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Abstract

The β1,2-glucans produced by bacteria are important in invasion, survival and immunomodulation in

infected hosts be theymammals or plants. However, there has been a lack of information on proteins

which recognize these molecules. This is partly due to the extremely limited availability of the

sequence-defined oligosaccharides and derived probes for use in the study of their interactions.

Here we have used the cyclic β1,2-glucan (CβG) of the bacterial pathogen Brucella abortus, after re-
moval of succinyl side chains, to prepare linearized oligosaccharides which were used to generate

microarrays. We describe optimized conditions for partial depolymerization of the cyclic glucan by

acid hydrolysis and conversion of the β1,2-gluco-oligosaccharides, with degrees of polymerization

2–13, to neoglycolipids for the purpose of generating microarrays. By microarray analyses, we

show that the C-type lectin receptor DC-SIGNR, like the closely related DC-SIGN we investigated ear-

lier, binds to the β1,2-gluco-oligosaccharides, as does the soluble immune effector serummannose-

binding protein. Exploratory studies with DC-SIGN are suggestive of the recognition also of the intact

CβG by this receptor. These findings open the way to unravelling mechanisms of immunomodula-

tion mediated by β1,2-glucans in mammalian systems.
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Introduction

Glucan polysaccharides are of biomedical interest because of their in-
volvement in mechanisms of pathogen recognition and modulation of
the immune system (Brown and Gordon 2003; Chen and Seviour
2007). Molecular dissection of their interactions with proteins of the
immune system, although desirable is not straightforward at the level
of polysaccharides on account of the inherent heterogeneities of these
macromolecules. With the advent of oligosaccharide microarray tech-
nologies (Fukui et al. 2002; Blixt et al. 2004; Feizi and Chai 2004;
Rillahan and Paulson 2011; Palma et al. 2014), it is possible now to
explore interactions with proteins using oligosaccharide probes gener-
ated from a range of oligosaccharide sequences that can be prepared
after partial depolymerization of the polysaccharides (Pedersen et al.
2012; Palma et al. 2015).

The microarray system based on the neoglycolipid (NGL) technol-
ogy (Chai et al. 2003) for preparing lipid-linked oligosaccharide
probes for immobilization and binding studies, lends itself well to ana-
lyses of glucan sequences as recognition structures within polysacchar-
ides. This is the basis of the “designer” microarray approach (Palma
et al. 2006, 2014; Gao et al. 2014) whereby microarrays are generated
from oligosaccharides released from the targeted macromolecules; oli-
gosaccharides bound by recognition proteins may be isolated for char-
acterization. This approach was used successfully in studies of the
ligands on glucan polysaccharides for Dectin-1, a key receptor of the
innate immune system directed against fungal pathogens (Herre et al.
2004). Dectin-1 belongs to the family of C (calcium-dependent)-type
lectin-like proteins; it lacks the canonical amino acid residues for ligating
calcium, required for carbohydrate binding in classical C-type lectins
(Drickamer and Taylor, 2015). Nevertheless, designer microarrays
(Palma et al. 2006) generated from oligosaccharide fractions derived
from fungal-type glucans (Brown and Gordon, 2001; Brown et al.
2003), established that (i) dectin-1 is a calcium-independent carbohydrate-
binding protein and (ii) linear β1,3-linked glucose sequences with degrees
of polymerization (DP) 10 or longer are required for detection of binding.

Using the designer approach, in conjunction with a novel high-
sensitivity mass spectrometric (MS) sequencing method, we recently
generated a “glucome” microarray of sequence-defined oligosacchar-
ide probes derived from glucan polysaccharides of fungal, bacterial
and plant origins in order to use as a high-throughput screening
tool for characterizing glucan recognition systems of mammals and
bacteria (Palma et al. 2015). The probes in the microarray encom-
passed linear sequences with a single linkage type: 1,2-, 1,3-, 1,4- or
1,6- with α or β configurations; andmixedmultiple linkage types: 1,3-,
1,4 or 1,6-; also branched oligosaccharide sequences with 1,3 and

1,6-linkages with different DPs. Binding of the dendritic cell-specific
C-type lectin receptor (CLR) DC-SIGN was noted to NGL probes
from β1,2-linked gluco-oligosaccharides DP 2–13, derived from the
cyclic β1,2-glucan (CβG) of the bacterial pathogen Brucella abortus,
which is a major pathogenic factor involved in B. abortus invasion
and survival (Arellano-Reynoso et al. 2005) and a potent activator
of mouse and human dendritic cells (Martirosyan et al. 2012). This
raised the possibility that DC-SIGN interacts with B. abortus CβG
and that this interaction participates in modulation of the activities
of DCs (Palma et al. 2015). CLRs comprise a large family of signaling
receptors, which are variously involved in inflammatory and innate
immune responses to a diverse range of microbial pathogens (Hoving
et al. 2014; Drickamer and Taylor 2015). These activities occur fol-
lowing the binding of their carbohydrate recognition domains
(CRDs) to specific endogenous carbohydrates and those of pathogens.
The finding that DC-SIGN can bind pathogen-associated β1,2-linked
gluco-oligosaccharides raises the question whether related CLRs bind
to these types of sequences, in addition to their other well-known car-
bohydrate ligands.

