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1 Introduction

Augmented Lagrangian methods are powerful tools for solving nonlinear optimiza-
tion problems. The main idea is to approximate the original problem by an iterative
sequence of subproblems considerably easier to solve. In each subproblem, for a
fixed penalty parameter and Lagrange multiplier estimate, an Augmented Lagrangian
function is approximately minimized. Once the approximate solution is found, new
parameters are defined and a new iteration starts. In practical implementations, the
most classical and widely used Augmented Lagrangian function, due to Powell–
Hestenes–Rockafellar [1–3], is based on the quadratic penalty function (called PHR
function). In the literature, many effective algorithms based on the PHR function
can be found; see, for example, the algorithms defined in [4–12] for solving general
nonlinear smooth problems, [13] for solving derivative free problems, [14–17] for
mathematical problems with degenerate or complementarity constraints and [18,19]
for global optimization problems.

In the present research, we consider the Augmented Lagrangian methodology with
the use of the exponential penalty function. This functionwas introduced in the context
of convex programming [20,21]. Non-quadratic penalty functions have been exten-
sively studied during the last decades; see, for example, the seminal book [6,8,22–26]
and references therein. To understand the connection between penalization and image
space analysis, at a more general level in the field of optimization, see the fundamental
book [27] and references therein.

The Augmented Lagrangian method defined here follows the idea introduced in [4,
5], but the difference relies on the penalty function used. In this context, wewere able to
obtain global convergence to first-order stationary points considering the exponential
penalty function under a weak constraint qualification without convexity assumptions.
We have proved that a limit point which satisfies the constant positive generator (CPG)
constraint qualification [28] fulfils the Karush–Kuhn–Tucker (KKT) conditions. This
global convergence under the CPG constraint qualification is a novel result in the
optimization field.

It is well established in the literature that, when the penalty parameter is very
large, the subproblems can be very difficult to solve in an effective form [9]. For this
reason, it is important to establish appropriate sufficient conditions to guarantee that
the sequence of penalty parameters does not need to increase indefinitely in order to
achieve a solution. This local convergence analysis strongly depends on the measure
defined to control the penalty parameter.

In this work, the measure used to increase the penalty parameter comes from the
measure used in the quadratic case [4,5] adapted for the exponential one. Thus, based
on the ideas in [5,23]wewill be able to obtain the boundedness of the penalty parameter
sequence, in the case of the exponential Augmented Lagrangian algorithm, with the
use of: the linear independence of the active constraints gradients, the positive definite
of the Hessian of the Lagrangian function in the orthogonal subspace to the gradients
of the active constraints and the strict complementarity condition.

This paper has been organized as follows. In Sect. 2, we have described the main
algorithm and we have presented the global convergence results. Section 3 devoted to
prove boundedness of the penalty parameters. In Sect. 4, we are going to show three
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illustrative examples. Conclusions are given in Sect. 5 and lines for future research in
Sect. 6.

2 The Exponential Augmented Lagrangian Method and Global
Convergence

For the reader’s convenience, we present first some notations. Throughout this paper,
N = {0, 1, 2, . . .} is the set of all natural numbers,R denotes the set of real numbers and
R
n denotes the Euclidean space with dimension n. The set of non-negative numbers,

R+, is defined by R+ := {t ∈ R:t ≥ 0}, and the set of positive real numbers, R++, is
defined byR++:={t ∈ R:t > 0}. For a vector v ∈ R

n , vi is the i−th component of the
vector v. For a vector-valued function F : Rn−→→R

m , F :=( f1, . . . , fm), the Jacobian
matrix is denoted by ∇F(x) and defined by ∇F(x) := (∇ f1(x), . . . ,∇ fm(x)) ∈
R
n×m . For a subset K = {k0, k1, k2, . . .} ⊂ N (k j+1 > k j∀ j), we denote limk∈K xk =

lim j→∞ xk j .
For a vector y ∈ R

n and a set J ⊂ {1, . . . , n}, yJ denotes the subvector composed
from the components yi , i ∈ J . Analogously, for a matrix B a set J ⊂ {1, . . . , n}, BJ

denotes the matrix composed by taking the columns of B indexed by J . Finally, ‖ · ‖
is an arbitrary vector norm.

