh exp

[∑
i

bi log (1 + δM)i
]
, (5)

with fbh = N̄h/〈exp
[∑

i bi log (1 + δM)i
]
〉 and bi being the cor-

responding bias coefficients. This model has been used for resolu-
tion augmentation of N -body simulations (see de la Torre & Pea-
cock 2013), further augmenting the catalogue with the halo occu-
pation distribution (HOD) (Berlind & Weinberg 2002; Zheng, Coil
& Zehavi 2007; de la Torre et al. 2013).

(iii) It has recently been found that the bias is very well fit
by a compact relation including an exponential cut-off: ρh ∝
ραM exp

[
−
(
ρM
ρε

)ε]
(see Neyrinck et al. 2014). This is a refined

version of the thresholding step-function θ(ρM − ρth) (= 0 for
ρM < ρth, = 1 for ρM > ρth), which suppresses the generation
of haloes below a density threshold ρth and was previously used
in (Kitaura, Yepes & Prada 2014). Such a model is in agreement
with the Press & Schechter (1974) and peak-background split pic-
ture (Kaiser 1984; Bardeen et al. 1986; Cole & Kaiser 1989; Mo,
Jing & White 1996; Sheth, Mo & Tormen 2001). One can combine
both descriptions in a single model:

ρh = fh θ(ρM − ρth) ραM exp

[
−
(
ρM

ρε

)ε]
, (6)

with

fh = N̄h/〈θ(ρM − ρth) ραM exp

[
−
(
ρM

ρε

)ε]
〉, (7)

and {ρth, α, ε, ρε} the parameters of the model. Nevertheless, the
exponential cut-off (ε < 0) is not very sensible for the massive
halo/galaxy population considered in this work. Hereby, the bias
is mainly controled by α and ρth. Different combinations of these
parameters can lead to the same power spectrum (two-point statis-
tics). Therefore, we need to introduce additional constraints, as we
will discuss below.

Additional bias is introduced by the approximate gravity solver and
aliasing effects due to the gridding of the dark matter particles,
when defining the dark matter density field ρM. We rely in this
work on the (iii) bias expression and include additional bias effects
in these parameters.

A non-local bias introduces a scatter in the local determinis-
tic bias relations described above (McDonald & Roy 2009). These
effects have recently been found to be relevant (Saito et al. 2014),
which is in line with the findings of Kitaura, Yepes & Prada (2014).
In the latter work, the scatter is described within a stochastic bias
relation through the negative binomial distribution function, as we
do here. Therefore, stochastic bias may be regarded as an effective
description of the non-local bias encoding our ignorance about it.
Nevertheless, such effects need to be addressed in more detail in
future works, as a stochastic description may lack some physical
effects in the halo distribution.

c© 0000 RAS, MNRAS 000, 000–000
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2.3 Halo probability distribution function

The approach described so far to generate the halo distribution
based on Eq. 3 is not very efficient. One would need to scan the
bias parameter space computing the correlation functions (say up
to fourth order) for each set of values until the optimal set is found.
A fast method has recently been developed to compute the bisepc-
trum in the squeezed-limit (Chiang et al. 2014), which however,
does not apply for this work. To circumvent these computational
problems, we suggest to constrain the one-dimensional halo PDF.
In particular we will constrain the shape of the halo PDF, as its in-
tegral (the halo number density) will be imposed by fh (see Eq. 7).

Let us recap some concepts of statistical probability theory
(for a review see Bernardeau et al. 2002).

2.3.1 Statistical probability theory

The higher-order moments of a field ρ can be found by calculating
the ensemble average of powers of that field ρ over its probability
distribution function P1(ρ):

µn ≡
∫

dρP1(ρ) ρn = 〈ρn〉, (8)

with n being the order of the moment.
One can then define the moment generating function as the

quantity:

M(t) ≡
∞∑
n=0

µn
tn

n!
=

∫
dρP1(ρ)etρ = 〈etρ〉 , (9)

which yields the different moments by performing subsequent
derivatives of it at the origin t = 0.