Here we describe details of the preparation of sequence-defined
β1,2-linked gluco-oligosaccharide probes for microarray analysis, in-
cluding procedures for CβG hydrolysis, oligosaccharide fractionation,
with improved yields of NGLs from the longer oligosaccharides that
are difficult to derivatize. We apply the NGL microarrays to investi-
gate the recognition of these oligosaccharide sequences by C-type lec-
tin immune-receptors, including DC-SIGN and its closely related
human receptor DC-SIGNR (or L-SIGN), and the soluble serum effec-
tor mannose-binding protein (MBP). We also explore the recognition
of the intact cyclic forms of CβGs by DC-SIGN.

Results

Preparation of β1,2-gluco-oligosaccharides from

cyclic β1,2-glucan
The alkali treated B. abortus CβG was analyzed by MALDI-MS, and
the spectrum indicated complete removal of the succinyl side chains
and preservation of the cyclic glucan chains which consisted of DP
16–23, with DP 17 (MNa+ at m/z 2777) being the most abundant
component (Figure 1).

In the exploratory small-scale experiments, hydrolysis of the CβG
with 0.01 M HCl at 100°C was assessed by monitoring the products
at different reaction times by gel filtration (Figure 2). For monitoring
of the reaction, the reagentHClwas not removed prior to analysis, and
therefore an artefactual peak related to HCl occurred at∼30 min. This

Fig. 1. MALDI mass spectrum of CβG extracted from Brucella abortus after removal of the succinyl side chains by mild alkaline treatment.
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has not interfered with the evaluation of the progress of the hydrolysis.
The reaction time of 120 min (Figure 2D) was selected for large-scale
experiments to obtain oligosaccharides with DPs ranging from 2 to 13
(Figure 3A). The fractions obtained by gel filtration were analyzed by
HPTLC (Figure 3B). The identities of the major components in the
higher oligosaccharide fractions with DPs ≥ 5 were determined by
MALDI-MS and of the lower oligosaccharide fractions with DPs≤ 4
by negative-ion ESI-MS. As shown in the MALDI spectra of fractions
DP 7, 10 and 13 (Figure 4A–C, respectively) as representative, each
fraction contains adjacent overlapping components in addition to
the main component. For example, in fraction DP 7 (Figure 4A), oli-
gosaccharides with DP 6 and 8 were present as minor components in
addition to the main component DP 7 at m/z 1175.2 (MNa+), due to
incomplete separation by gel filtration chromatography.

Linkage and anomeric configuration for the DP 7 fraction were in-
vestigated by negative-ion ESI-CID-MS/MS and 1H NMR. In the
product-ion spectrum (Figure 5A), the neutral losses of 18 Da (e.g. m/z
1133 and 971) and 120 Da (e.g. m/z 1031 and 869) derived from de-
hydration and 0,2A-cleavage (Domon and Costello 1988), respectively,
of the [M−H] − and glycosidic C-type ions (Domon and Costello
1988) are characteristic of 1,2-linkage of gluco-oligosaccharides
(Palma et al. 2015). The β-anomeric configuration could be readily as-
signed by 1HNMR from the major anomeric doublet at 4.88 ppmwith
a coupling constant of ∼8.3 Hz; both α- and β-anomeric signals from
the reducing end monosaccharide could also be identified (Figure 5B).

Preparation of β1,2-gluco-oligosaccharide NGLs

Preparation of the NGLs of glucan oligosaccharides with DP > 7 using
the conventional method of reductive-amination (Chai et al. 2003) has
been difficult and the yield extremely low (not shown). For the higher
oligomers of gluco-oligosaccharides even with the relatively more effi-
cient reaction in oxime-ligation (Liu et al. 2007) the yield was again
low. Improvement of conjugation conditions was attempted by modifi-
cations of several parameters of the oxime-ligation reaction. Using the
readily available α1,6-linked dextran oligosaccharides as standards, we
explored the effects of different reaction temperature (22, 50 and 80°C)
and time (24, 48 and 96 h), different acidity of the reaction medium
(acidic, neutral and alkaline) and different amounts of lipid reagent,
but no major improvement in reaction yield was found (not shown).