We will consider the inequality constrained nonlinear optimization problem:

min f (x) subject to g(x) ≤ 0, (1)

where f : Rn → R, g : Rn → R
p admit continuous first derivatives on an open

domain containing the feasible set. We do not assume convexity. The Augmented
Lagrangian method has a very rich theory, when applied to convex problems; see, e.g.
[6,20,21,24,25].

In this work, we consider the Augmented Lagrangian function based on the expo-
nential penalty function:

L(x, μ, ρ) = f (x) +
p∑

i=1

μi

ρ

(
eρgi (x) − 1

)
.

As we have already mentioned, the most standard Augmented Lagrangian function
is based on the quadratic penalty function and called PHR function:

LQ(x, μ, ρ) = f (x) + 1

2ρ

p∑

i=1

(max{0, μi + ρgi (x)})2,

for all x ∈ R
n, ρ ∈ R++, μ ∈ R

p
+.

In [8], the authors implemented 65 methods of the Augmented Lagrangian class
for nonlinear optimization problems with inequality constraints, using the same
framework with respect to stopping criteria, precision, subproblem solver and other
algorithmic parameters. Even though the authors concluded the superiority of the use
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of the quadratic penalty function over the other non-quadratic ones, this conclusion
strongly depends on the internal algorithm used for solving the subproblem. The dis-
continuity of the second derivatives of the Augmented Lagrangian function can slow
down the rate of convergence and cause failures. In our opinion, this is enough to
study the Augmented Lagrangian approach considering a different option rather than
the quadratic penalty function.

Other important motivation to consider non-quadratic penalty functions is the pos-
sibility to develop an Augmented Lagrangian method with convergence to points
verifying second-order optimality conditions. In this case, it is desirable to have a
twice differentiable Augmented Lagrangian function. Thus, as it is mentioned in [25],
Newton-type methods can be used for the corresponding subproblem minimization
more effectively.

As we have mentioned in the Introduction, in the first step of the Aug-
mented Lagrangian algorithm, an approximate solution of the subproblem ‘minimize
L(x, μk, ρk)’ is found. In the second step, new estimates of the multipliers are com-
puted, and finally, in the third step, the penalty parameter is updated according to some
infeasibility and complementarity measure.

Algorithm 2.1 Let x0 ∈ R
n be an arbitrary initial point. The given parameters for the

execution of the algorithm are: 0 ≤ τ < 1, γ > 1, 0 ≤ μ̄max
i < ∞, ∀ i = 1, . . . , p,

ρ0 ∈ R++, μ̄0
i , μ̄

1
i ∈ [0, μ̄max

i ], σ 0
i = μ̄1

i −μ̄0
i

ρ0
, i = 1, . . . , p. Finally, {εk} ⊂ R+ is a

sequence of tolerance parameters such that limk→∞ εk = 0.
Initialize k ← 1.

Step 1. Solving the subproblem. Compute (if possible) xk ∈ R
n , satisfying

‖∇L(xk, μ̄k, ρk)‖∞ ≤ εk . (2)

If it is not possible, stop the execution of the algorithm.
Step 2. Estimate new multipliers and define a new infeasibility and complementarity

measure. For j = 1, . . . , p, compute

μk+1
j = μ̄k

j e
ρk g j (xk ) (3)

μ̄k+1
j = P[0,μ̄max

j ](μk+1
j ) (4)

σ k
j = μk+1

j − μ̄k
j

ρk
(5)

Step 3. Update the penalty parameter.
If ‖σ k‖∞ ≤ τ‖σ k−1‖∞, define ρk+1 = ρk .

Else, define ρk+1 = γρk .