The cosmological n-point correlation functions are related to
the cumulants or connected moments:

κn ≡ 〈ρn〉c, (10)

defined by the cumulant generating function:

C(t) ≡
∞∑
n=1

κn
tn

n!
, (11)

and its relation to the moment generating function:

M(t) = exp(C(t)). (12)

By inverting Eq. 9 using the inverse Laplace transform, one
obtains the PDF as a function of the cumulants:

P1(ρ) =

∫ √−1∞

−
√
−1∞

dt

2π
√
−1

exp (tρ+ C(t)) . (13)

This equation illustrates how the n-point correlation functions are
encoded in the probability distribution function.

2.3.2 Multivariate constraints

We have considered so far the univariate case. However, this alone
does not ensure the correct higher-order statistics, as any distribu-
tion (for instance a Gaussian field) can be rank-ordered to fulfill
a particular PDF (see Weinberg 1992; Sigad, Branchini & Dekel
2000; Szapudi & Pan 2004). The cosmic density field represents
a multivariate statistical problem. In practice the statistical dimen-
sion is given by the number of cells (voxels) conforming the three
dimensional grid we use to model the whole cosmic volume un-
der consideration (for the more general multivariate expressions see
Bernardeau et al. 2002; Kitaura 2012).

One needs to constrain the PDF from the multivariate halo
distribution. Following Eq. 3 we need to assume that at scales larger
than few Mpc (i.e., larger than the diameter of the largest haloes):

• The approximate gravity solver (low N -body resolution or
perturbation theory based method) accurately models the higher-
order statistics of the dark matter density field.
• The bias model accurately connects the dark matter phase-

space distribution with the halo distribution.

In this way, we scan the parameter space spanned by the bias
parameters, in our case: {ρth, α, ε, ρε, β}, additionaly fixing the
number density of the halo population in which we are interested:
N̄h = 〈ρh〉 ← ξh1 , to match the power spectrum: Ph(k) ← ξh2
and the halo PDF: P1

h (B (ρh|ρM)) ← {ξh1 , ξh2 , ξh3 , ξh4 , . . . } ob-
tained fromN -body simulations. The computation of the halo PDF
is trivial and fast in contrast to the calculation of higher-order cor-
relation functions. This can be summarised with the following sam-
pling process:

Nh x P(Nh|B(ρh|ρM, N̄h, Ph(k),P1
h)). (14)

The accuracy of our method depends on the level of precision in
which each of the two above mentioned conditions are fulfilled. Re-
cently, rank-ordering has been applied to dark matter density fields
within second order LPT (2LPT) demonstrating that this approx-
imation encaptures the right matter statistics on scales larger than
8 h−1 Mpc, based on calculations of the bispectrum (see Leclercq
et al. 2013). LPT was also shown to accurately model the three-
point correlation function on scales relevant to BAOs in config-
uration space (White, Tinker & McBride 2014). The limitations
of LPT can be improved with the spherical collapse model (see
Neyrinck 2013; Kitaura & Heß 2013, and the description of the
PATCHY-code below). We stress that the advantage of the above
probabilistic formulation goes beyond of producing mock cata-
logues, as it permits us also for statistical inference analysis (see
e. g. Kitaura & Enßlin 2008; Kitaura, Jasche & Metcalf 2010;
Jasche & Kitaura 2010; Kitaura, Gallerani & Ferrara 2012; Kitaura
2013).

3 NUMERICAL EXPERIMENTS

We present in this section numerical experiments to validate our
method.

3.1 Reference halo sample: the BigMutiDark simulation

To calibrate our method, we use a reference halo catalogue at red-
shift z = 0.577 extracted from one of the BigMultiDark (BIGMD)
simulations (Heß et al., in prep.; Klypin et al. 2013), which was
performed using GADGET-2 (Springel 2005) with 38403 particles
on a volume of (2500h−1 Mpc)3 assuming ΛCDM-cosmology
with {ΩM = 0.29,ΩK = 0,ΩΛ = 0.71,ΩB = 0.047, σ8 =
0.82, w = −1, ns = 0.95} and a Hubble constant (H0 = 100h
km s−1 Mpc−1) given by h = 0.7. Haloes were defined based
on density peaks including substructures using the Bound Density
Maximum (BDM) halo finder (Klypin & Holtzman 1997) and then
selected according to a maximum circular velocity larger than 350
km s−1 to match the number density of BOSS CMASS galaxies
(Nuza et al. 2013; Klypin et al. 2013). For the impact of these se-
lection criteria in the clustering and scale-dependent bias (Prada et
al., in prep.).