The low solubility of gluco-oligosaccharides being a well-
recognized problem, we next investigated the effect of solvent on con-
jugation yield. To improve the solubility of gluco-oligosaccharides,
DMSO was included in the solvent mixture for NGL conjugation.
Using dextran oligosaccharides with DP 8, 9 and 10 as examples,
the solvent effect was clearly apparent. In the presence of DMSO,
the yields were improved, particularly for the higher oligomers. As
shown in Figure 6, the NGL product bands in lanes b and c, in
which DMSO was included in the reaction solvent, were clearly
more intense than those in lanes a. This was apparent with both pri-
mulin (for detection of lipid) and orcinol (for detection of glucose)
staining.

Fig. 2. Analysis of hydrolysis products of CβG at different reaction time by gel filtration chromatography. (A) 0 min, (B) 30 min, (C) 60 min, (D) 120 min, (E) 180 min

and (F) 210 min. Acid hydrolysis was carried out with 0.01 M HCl at 100°C in a V-shaped glass vial with stirring. For gel filtration, a Superdex Peptide column was

used; the column was eluted with deionized water and the eluent was monitored by refractive index. The major peak at ∼30 min was an artifact, resulting from HCl

present in the reaction mixture.

β1,2-Glucan probes for microarray recognition studies 3

 by guest on M
ay 5, 2016

http://glycob.oxfordjournals.org/
D

ow
nloaded from

 

http://glycob.oxfordjournals.org/


With the modified conditions (condition c in Materials and meth-
ods), a series of NGLs of the CβG oligosaccharides, DP 2–13 was pre-
pared. The purified NGL probes were analyzed by HPTLC (Figure 7)
and MALDI-MS (Figure 4D–F) before printing on nitrocellulose-
coated glass slides for protein-binding experiments.

Analysis of the recognition of β1,2-gluco-oligosaccharide
NGLs by CLRs of the immune system

In order to investigate the recognition of the β1,2-gluco-oligosaccharides
by CLRs of the immune system, we arrayed the gluco-oligosaccharides as
NGLs and included α1,2-linked DP 2–9 and β1,3-linked DP 13NGLs as
controls (Table I). We performed microarray analyses with proteins:
DC-SIGN-bio, DC-SIGNR-bio, MBP purified from human serum and
His-Dectin-1 (Figure 8). DC-SIGN-bio showed binding to all the
β1,2-gluco-oligosaccharide probes tested; the binding pattern was similar
to that previously observed using DC-SIGN-Fc (Palma et al. 2015),
namely with DP 6 showing the highest binding signal at 5 fmol glucan
probe per spot (Supplementary, Figure S1). DC-SIGNR-bio gave binding
signals with β1,2-gluco-oligosaccharide probes with DP> 4. MBP also
showed binding to β1,2-gluco-oligosaccharide probes with DP > 2 with
relatively high intensity to those with longer chain lengths, DP 7–9. Con-
trastingwith binding profiles ofDC-SIGN-bio andDC-SIGNR-bio,MBP
showed relatively higher binding signals with the α1,2-gluco-oligosac-
charide probes, in particular the longer oligomers. His-Dectin-1 included
as a control in these microarray analyses showed the predicted binding to
the β1,3-linkedDP13 from curdlan (Palma et al. 2006), but no detectable

binding to any of the CβG derived β1,2-linked gluco-oligosaccharide
probes (Figure 8), in agreement with our previous assignment (Palma
et al. 2015). Under the assay conditions, DC-SIGN-bio, DC-SIGNR-bio
and MBP gave no binding signals with the β1,3-linked DP 13 probe.

In sum, the results presented here show the CLRs DC-SIGN,
DC-SIGNR and MBP can bind to linear β1,2-gluco-oligosaccharides
derived from B. abortus CβG with differing influence of chain length
on the observable binding.