Step 4. Set k ← k + 1 and go to Step 1.

Formula (3) is the usual first-order multiplier estimate, it is a multiplicative form, in
contrast to the quadratic penalty form, where the dual update is additive:

μk+1
j = max{0, μ̄k

j + ρkg j (x
k)}; (6)
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see [4,5,7,9,12]. Formula (4) is the safeguarded counterpart of themultiplier estimate.
This idea was introduced in [4,5] and also used in [9].

Formula (5) is the parameter that measures the progress in terms of infeasibility
and complementarity. It comes from the measure used in the quadratic Augmented
Lagrangian method defined in [4,5] updated for the exponential case. In those papers,

the formula used is σ k
j = max

{
g j (xk),− μ̄k

j
ρk

}
that corresponds to formula (5)

using the definition (6). Thus, measure (5) can be seen as the appropriate measure
for the exponential case. In [8], the paper where the authors compare the 65 dif-
ferent Augmented Lagrangian methods, the penalty parameter not increases when:
max{0, g j (xk)} ≤ τ max{0, g j (xk−1)} and |g j (xk)μk

j | ≤ τ |g j (xk−1)μk−1
j | for all

j = 1, . . . , p. However, with this measure, paper [8] does not include any local
convergence analysis.

During the last years, it has been proved that quadratic Augmented Lagrangian
methods, which solve the subproblem in an inexact form, converge to stationary point
under different constraint qualifications. The weakest constraint qualification used to
prove global convergence of an inexact quadraticAugmentedLagrangianmethod is the
constant positive generator constraint qualification defined in [28]. We will establish
the definition here for completeness.

Given a tuple V = (v1, v2, . . . , vK ) of vectors in R
n and I,J ⊂ {1, 2, . . . , K },

a pair of index sets. A positive combination of elements of V associated with the
(ordered) pair (I,J ) is a vector in the form

∑
i∈I λivi + ∑

j∈J μ jv j , with μ j ≥
0,∀ j ∈ J . The set of all such positive combinations is a cone called the positive span
of V associated with (I,J ), and it is denoted by span+(I,J ; V ).

The pair (I,J ), when V is clear from the context, is said to be positively linearly
independent, iff the only way to write the zero vector using positive combinations is
to use trivial coefficients. Otherwise, the pair is positively linearly dependent.

Associated with the set V , it is possible to define the following sets J− :=
{ j ∈ J : −v j ∈ span+(I,J ; V )} and J+ := J \ J−.

Definition 2.1 [28] Consider the general nonlinear optimization problem

min f0(x)
s.t. fi (x) = 0, i = 1, . . . ,m; f j (x) ≤ 0, j = m + 1, . . . ,m + p.

For y ∈ R
n , define G f (y) := (∇ f1(y),∇ f2(y), . . . ,∇ fm+p(y)).

Let x be a feasible point and define the index sets I := {1, 2, . . . ,m} and J =
A(x) := { j = m + 1, . . .m + p: f j (x) = 0}, the set of active inequality constraints.
We say that the constant positive generator (CPG) condition holds at x iff there is a
positively linearly independent spanning pair (I ′

,J+) of span+(I,J ;G f (x)) such
that, for all y in a neighbourhood of x :

span+(I ′
,J+;G f (y)) ⊃ span+(I,J ;G f (y)).

In [28], it is proved that the constant positive generator condition is a con-
straint qualification weaker than the linear independence constraint qualification,
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Mangasarian–Fromovitz constraint qualification (MFCQ) [29,30], constant rank con-
straint qualification [31], constant positive linear dependence (CPLD) constraint
qualification [30], relaxed constant rank constraint qualification [32] and relaxed con-
stant positive linear dependence (RCPLD) [33]. Paper [28] also discusses when an
error bound holds using the new constraint qualification and shows that many algo-
rithms, not only the quadratic Augmented Lagrangian method, converge under the
weak constant positive generator condition.