c© 0000 RAS, MNRAS 000, 000–000
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Figure 1. Halo PDF showing the number of cells Ncells hosting the same
number of haloes Nhaloes with a cell resolution of (2.5h−1 Mpc)3. In
red PATCHY (with ρHigh

th ) and in black BIGMD including the error-bars ex-
tracted from the PATCHY mocks. In addition one PATCHY mock in dashed-
blue (with ρLow

th ) ignoring the shape of the halo PDF. The latter has been
multiplied by eight to compensate for the eight times smaller volume, and
hence, about eight times smaller number of haloes. The number density
(which determines the integral of the PDF) is the same in all catalogues
(see Eq. 7). The insert shows the first bin of the halo PDF for cells contain-
ing only one halo.

3.2 The PATCHY-code

To maximise the efficiency of the method we rely on augmented
Lagrangian perturbation theory (ALPT) splitting the description of
the large-scale structure into a long range and a short range com-
ponent modelled by 2LPT and the spherical collapse model, re-
spectively (see Kitaura & Heß 2013). We note, however, that the
method described above can be applied to increase the resolution
ofN -body simulations, and thus, it can be regarded as an improved
method with an extended parametrised bias model with respect to
other approaches like the ones presented in de la Torre & Peacock
(2013); Angulo et al. (2013). It has been shown with the PATCHY-
code that the non-linear bias model also adopted in this work can
compensate for the missing power of the perturbative approach and
redshift space distortions can be accurately modelled with ALPT
and a dispersion term (see Kitaura, Yepes & Prada 2014). We have
extended PATCHY to be out-of-core and work with an arbitrary
number of chunks to reduce the memory requirements below 28
Gb RAM for 10243 particles (or cells), allowing to simulate the
distribution of LRG-like galaxies in volumes of (2.5 h−1 Gpc)3.
The new version of PATCHY randomly assigns the positions of dark
matter particles to haloes, whenever there are more dark matter par-
ticles than haloes in a given cell. Otherwise the position within the
cell is uniform randomly assigned. This case does, however, oc-
cur only for a small fraction of cells considering the particular halo
population of this work.

3.3 Bias parameters and statistical constraints

The parameters of our model {ρth, α, ε, ρε, β} are constrained
to fit the power spectrum better than 2% in the range k =
[0.07, 0.35]hMpc−1 (cosmic variance dominates on larger scales:
k <∼ 0.07hMpc−1) and to accurately reproduce the tails of the halo
PDF, i.e., matching the low-end better than 10% and being statisti-

cally compatible within 1-sigma at the high-end (around the max-
imum number of haloes per cell). We find that in this way we ob-
tain also a reasonable fit of the halo PDF in the whole range, with
deviations being in general within 50%. Our bispectrum statistics
analysis has shown that these deviations are not severe (see below).
To achieve better fits we would need to match the low-end of the
halo PDF to higher accuracy, as small deviations in the number of
cells containing one halo can lead to larger deviations in cells con-
taining higher number of haloes (see insert in Fig. 1). There should
also be limitations due to the assumptions adopted in §2.3.2. This
should be further investigated in future works. Nevertheless, a mas-
sive parameter estimation approach to find the optimal parameters
to match the BOSS-CMASS galaxy population will be presented
in a forthcoming paper (Scoccola et al., in prep.). We note that the
right number density is imposed through Eq. 7.

A multiscale approach has been adopted in this work to effi-
ciently scan the bias parameter space. We start with small volumes
of (312.5h−1 Mpc)3 on grids with 1283 cells and refine the pa-
rameters increasing the volumes by factors of eight with constant
resolution, until we reach the final volume of (2500 h−1 Mpc)3

with 10243 cells. The majority of the tests were performed on vol-
umes of (1250 h−1 Mpc)3 and grids of 5123, since the statistical
uncertainties are already low at these volumes and they can be com-
puted much faster than the full volume of the BIGMD simulation.
We show in this study one of such mocks with the following param-
eters: α = 1.68 and δth = ρth/ρ̄ − 1 = −0.3, which ignores the
shape of the halo PDF from the BIGMD simulation and solely fits
the halo number density (integral of the halo PDF) and the power
spectra in real and redshift space (see § 3.4). This setting permits
the existence of haloes in low density regions, we therefore will re-
fer to this sample as the PATCHY mock with ρLow