Exploratory studies of the recognition of cyclic

β1,2-glucan by DC-SIGN CLR

In additional experiments, we explored the recognition of intact forms
of CβG by DC-SIGN-Fc (Supplementary Methods and Supplementary,
Figure S2). His-Dectin-1was included as a control protein.We analyzed
the native form of B. abortus CβG with succinyl side chains and the
NaOH-treated CβG with these side chains removed. As these CβGs
are of relatively low-molecular weight (∼3 kDa, Figure 1) and cannot
be readily retained on a nitrocellulose matrix, we explored the arraying
of these together with other polysaccharides as positive and negative
controls in the presence of a water soluble and photoactive terpolymer,
sciPOLY3D, (Supplementary, Figure S2 and Supplementary, Table SI).
The terpolymer consists of three components: poly(dimethylacryla-
mide) as the hydrophilic matrix, sodium salt of styrene sulfonate as
the water solubility enhancer, and 4-methacryloxyl-oxy-benzophenone
as the photo reactive group. This polymer allows immobilization of the
molecules in a 3D matrix by UV irradiation forming covalent links be-
tween the capture molecules and the polymer and attachment of the
polymer to the slide surface. As shown in Supplementary, Figure S2,
DC-SIGN-Fc gave robust binding signals with α-mannan of Saccharo-
myces cerevisiae, which is well known to be recognized by this receptor
(Cambi et al. 2008). Binding could be detected to the two CβG forms
also to the β1,3-glucans NSG (neutral soluble β-glucan) and PGG
(poly-(1,6)-D-glucopyranosyl-(1,3)-D-glucopyranose), as we have shown
previously and in agreement with our observation that DC-SIGN
bound to β1,3-gluco-oligosaccharides with DP 2 and 3 (Palma et al.
2006). Both NSG and PGG, as predicted, were bound by His-Dectin-1.

Discussion

Glycan microarray technology has become established as a powerful
means of glycan ligand discovery in studies of recognition systems in
functional glycomics. There is an ever-demanding need to broaden the
repertoire of sequence-defined oligosaccharide probes in order to facil-
itate the studies of glycan recognition in diverse biological systems. In
the present study, we address the methodological challenge in obtain-
ing β1,2-linked glucan oligosaccharides with differing chain lengths
and their conversion into NGL probes for microarray construction
to enable studies of their recognition by proteins. To achieve this,
our strategy has been to partially depolymerize CβG of B. abortus,
after removal of the succinyl side chains. Following detailed character-
ization of the oligosaccharides by mass spectrometry and NMR,
the gluco-oligosaccharides were conjugated to the lipid reagent by
oxime-ligation reaction using conditions we optimized for these
hard-to-derivatize oligomers. NGL probes with differing chain lengths
ranging from DP 2–13 were thus obtained.

The β1,2-linked CβGs are produced by different bacteria of the
Proteobacteria phylum and occur mostly in the periplasm, but they
can also be secreted as extracellular polysaccharides, to which impor-
tant biological activities have been attributed (Bontemps-Gallo and
Lacroix, 2015). For example, the periplasmic CβG of the pathogen

Fig. 3. Preparation of CβG oligosaccharide fragments. (A) Bio-Gel P4 profile of

CβG hydrolysate and (B) HPTLC analysis of aliquots from each collected

fractions.
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B. abortus is essential for bacterial virulence, whereas the secreted
CβG mediates interactions with mammalian hosts (Briones et al.
2001; Arellano-Reynoso et al. 2005) and modulation of the activities
of immune cells (Martirosyan et al. 2012; Degos et al. 2015). Secreted
CβGs have been shown also to be important for invasion of the bac-
terial phytopathogen Xanthomonas campestris pv campestris and
suppression of systemic immune responses in plants (Rigano et al.
2007). Linear β1,2-glucans have also been identified in some bacteria
of the Proteobacteria phylum, for example in the opportunistic patho-
gen Pseudomonas aeruginosa, in which they have been shown to be in-
volved in biofilm formation (Lequette et al. 2007). Despite the wide
occurrence and striking bioactivities attributed to these biomolecules
limited information exists about proteins that mediate their recognition.

In the present work, we analyze two additional CLRs of the mamma-
lian immune system for their recognition of β1,2-gluco-oligosaccharides,
following on from our earlier finding that DC-SIGN binds to this type of
oligosaccharides (Palma et al. 2015). We analyze a different DC-SIGN
construct, its closely related endothelial cell receptor DC-SIGNR, and
serum MBP, and show that these CLRs share the common feature of
binding to β1,2-linked glucose oligosaccharides printed as NGL probes.
It has been previously shown bymicroarray screening and structural ana-
lysis of the CRDs in complex with mammalian-type oligosaccharides
that DC-SIGN and DC-SIGNR have distinct ligand-binding properties
(Feinberg et al. 2001;Guo et al. 2004): both receptors bind high-mannose
oligosaccharides; but DC-SIGN can additionally interact strongly
with fucosylated Lewisa and Lewisx-related oligosaccharides. Serum
MBP binds to oligosaccharides bearing terminal fucose, mannose or
GlcNAc with broad specificity (Drickamer and Taylor, 2015). The
binding that we observe to the gluco-oligomers may reflect the mode
of binding of these receptors to the shared high-mannose oligosacchar-
ide ligands through the equatorial 3-hydroxyl and 4-hydroxyl groups
(Drickamer and Taylor, 2015). This interpretation will need to be corro-
borated by solving the structures of the CRD-oligosaccharide complexes.