Before proving the global convergence result related to Algorithm 2.1, we will
establish the following proposition, which will be also used later on.

Proposition 2.1 Let {xk} be a sequence generated by Algorithm 2.1. Assume that x∗
is a feasible limit point of {xk} and that K ⊂ N is such that limk∈K xk = x∗.
Then, limk∈K μk+1

j = 0, ∀ j /∈ A(x∗).

Proof For each j /∈ A(x∗), let us consider the following two cases:

– If {ρk} is bounded, by Step 3 of the Algorithm 2.1 we have that limk∈K σ k
j = 0.

Since g j (x∗) < 0, we obtain that limk∈K
eρk g j (xk ) − 1

ρk
�= 0 and this implies that

limk∈K μ̄k
j = 0. Thus, by the definition of μk+1

j it is true that limk∈K μk+1
j = 0.

– If {ρk} is unbounded, since g j (x∗) < 0, we have that limk∈K eρk g j (xk ) = 0. Since
{μ̄k

j }k∈K is bounded, we obtain that limk∈K μk+1
j = 0.

Thus, the thesis is proved. ��
Let us state now the global convergence theorem.

Theorem 2.1 Let {xk} be a sequence generated by Algorithm 2.1. Assume that x∗ is a
limit point of {xk} that satisfies the constant positive generator constraint qualification
related to the feasible set of the problem (1). Then, x∗ is a Karush–Kuhn–Tucker point
of the original problem (1).

Moreover, if x∗ satisfies the Mangasarian–Fromovitz constraint qualification and
{xk}k∈K is a subsequence that converges to x∗, the set {‖μk+1‖}k∈K is bounded.

Proof For all k ∈ N, by (2) and (3) there exist δk ∈ R
n such that ‖δk‖ ≤ εk and

∇ f (xk) +
∑p

j=1
μk+1

j ∇g j (x
k) = δk .

Let be K ⊂ N such that limk∈K xk = x∗. Then,

∇ f (xk) +
∑

j∈A(x∗)
μk+1

j ∇g j (x
k) = δk −

∑

j /∈A(x∗)
μk+1

j ∇g j (x
k). (7)

Let (I ′,J+) be the positively linearly independent spanning pair given in the definition
of CPG and consider V := (∇g1(x∗), . . . ,∇gp(x∗)). Then, for k sufficiently large
there must be scalars μ̃k

j , j ∈ I ′ ∪ J+ such that μ̃k
j ≥ 0 if j ∈ J+ and

∇ f (xk) +
∑

i∈I ′
μ̃k
i ∇gi (x

k) +
∑

j∈J+
μ̃k

j∇g j (x
k) = δk −

∑

j /∈A(x∗)
μk+1

j ∇g j (x
k). (8)

123



J Optim Theory Appl

Define, for all k ∈ K , Mk := max{|μ̃k
i |, i ∈ I ′, μ̃k

j , j ∈ J+}.
1. If Mk has a bounded subsequence then there are subsequences μ̂k

j , for j ∈
I ′ ∪ J+, μ̂k

j ≥ 0 if j ∈ J+ and limits μ̂∗
j , j ∈ I ′ ∪ J+, μ̂∗

j ≥ 0 if j ∈ J+
such that, taking limits on both sides of (8) and using Proposition 2.1, we arrive at
∇ f (x∗) +

∑
i∈I ′ μ̂

∗
i ∇gi (x

∗) +
∑

j∈J+
μ̂∗

j∇g j (x
∗) = 0.

Then, since I = ∅ for the original problem (1) and using that the linear combination∑
i∈I ′ μ̂

∗
i ∇gi (x

∗) +
∑

j∈J+
μ̂∗

j∇g j (x
∗) ∈ span+(J ; V ), we obtain that x∗ is a

KKT point.
2. If Mk → ∞, we can divide (8) by Mk and get

∇ f (xk)

Mk
+

∑

i∈I ′

μ̃k
i

Mk
∇gi (x

k) +
∑

j∈J+

μ̃k
j

Mk
∇g j (x

k) = δk

Mk
−

∑

j /∈A(x∗)

μk+1
j

Mk
∇g j (x

k).