th . The calculations
based on this mock are represented by dashed-blue curves through-
out the paper. In addition, we show results from a set of 20 PATCHY

mockswith parameters chosen to jointly fit the power spectrum and
the halo PDF (ρHigh

th ), using the same cosmology, number density
and volume as the BIGMD simulation described in § 3.1. A ∼53
times lower number of dark matter particles (10243) was used for
the PATCHY mocks. We find that a higher thresholding is crucial
to fit the PDF (see Fig. 1). The following parameters are found:
α = 0.365 and δth = ρth/ρ̄ − 1 = 1.82, and therefore we will
refer to this sample as the PATCHY mocks with ρHigh

th . The calcula-
tions based on these mocks are represented by red curves through-
out the paper. We find for the parameter modelling the deviation
from Poissonity β = 0.35. In this way we manage to enhance the
power towards small scales (high k) fitting the power spectrum of
the BIGMD simulation (see Fig. 3). The exponential cut-off pa-
rameters are chosen as: ε = −2, ρε = 0.3. We note, however, that
these parameters have a limited impact on the statistics given the
particular halo population we are looking at. We expect that they
will become more relevant when looking at lower halo masses.

A visual comparison between the halo field from the BIGMD
simulation and from the PATCHY mocks is shown in Fig. 2. There
are no obvious deviations between the BIGMD simulation and the
PATCHY mocks other than a different spatial distribution of haloes
due to the different initial random seed perturbations used for each
case. A more careful visual inspection reveals that the PATCHY

mock with ρLow
th exhibits a larger number of cells with low halo

number counts filling the voids with respect to the PATCHY mock
with ρHigh

th and the BIGMD simulation. This is expected as the den-
sity threshold is set to a lower value. We cannot distinguished by
eye the larger saturation of the peaks. This is however shown in the
PDF, where one can see that the PATCHY mock with ρLow

th reaches a

c© 0000 RAS, MNRAS 000, 000–000



6 F. S. Kitaura et. al.

Figure 2. Halo overdensity slices of thickness 20 h−1 Mpc taking a subvolume of (1250 h−1 Mpc)3 from the BIGMD N -body simulation on the left, from
one PATCHY mock including a fit of the halo PDF (with ρHigh

th ) in the middle, and from one PATCHY mock ignoring the shape of the halo PDF (with ρLow
th )

on the right. Lighter regions indicate a larger halo number count.

factor ∼ 3 times larger number of haloes per cell than the PATCHY

mock with ρHigh
th or the BIGMD simulation (see Fig. 1). We pro-

ceed with a more quantitative statistical analysis.

3.4 Power spectrum and bispectrum

In this section we aim to compare the halo power spectrum and
halo bispectrum predictions for PATCHY mocks and BIGMD N -
body simulation in real and redshift space.

The halo power spectrum P and the halo bispectrumB are the
two- and three-point correlation functions in Fourier space. Given
the Fourier transform of the halo overdensity, δh(x) ≡ ρh(x)/ρ̄h−
1,

δh(k) =

∫
d3x δh(x) exp(−ik · x), (15)

where ρh(x) is the number density of objects and ρ̄h its mean
value, the halo power spectrum and halo bispectrum are defined
as,

〈δh(k)δh(k′)〉 ≡ (2π)3P (k)δD(k + k′), (16)

〈δh(k1)δh(k2)δh(k3)〉 ≡ (2π)3B(k1,k2)δD(k1 + k2 + k3) ,

(17)

with δD being the Dirac delta function. Note that the bispectrum
is only well defined when the set of k-vectors, k1, k2 and k3 close
to form a triangle, k1 + k2 + k3 = 0. It is common to define the
reduced bispectrum Q as,

Q(α12|k1,k2) ≡ B(k1,k2)

P (k1)P (k2) + P (k2)P (k3) + P (k1)P (k3)
.