Our findings that DC-SIGN, DC-SIGNR and MBP can interact
with β1,2-gluco-oligosaccharides derived from B. abortusCβG, raised
the important question of whether the natural intact CβG forms are
recognized and thereby involved in the triggering of these receptors
of the immune system. Conformational differences between linear
and cyclic β1,2-linked oligosaccharides have been described (Mimura
et al. 1996). Our exploratory analyses suggest that DC-SIGN can in-
teract with intact CβG forms. Further investigations of these interac-
tions are required and of their involvement on the immuno biological
effects observed with B. abortus CβG and β1,2-linked glucans.

The availability of β1,2-linked glucose oligosaccharide probes de-
rived from CβG and their effective presentation in microarrays will en-
able identification of oligosaccharide epitopes recognized on CβGs by
other proteins. The β1,2-linked CβGs produced by bacteria exhibit
structural diversity as they can occur in the unsubstituted form, or sub-
stituted at glucose C6 with anionic groups, such as succinyl (Roset
et al. 2006) as in the case of the present work, phosphoglycerol (Miller
et al. 1987), or methylmalonate (de Iannino and Ugalde, 1989). These
substitutions as well as branching of the backbone chain with
β1,6-linked glucose also occur in linear β1,2-glucans (Lequette et al.
2007). The strategies presented here could well be adapted to these
various types of β1,2-linked glucans and may also be applied to the
study of the influence of substitutions and branching on their recogni-
tion by proteins. The perfection of the sciPOLY3D polymer printing
and development of new strategies to generate arrays of the intact
CβGs will be important in the unraveling of these recognition systems.

Materials and methods

Oligosaccharides and recombinant proteins

A gluco-oligosaccharide fraction with DP 13 from curdlan (with
β1,3-linkage), dextran-derived fractions (with α1,6-linkage) with DP
8, 9 and 10 andCyanobacterium gluco-oligosaccharides (α1,2-linkage)

Fig. 4. MALDI mass spectra of selected CβG oligosaccharides and their NGLs. (A) Heptasaccharide, (B) decasaccharide, (C) tridecasaccharide, (D) NGL of

heptasaccharide, (E) NGL of decasaccharide and (F) NGL of tridecasaccharide.
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with DP 2–9 as major components (Cyano-2 to Cyano-9) were pre-
pared as described (Palma et al. 2015). Recombinant, tetrameric
DC-SIGN and DC-SIGNR (complete extracellular domains, lacking
the transmembrane domain) were made and purified as described
previously (Mitchell et al. 2001). These were analyzed in the micro-
arrays in a biotinylated form (DC-SIGN-bio and DC-SIGNR-bio, re-
spectively), prepared as described previously (Carroll et al. 2010);

MBP purified from human serum (Haurum et al. 1993; Jensenius
1995) was provided by Jens Christian Jensenius (Aarhus University,
Denmark); murine Dectin-1 CRD with an N-terminal His6-tag
(His-Dectin-1) was purchased from Sino Biologicals (Beijing,
China). Solvents used are all of analytical grade and the composi-
tions of the solvents are by volume throughout the study unless spe-
cified otherwise.

Fig. 5. Sequence analysis of CβG heptasaccharide by negative-ion ESI-CID-MS/MS (A) and 1H NMR (B). The heptasaccharide structure is shown to indicate

fragmentation (A). The major doublet at 4.88 ppm with a coupling constant of 8.3 Hz was used to assign the β-anomeric configuration; anomeric signals arising

from the reducing end monosaccharide were also identified as follows: α: 5.40 ppm, 4.4 Hz; β: 4.83 ppm, 8.3 Hz (B).
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Preparation of gluco-oligosaccharides from CβG
CβG, consisting of 13–23 glucose residues, was isolated fromB. abortus
essentially as described (Ciocchini et al. 2007) with some minor
modifications. Cells from 200 mL of stationary phase cultures of
B. abortus strain were grown for 48 h at 37°C (200 rpm) and har-
vested by centrifugation at 8000 ×g for 10 min at 4°C. Cell pellets
were extracted with ethanol (70% ethanol, 1 h at 37°C). The ethanolic
extracts were centrifuged, and the supernatants were concentrated and
subjected to gel filtration on a Bio-Gel P6 column (1.8 × 78 cm).
Columns were eluted at room temperature with 0.5% formic acid at
a flow rate of 9 mL h−1, and 1.5 mL fractions were collected. Fractions
corresponding to CβG were pooled, concentrated and lyophilized.
CβGwas initially treated with 0.1 MNaOH at 40°C for 60 min to re-
move the succinyl side chains. Following neutralization by addition of
3 M HCl to pH 7.0, the reaction mixture was desalted on a G10 col-
umn (1.6 × 30 cm). The side chain-removed CβG eluting at the void
volume was collected and freeze-dried. The successful removal of the
succinyl side chains was confirmed by matrix-assisted laser deso-
rption/ionization mass spectrometry (MALDI-MS) analysis.