By taking limits in the last equation and using Proposition 2.1, we came to a
conclusion that there is a contradiction to the fact that (I ′,J+) is positively linearly
independent.

The second part can be obtained using similar arguments. ��
Remark 2.1 It is worth noting how the previous proofs differ from the corresponding
results in the quadratic case, for example in [28]. The proof of Theorem 2.1 is strongly
based on the definition of the constant positive generator constraint qualification, in
the same way as in [28]. The main difference relies on the fact that, in the quadratic
case, the last term in the equality (7) is absent for k large enough. This is due to the
use of formula (6).

Note that, since Theorem 2.1 uses the weaker CPG constraint qualification, this
global convergence result is new for the Augmented Lagrangian algorithm using the
exponential penalty function (Algorithm 2.1). This result shows that, theoretically
speaking, the quadratic and the exponential penalty functions enjoy similar conver-
gence properties.

3 Boundedness of the Penalty Parameters

Wenote that Augmented Lagrangianmethods, as opposed to penaltymethods, attempt
to locate the optimum value of the problem keeping the sequence {ρk} bounded in
order to avoid the ill-conditioning in the limit. Because of that, in this section we will
study conditions under which the sequence of penalty parameters in Algorithm 2.1 is
bounded.

When inequality constraints are presented, the usual hypotheses needed for proving
the local convergence result, among other algorithmic conditions, are: the sufficient
second-order optimality condition (the Hessian of the Lagrangian function is pos-
itive definite in the orthogonal subspace to the gradients of the active constraints)
and the linear independence of the active constraints gradients together with the
strict complementarity condition. These are, for example, the conditions used in
[5] to prove the boundedness of the penalty parameter for the quadratic Augmented
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Lagrangian algorithm ALGENCAN and also in [23] to analyse the asymptotic behav-
iour when non-quadratic functions are considered. Similar but slightlymore restrictive
are the conditions considered in [12] to obtain boundedness of the penalty parame-
ter for LANCELOT. Recently, in [9] the authors proved that the penalty parameter
remains bounded for a quadratic Augmented Lagrangian algorithm under the follow-
ing assumptions: instead of the linear independence of the active constraints, they
assume that Mangasarian–Fromovitz holds and the vector of Lagrange multipliers is
unique, and they employ a second-order sufficient optimality condition that does not
involve the strict complementarity condition. It is important to mention that in [9]
the measure used to update the penalty parameter is different from the one used in
[4,5,8,12]. In [9], the authors increase the penalty parameter considering the measure

σ(x, μ) =
∥∥∥∥
⎧
⎪⎩ ∇LQ(x, μ, ρ)

min{−g(x), μ}
⎫
⎪⎭

∥∥∥∥ (9)

and the boundedness property is obtained with the use of the local error bound theory
[34,35].

In [8], the paper shows a systematic comparison of several Augmented Lagrangian
algorithms including the exponential penalty function; however, the authors do not
include any analysis related to the boundedness of the penalty parameter sequence.

In this section, we work on the following assumptions.

Assumption 1 The sequence {xk} is generated by the application of theAlgorithm 2.1
and limk→∞ xk = x∗. The functions f and g admit continuous second derivatives in
a neighbourhood of the feasible point x∗.

Let us suppose that the set of indexes of the active constraints at x∗ is A(x∗) :=
{1, . . . , q} and J := {q + 1, . . . , p}. Define the Lagrangian function l(x, μ) :=
f (x) +

∑p

i=1
μi gi (x).