(18)
where α12 is the angle between k1 and k2. Although this quantity
does not have any additional information to the power spectrum
and bispectrum, it has been historically used as a measurement of
the hierarchical amplitude of the bispectrum. This quantity is inde-
pendent of the overall scale k and redshift at large scales and for a
power spectrum that follows a power law. Moreover, it presents a
characteristic “U-shape” predicted by the gravitational instability.

Mode coupling and power law deviations in the actual power spec-
trum induce a slight scale- and time-dependency in this quantity.
However, in practice it has been observed that at scales of order
k ∼ 0.1hMpc−1 the reduced bispectrum does not present a high
variation in its amplitude.

In order to measure the Fourier statistics from a set of haloes
in a box with periodic boundary conditions, we start by discretis-
ing the box in grid cells. We use 5123 grid cells, with a grid-cell
resolution of 4.88h−1 Mpc, and we assign haloes to the grid cells
according to the Cloud-in-Cell (CiC) prescription. We apply the
Fourier transform of the density field using fftw10 and we correct
the resulting field by deconvolving the effect of the grid assignment
(Jing 2005). Given that the size of the box is Lb = 2.5h−1 Gpc,
the k fundamental is kf = 2π/Lb = 2.51× 10−3 hMpc−1.

In order to obtain the power spectrum we radially bin the k-
modes, with a bin size of kf , and we average over all possible k-
directions.

We use the real part of 〈δk1δk2δk3〉 as our bispectrum mea-
surement for those set of ki-vectors that form a triangle. Since there
are a huge number of possible triangular configurations, in this pa-
per we focus on analysing those with k1/k2 = 1 and k1/k2 = 2,
for a particular values of k1. We present the bispectrum measure-
ment as a function of k3, which sweeps from |k1−k2| to |k1+k2|.
Our choice for binning the bispectrum is similar to the power spec-
trum. We bin k1 and k3 in kf bins: ∆k1 = ∆k3 = kf . In addition,
k2 is binned also in kf bins for those triangles with k1/k2 = 1.
On the other hand, k2 is binned in 2 times kf when k2/k1 = 2 in
order to cover all the available k-space. Generically, we can write
∆k2 = (k2/k1)∆k1.

The measurement of the bispectrum is performed in a simi-
lar way of the approach described in Gil-Marı́n et al. (2012). This
method consists of generating k-triangles and randomly-orientate
them in k-space. When the number of random triangles is suffi-
ciently large, the mean value of their bispectra tends to the fiducial
bispectrum (for details see Gil-Marı́n et al. 2012).

Discreteness adds a spurious contribution to the measured

10 Fastest Fourier Transform of the West: www.fftw.org
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Figure 3. Halo power spectrum for BIGMD N -body simulation (black symbols in the top sub-panels) and for PATCHY mocks (red lines with ρHigh
th and

dashed-blue lines with ρLow
th ). Left panel shows real space power spectrum and right panel the redshift space monopole power spectrum. The power spectrum

for the PATCHY mocks with ρHigh
th corresponds to the average over 20 independent realizations. Only the errors corresponding to the BIGMD N -body

simulations are shown for clarity. In the bottom sub-panels the relative deviation between BIGMD and PATCHY is shown. Black dotted lines indicate 2%

deviation.
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Figure 4. Halo bispectrum for the BIGMD N -body simulations and PATCHY mocks as a function of k3. Top panels show the bispectrum in real space and
bottom panels the bispectrum monopole in redshift space. Different columns present different scales and shapes as labeled. Same colour notation that in Fig. 3
is used.

power spectrum and bispectrum. In this paper we assume that these
contributions are of Poisson type and therefore are given by,

Psn(k) =
1

n̄
(19)

Bsn(k1,k2) =
1

n̄
[P (k1) + P (k2) + P (k3)] +

1

n̄2
(20)

where k3 = |k1 + k2| and n̄ is the number density of haloes. We
are aware that deviations from Poissonity are present (see §2.1).
However, for the purposes of this paper, we find it sufficient to use
the Poisson predictions to correct the power spectrum and bispec-
trum measurements in a consistent way for both the N -body and
the PATCHY simulations.

Both for the power spectrum and bispectrum the errors associ-
ated to the measurement come from the dispersion of 20 indepen-
dent realizations of the PATCHY mocks.