Small-scale experiments were performed initially to optimize the
conditions for mild acid hydrolysis of the NaOH-treated CβG to obtain

oligosaccharide fractions withDP2–13. For this, 5 mg of the lyophilized
CβG was dissolved in 500 µL of 0.01M HCl in a V-shaped glass vial.
The mixture was heated, with stirring, to 100°C in a heating block. For
monitoring of the reaction progress, aliquots (50 µL) of the reaction so-
lutionwere taken out at various reaction times (0, 30, 60, 120, 150, 180,
and 210 min), cooled on ice and neutralized by addition of NaOH solu-
tion (0.1 M) before injection to an FPLC system equipped with a Super-
dex Peptide column (PC 3.2/30, GEHealthcare, Uppsala, Sweden). The
columnwas elutedwith deionized water at a flow rate of 18 mL h−1 and
the eluent was monitored with a refractive index detector.

For large-scale preparation, the reaction time of 120 min was se-
lected. Thus, 25 mg NaOH-treated CβG was dissolved in 2.5 mL
HCl (0.01 M) and the mixture was incubated at 100°C for 120 min.
The reaction was stopped by neutralization with NaOH (0.1 M) and
the mixture was desalted on the Sephadex G10 column. The desalted
hydrolysis products were fractionated on a Bio-Gel P4 column (1.5 ×
100 cm) by elution with deionized water at a flow rate of 15 mL h−1.
The elution was monitored on-line by refractive index and fractions
were pooled according to their glucose units.

The pooled fractions were freeze-dried, and quantified by orcinol
assay for glucose content (Chai et al. 2003). For high-performance

Fig. 6.Optimization of conjugation reaction conditions. (a) The reaction condition (a) was used, (b) the reaction condition (b) was used and (c) the reaction condition

(c) was used. Details of conditions (a), (b) and (c) are described in Materials and methods. Lipid was revealed by fluorescence of primulin staining and hexose by

orcinol staining.

Fig. 7. HPTLC analysis of CβG oligosaccharide NGLs. Two to 13 represent the DP of β1,2-gluco-oligosaccharides isolated from CβG.

β1,2-Glucan probes for microarray recognition studies 7
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Fig. 8. Carbohydrate microarray analysis of the interaction of C-type lectin receptors with CβG oligosaccharides. DC-SIGN-bio and DC-SIGNR-bio were tested at

50 µg mL−1, serum MBP at 4 µg mL−1 and His-Dectin-1 at 20 µg/ml. The microarray consisted of lipid-linked gluco-oligosaccharide probes (AO-NGLs) printed in

duplicate on nitrocellulose-coated glass slides. The linkage type and DP of the major component are indicated; their sequences are shown in Table I. The results

are the means of fluorescence intensities of duplicate spots, printed at 2 and 5 fmol spot−1 (black and dark grey, respectively), and with the range indicated by error

bars. This figure is available in black and white in print and in color at Glycobiology online.

Table I. Gluco-oligosaccharide NGL probes included in the microarray

Namea Sequenceb DPc

Cyano-2 Glcα1–2Glc-AO 2
Cyano-3 Glcα1–2Glcα1–2Glc-AO 3
Cyano-4 Glcα1–2Glcα1–2Glcα1–2Glc-AO 4
Cyano-5 Glcα1–2Glcα1–2Glcα1–2Glcα1–2Glc-AO 5
Cyano-6 Glcα1–2Glcα1–2Glcα1–2Glcα1–2Glcα1–2Glc-AO 6
Cyano-7 Glcα1–2Glcα1–2Glcα1–2Glcα1–2Glcα1–2Glcα1–2Glc-AO 7
Cyano-8 Glcα1–2Glcα1–2Glcα1–2Glcα1–2Glcα1–2Glcα1–2Glcα1–2Glc-AO 8
Cyano-9 Glcα1–2Glcα1–2Glcα1–2Glcα1–2Glcα1–2Glcα1–2Glcα1–2Glcα1–2Glc-AO 9
CβG-2 Glcβ1–2Glc-AO 2
CβG-3 Glcβ1–2Glcβ1–2Glc-AO 3
CβG-4 Glcβ1–2Glcβ1–2Glcβ1–2Glc-AO 4
CβG-5 Glcβ1–2Glcβ1–2Glcβ1–2Glcβ1–2Glc-AO 5
CβG-6 Glcβ1–2Glcβ1–2Glcβ1–2Glcβ1–2Glcβ1–2Glc-AO 6
CβG-7 Glcβ1–2Glcβ1–2Glcβ1–2Glcβ1–2Glcβ1–2Glcβ1–2Glc-AO 7
CβG-8 Glcβ1–2Glcβ1–2Glcβ1–2Glcβ1–2Glcβ1–2Glcβ1–2Glcβ1–2Glc-AO 8
CβG-9 Glcβ1–2Glcβ1–2Glcβ1–2Glcβ1–2Glcβ1–2Glcβ1–2Glcβ1–2Glcβ1–2Glc-AO 9
CβG-10 Glcβ1–2Glcβ1–2Glcβ1–2Glcβ1–2Glcβ1–2Glcβ1–2Glcβ1–2Glcβ1–2Glcβ1–2Glc-AO 10
CβG-11 Glcβ1–2Glcβ1–2Glcβ1–2Glcβ1–2Glcβ1–2Glcβ1–2Glcβ1–2Glcβ1–2Glcβ1–2Glcβ1–2Glc-AO 11
CβG-12 Glcβ1–2Glcβ1–2Glcβ1–2Glcβ1–2Glcβ1–2Glcβ1–2Glcβ1–2Glcβ1–2Glcβ1–2Glcβ1–2Glcβ1–2Glc-AO 12
Curd-13 Glcβ1-3Glcβ1-3Glcβ1-3Glcβ1-3Glcβ1-3Glcβ1-3Glcβ1-3Glcβ1-3Glcβ1-3Glcβ1-3Glcβ1-3Glcβ1-3Glc-AO 13