Assumption 2 The gradients {∇g1(x∗), . . . ,∇gq(x∗)} are linearly independent.
Assumption 3 The following second-order sufficient condition for local minimizers
is satisfied at (x∗, μ∗). For all z ∈ T (x∗), z �= 0, zT∇2l(x∗, μ∗)z > 0, where
T (x∗) := {z ∈ R

n :∇gi (x∗)T z = 0, for all i ∈ A(x∗)} is the tangent subspace.
Also, we assume that the strict complementarity condition holds: μ∗

i > 0 for all
i = 1, . . . , q.

Assumption 4 For all i = 1, . . . , p, 0 ≤ μ∗
i < μ̄max

i .
The following Lemma states that if x∗ is a KKT point that verifies Assumption 3,

then x∗ is a local minimizer of the exponential Augmented Lagrangian function
L(x, μ∗, ρ) for all ρ ≥ ρ̄. This result was proved effective for the quadratic Aug-
mented Lagrangian function in the literature [5,7].

Lemma 3.1 Suppose that x∗ is a Karush–Kuhn–Tucker point of (1) and that Assump-
tion 3 holds. Then, there exists ρ̄ > 0 such that, for all ρ ≥ ρ̄, ∇2

xx L(x∗, μ∗, ρ) is
positive definite.
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Proof By the definition of L(x, μ, ρ) and the assumption, we have that

∇2
xx L(x∗, μ∗, ρ) = ∇2

xx l(x
∗, μ∗) + ρ

∑

i∈A(x∗)
μ∗
i ∇gi (x

∗)∇gi (x
∗)T .

Let us define P := ∇2
xx l(x

∗, μ∗) and Q :=
∑

i∈A(x∗)
μ∗
i ∇gi (x

∗)∇gi (x
∗)T . Then,

for all z �= 0, z ∈ T (x∗) we have that zT Qz =
∑

i∈A(x∗)
μ∗
i ‖∇gi (x

∗)T z‖2 = 0 and,

using Assumption 3, we obtain that zT Pz > 0. Thus, using Lemma 1.25 from [6] we
obtain the desired result. ��

Belowwe give some results needed to provide estimates of an approximate solution
of L(x, μ, ρ) to x∗ and the corresponding Lagrange multiplier estimate to μ∗. These
ideas are further developed in [5,23].

Lemma 3.2 Suppose thatAssumptions2and3hold.Consider ρ̄ > 0as in the previous
Lemma. Then, for all r ∈ [0, 1

ρ̄
], the following matrix

H =
⎛

⎜⎝
∇2
xx l(x

∗, μ∗) [∇g(x∗)]A(x∗) [∇g(x∗)]J
[∇g(x∗)]TA(x∗)

[
− r

μ∗
]

A(x∗)
0

0 0 I

⎞

⎟⎠

is non-singular.

Proof If H is singular, there exists x̄ = (y, z) ∈ R
n+p, (y, z) �= 0 such that Hx̄ = 0.

Let us consider first the case 0 < r ≤ 1
ρ̄
. Then, z j = 0 for j = q + 1, . . . , p and

∇2
xx l(x

∗, μ∗)y +
p∑

i=1

∇gi (x
∗)zi = 0 (10)

∇gi (x
∗)T y − r

μ∗
i
zi = 0 i = 1, . . . , q. (11)

By replacing zi from (11) in (10), we obtain that

yT∇2
xx l(x

∗, μ∗)y +
q∑

i=1

μ∗
i

r
||∇gi (x

∗)T y||2 = 0.

Therefore, yT∇2
xx L(x∗, μ∗, 1

r )y = 0 for all r = 1
ρ
such that ρ ≥ ρ̄, and using the

previous Lemma, it must be true that y = 0. Therefore, by the definition of z, it must
be z = 0 obtaining a contradiction.

The case r = 0 can be proved using similar arguments. ��
Lemma 3.3 Suppose that Assumptions 1–3 hold. Then, there exist differentiable func-
tions x(μ, r, α) and y(μ, r, α) such that for r > 0:
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1. The functions are solutions of the following system

∇ f (x) +
p∑

i=1

yi∇gi (x) = α

gi (x) − rln

(
yi
μi

)
= 0, i = 1, . . . , q

yi − μi e
gi (x)
r = 0, i = q + 1, . . . , p.