Recall that the BIGMD simulation corresponds to a single box
of 2.5h−1Gpc on a side, and hence, has an effective volume of
Veff = 15.625 [h−1Gpc]3. On the other hand, for the PATCHY

mocks simulations we dispose of 20 boxes of 2.5h−1Gpc on a
side with independent initial conditions and with a total effective
volume of Veff = 312.5 [h−1Gpc]3. Due to this difference in ef-
fective volumes, BIGMD measurements (for both power spectrum
and bispectrum) present a more noisy behaviour than PATCHY mea-
surements, with error-bars that are∼

√
20 times larger for BIGMD

compared to PATCHY. This difference is more evident for the bis-
pectrum because the signal-to-noise is weaker, and therefore, the
errors larger than for the power spectrum.

For both power spectrum and bispectrum we present the
BIGMD error-bars computed from the dispersion among the 20
realizations of PATCHY mocks. We do not display any error-bars
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Figure 5. Halo reduced bispectrum for BIGMD N -body simulations and PATCHY mocks as a function of the angle between k1 and k2, α12. Same colour
and panel notation that in Fig. 4 is used.

for the PATCHY mocks measurements for clarity. These error-bars
would be

√
20 times smaller than the ones showed for BIGMD.

Fig. 3 presents the comparison between the power spectrum of
BIGMD N -body simulations (black symbols), the PATCHY mocks
with ρHigh (red lines), and the single PATCHY mock with ρLow

(dashed-blue line). The left panel displays the real space power
spectrum and the right panel the redshift space power spectrum
monopole. Bottom sub-panels present the relative deviation be-
tween them. As a general trend, we see a good agreement between
BIGMD and PATCHY power-spectra, which agree within 6 2% ac-
curacy for k 6 0.35hMpc−1, both in real and redshift space. We
observe that at small scales, the PATCHY mocks considered in this
study tend to slightly under-predict the power spectrum by ∼ 2%
respect to BIGMD, being compatible within better than 10 % up to
k = 1hMpc−1. Further tests have, however, shown that a different
set of parameters can also over-predict the power spectrum at large
scales, indicating that some set will display a better fit on small
scales. We do not intend in this study to reach precisions of 2%
beyond the scale relevant to BAOs (k = 0.35hMpc−1) and there-
fore have not further improved the parameters. The PATCHY mocks
with ρHigh

th slightly over-predict the power spectrum towards high
k, however remaining compatible within 2% with the BIGMD sim-
ulation. The non-linear contribution of redshift space distortions
responsible of damping the power spectrum on small scales can be
controlled with the factor of the dispersion term as shown in Ki-
taura, Yepes & Prada (2014). We plan to investigate this further
including calculations of the quadrupole in a future work.

Fig. 4 presents the comparison between BIGMD and PATCHY

bispectrum using the same colour notation that in Fig. 3. Top panels
correspond to real space bispectrum and bottom panels to redshift
space bispectrum monopole. Different columns correspond to dif-
ferent scales and shapes as indicated. Note that in this case, the
precision of BIGMD measurements is a limiting factor when we
test the accuracy of PATCHY respect to BIGMD bispectra. As a
general trend we see that both PATCHY and BIGMD agree within
10 − 20% accuracy. Similarly to the power spectrum case, we see
that PATCHY tends to under-predict the bispectrum at small scales
by ∼ 10− 20% with no evidence of any shape dependence.

Fig. 5 presents a similar comparison for the reduced bispec-
tra using the same colour and panel notation that in Fig. 3 and

4. Similarly to the bispectrum case, we observe a general agree-
ment between BIGMD and PATCHY with ρHigh reduced bispectra
within 10− 20% accuracy. However, we see that the PATCHY with
ρHigh prediction for the reduced bispectra tends to under-estimate
the BIGMD prediction by ∼ 20%. This deviation tends to be more
evident in real space that in redshift space. However, we should
note the large uncertainties in our singleN -body simulation shown
in the fluctuations as a function of the angle α12.

We have tested that a different set of bias parameters matching
the power spectrum, but disregarding the shape of the halo PDF
produces bispectra, which can deviate from the true one by about
a factor of 2 as can be seen represented by the dashed-blue curves
corresponding to PATCHY with ρLow in Figs. 3, 4 and 5.