aCyano: from cyanobacterium gluco-fructosides; CβG: from cyclic β-glucan of bacterium Brucella abortus; Curd: from curdlan polysaccharide.
bCβG-2 to CβG-7 and Curd-13: relatively pure (purity >90%, based on HPTLC andMALDI-MS analysis); CβG-8 to CβG-12: major components (>60%, based on

MALDI-MS) are shown and the minor components are the higher oligomers 9–13, respectively; AO, aminooxy (AO)-functionalized 1,2-dihexadecyl-sn-
glycero-3-phosphoethanolamine.

cDP, degree of polymerization of the major component.
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silica gel TLC analysis, an aliquot (∼2 µg) of each fraction was applied
to the aluminum-backed plate and a solvent system of n-propanol/
water (8:3) was used for development. The gluco-oligosaccharide
bands were detected by orcinol staining (Chai et al. 2003).

Preparation of β1,2-gluco-oligosaccharide NGLs

The β1,2-linked gluco-oligosaccharides were converted into NGLs by
oxime-ligation with the lipid reagent amino oxy-functionalized
1,2-dihexadecyl-sn-glycero-3-phosphoethanolamine (AOPE) (Liu
et al. 2007). For β1,2-linked gluco-oligosaccharides with DP < 7,
and β1,3-linked oligosaccharide with DP 13 (included as a standard
control probe), the conjugation conditions were as described (Liu
et al. 2007). In brief, 50 nmol of gluco-oligosaccharide in a glass
vial were dried by lyophilization before addition of 100 nmol AOPE
(in 20 µL of CHCl3/MeOH/H2O, 10:10:1). The solvent of the mixture
was evaporated to dryness under an N2 stream. The content was re-
dissolved in 50 µL of the same solvent and the mixture was incubated
at ambient temperature (22°C) for 16 h before solvent evaporation in
a heating block at 60°C for ∼1 h.

For β1,2-linked gluco-oligosaccharides with DP > 7, the reaction
conditions were optimized to obtain higher conjugation yields. In ex-
ploratory studies, using dextran oligosaccharides DP 8, 9 and 10 as
standards, the effects of reaction time and temperature were assessed.
The reaction time was extended to 48 and 96 h and the reaction tem-
perature was raised from ambient temperature to 50 or 80°C without
any apparent improvement in reaction yield. The solvent in the reac-
tionmixturewas changed to acidic by addition of 2 µL of acetic acid or
alkaline by addition of 2 µL of triethylamine. For further improvement
of solubility of the higher oligomers of the gluco-oligosaccharides,
DMSOwas included in the reaction solvent. For comparison, two sol-
vent systems CHCl3/MeOH/H2O (25:25:8) and CHCl3/MeOH/
DMSO (25:25:8) were used in the following three procedures using
50 nmol of oligosaccharide and 1250 nmol of AOPE: (a) oligosac-
charide and AOPE in 100 µL CHCl3/MeOH/H2O, (b) the oligosac-
charide was dissolved in 15 µL DMSO before addition of 100 µL
CHCl3/MeOH/H2O containing the required 1250 nmol of AOPE and
(c) the procedure was identical to (b) apart from a solvent of CHCl3/
MeOH/DMSO was used instead of CHCl3/MeOH/H2O. All the reac-
tions were carried out at 80°C for 96 h. After reaction, the volatile sol-
vent was evaporated under a stream of N2 and DMSO was removed by
repeated co-evaporation with a small amount of water by lyophilization.
Procedure (c) was selected for preparation of the higher oligomers (DP
> 7) of β1,2-linked gluco-oligosaccharides.

NGLs of DP 2–5 were purified by semi-preparative HPTLC and
those with DP 6–13 were purified using silica cartridge (Chai et al.
2003). Purified NGLs were analyzed by HPTLC using CHCl3/
MeOH/H2O (60:35:8) as the development solvent and detected by
primulin and orcinol staining (Chai et al. 2003).

Analysis of the oligosaccharides and their NGLs

MALDI-MS in the positive-ionmodewas carried out on a Tof Spec-2E
instrument (Micromass, Manchester, UK) for analyses of the CβG
polysaccharide, oligosaccharide fractions with DP 5–13 and all the
NGLs. Sample solutions (1 µL, containing 1–10 pmol µL−1 in H2O
for the poly- and oligosaccharides, and CHCl3/MeOH/DMSO,
25:25:8, for NGLs) were deposited on the sample target together
with the matrix of 2-(4-hydroxyphenylazo) benzoic acid. Laser energy
was 20% (coarse) and 60% (fine), and resolution was at 3000.

Negative-ion electrospray mass spectrometry (ESI-MS) was used
for shorter oligosaccharides (DP 2–4). Collision-induced dissociation

tandem mass spectrometry (ESI-CID-MS/MS) was used for sequence
and linkage analysis for the heptasaccharide. ESI-MS and CID-MS/
MS were carried out on a Q-TOF mass spectrometer (Micromass,
Manchester, UK). Nitrogen was used as desolvation and nebulizer
gas at a flow rate of 250 and 150 L h−1, respectively. Source tempera-
ture was 80°C, and the desolvation temperature was 150°C. A cone
voltage of 50 V was used and the capillary voltage was maintained
at 3 kV. MS/MS product-ion spectrum was obtained from CID
using Argon was used as the collision gas at a pressure of 0.17 MPa
for the CID-MS/MS experiment. The collision energy was at 17 V.
For analysis, oligosaccharides were dissolved in acetonitrile/water
(1:1), typically at a concentration of 15 pmol µL−1, of which 5 µL
was loop injected. Solvent (acetonitrile/2 mM ammonium bicarbo-
nate, 1:1) was delivered by a Harvard syringe pump (Harvard Appa-
ratus, Holliston, MA) at a flow rate of 10 µL min−1.

For NMR analysis, the CβG-derived fraction with DP 7 (150 µg)
was co-evaporated with 2H2O (99.9 atom% 2H2) twice by lyophiliza-
tion and dissolved in 550 µL of high-quality 2H2O (100.0 atom%
2H2), containing 0.1 µL of acetone. 1H NMR spectrum was acquired
on Varian (Palo Alto, CA) Unity-600 (599.89 MHz 1H) spectrometer
at 25°C and processed with standard Varian software. The observed
1H chemical shifts were relative to internal acetone (2.225 ppm).

Carbohydrate microarray analyses

For preparation of the microarray, the gluco-oligosaccharide NGL
probes (Table I) were printed onto 16-pad nitrocellulose-coated
glass slides in duplicate at two levels, 2 and 5 fmol spot−1, as described
(Palma et al. 2015).

Microarray-binding analyses, performed using AlexaFluor-647-
labeled Streptavidin as final readout of protein binding, imaging and
data analysis were carried out essentially as described (Liu et al. 2012).
The biotinylated DC-SIGN and DC-SIGNR extracellular domains
were analyzed at 50 µg mL−1, diluted in 0.02%casein (Pierce blocking
solution) in HBS (5 mMHEPES buffer, pH 7.4, 150 mM NaCl) with
addition of 1% BSA and 5 mM CaCl2 (Ca-Casein/BSA); MBP was
analyzed at 4 µg mL−1 in the blocking solution Ca-Casein/BSA, fol-
lowed by a biotinylated rabbit anti-MBP (Haurum et al. 1993) diluted
at 3 µg mL−1 in the same blocker; His-Dectin-1 was analyzed pre-
complexed with mouse monoclonal anti-poly-histidine and biotiny-
lated anti-mouse IgG antibodies, both from Sigma, at a ratio of
1:3:3 (by weight) as described (Palma et al. 2015), and diluted to
the final concentration of 20 µg mL in the blocking solution 3% (w/v)
BSA from Sigma (A8577) in HBS.

Supplementary data

Supplementary data for this article are available online at http://glycob.
oxfordjournals.org/.
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