In summary, we consider that the bispectra of the PATCHY-
mocks fit well the ones from BIGMD given the uncertainties of our
single reference N -body simulation. Further investigation should
be done in the future with a larger number of reference N -body
simulations.

4 DISCUSSION AND CONCLUSIONS

In this work we have presented a method to produce mock galaxy
catalogues with efficient perturbation theory schemes, which match
the number density, power spectra and bispectra in real and in
redshift space from N -body simulations. The ingredients of our
scheme are given by an improved Lagrangian perturbation theory
based approach to describe dark matter structure formation and a
non-linear stochastic bias model (the PATCHY-code: Kitaura, Yepes
& Prada 2014). The essential contribution of this work is the way in
which we constrain the parameters of our bias model. In addition of
aiming at reproducing the two-point statistics we need to addition-
ally constrain the univariate halo probability distribution function
encoding higher-order correlation functions. We have shown that
this approach permits us to reasonably reproduce the bispectrum.
Nevertheless, we have not included any explicit constraint from the
three-point statistics. We therefore expect that our general approach
yields also reasonable fits of the four-point correlations, which are
relevant, as they quantify the sample variance and covariance of
two-point statistics measurements (Cooray & Hu 2001; Takada &

c© 0000 RAS, MNRAS 000, 000–000
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Hu 2013). We leave a thourough analysis of covariance matrices
for a forthcoming publication.

We have used a Luminous Red Galaxy (LRG) like reference
halo catalogue with the typical BOSS CMASS galaxy number den-
sity at z = 0.577 based on one of the BIGMD N -body simula-
tions. We have demonstrated that halo catalogues based on the same
underlying dark matter field with a fix halo number density (i.e.,
matching the integral of the halo PDF) and accurately matching the
power spectrum (within 2% for k 6 0.35hMpc−1 and deviating
less than 10% up to k = 1hMpc−1), can lead to very different
bispectra depending on the halo bias model. A model ignoring the
shape of the halo PDF can lead to deviations up to the level of a
factor of 2. The catalogues obtained additionally constraining the
halo PDF can significantly lower the discrepancy in the three-point
statistics yielding closely unbiased bispectra both in real and in red-
shift space, which are compatible with those corresponding to an
N -body simulation in general within 10% (deviating at most up to
20%).

Our calculations have shown that the constant linear bias of
∼ 2 for LRG-like galaxies found in the power spectrum (defined
as the square root of the halo power spectrum divided by the dark
matter power spectrum), mainly comes from sampling halos in the
high density peaks choosing a high density threshold rather than
from a factor multiplying the dark matter density field.

The method presented in this work can be applied to directly
produce galaxy catalogues without requiring the halo distribution,
as it just cares about the statistical properties for the type of trac-
ers of interest, and is in this way a model-independent method.
The model dependency comes in, when the method is calibrated
with a particular mock galaxy catalogue. This dependence could
be broken, by using as the reference an observed sample of galax-
ies. We could then add the large-scale modes and produce different
phases with the statistics constrained by the observations with our
PATCHY approach. In a separated work we will show how to use
a mock galaxy sample based on abundance matching to produce
mocks with PATCHY (Scoccola et al., in prep.).

We plan to address in forthcoming works a number of stud-
ies which have not been done here, like investigating the impact
of (a deterministic) non-local bias, computing the two-point and
three-point correlation functions in configuration space and further
improving the halo PDF fit.

Our method contributes towards an efficient modelling of the
halo/galaxy distribution required to estimate uncertainties in our
measurements from galaxy redshift surveys. We have also demon-
strated that it represents a powerful tool to test various bias models.
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González E., Yepes G., 2013, ArXiv e-prints
Weinberg D. H., 1992, MNRAS, 254, 315
White M., Blanton M., Bolton A., Schlegel D., Tinker J., Berlind A., da

Costa L., et al, 2011, ApJ, 728, 126
White M., Tinker J. L., McBride C. K., 2014, MNRAS, 437, 2594
Zheng Z., Coil A. L., Zehavi I., 2007, ApJ, 667, 760

c© 0000 RAS, MNRAS 000, 000–000