2. If r , ‖α‖ and ‖μ − μ∗‖ are small enough, then:
(a) ‖x(μ, r, α) − x∗‖ ≤ M max{r‖μ − μ∗‖, ‖α‖}
(b) ‖y(μ, r, α) − μ∗‖ ≤ M max{r‖μ − μ∗‖, ‖α‖}.

Proof For ρ > 0, let us consider the following system of equations in the variables
(x, y, μ, ρ, α) ∈ R

n+p+p+1+n :

∇ f (x) +
p∑

i=1

yi∇gi (x) − α = 0

gi (x) − 1
ρ
ln(

yi
μi

) = 0 i = 1, . . . , q
y j − μ j eρg j (x) = 0 j = q + 1, . . . , p.

By defining the variable r = 1
ρ
, we obtain the system

Θ(x, y, μ, r, α) :=

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

∇ f (x) + ∑p
i=1 yi∇gi (x) − α

g1(x) − rln(
y1
μ1

)

...

gq(x) − rln(
yq
μq

)

yq+1 − μq+1e
gq+1(x)

r

...

yp − μpe
gp (x)
r

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0.

By Assumption 2, for 0 < r ≤ 1
ρ̄
we have that Θ(x∗, μ∗, μ∗, r, 0) = 0. Moreover,

the Jacobian matrix of Θ with respect to (x, y) computed at (x∗, μ∗, μ∗, r, 0) is

the matrix: H =
⎛

⎝
∇2
xx l(x

∗, μ∗) [∇g(x∗)]A(x∗) [∇g(x∗)]J
[∇g(x∗)]TA(x∗) [− r

μ∗ ]A(x∗) 0
0 0 I

⎞

⎠ . By Lemma 3.2, this

matrix is non-singular for all r ∈ [0, 1
ρ̄
], and by continuity, the norm of its inverse

is bounded in a neighbourhood of (x∗, μ∗, μ∗, r, 0) uniformly. By using the implicit
function theorem, there is a neighbourhoodVr of (μ∗, r, 0) and differentiable functions
x(μ, r, α), y(μ, r, α) such that, for all (μ, r, α) ∈ Vr , 0 < r ≤ 1

ρ̄
:
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∇ f (x(μ, r, α)) +
p∑

i=1

∇g(x(μ, r, α))y(μ, r, α) − α = 0

gi (x(μ, r, α)) − rln

(
yi (μ, r, α)

μi

)
= 0 i ∈ A(x∗)

y j (μ, r, α) − μ j e
g j (x(μ,r,α))

r = 0 j ∈ J.

By using the mean value theorem, there is c ∈ R
m+2 such that

‖y(μ, r, α) − μ∗‖ ≤ ‖∇μy(c)‖‖μ − μ∗‖ + ‖∇r y(c)‖r + ‖∇α y(c)‖‖α‖. (12)

By computing the first derivatives of Θ(x(μ, r, α), y(μ, r, α), μ, r, α) = 0 with
respect to (μ, r, α), we have that there is a constant C such that
‖∇α y(c)‖ ≤ C‖∇αΘ‖, ‖∇r y(c)‖ ≤ C‖∇rΘ‖ and ‖∇μy(c)‖ ≤ C‖∇μΘ‖. Let us
find bounds for the quantities ‖∇μΘ‖, ‖∇rΘ‖ and ‖∇αΘ‖.
(i) ∇αΘ(x, y, μ, r, α) = (−I 0 0), thus, ‖∇αΘ‖ = 1

(ii) ∇μΘ(x, y, μ, r, α) = (0 [ r
μ
]A(x∗) [−e

g(x)
r ]J ). Then, if j ∈ J , for r > 0 small

enough, |e
g j (x)
r | ≤ m1r , and if i ∈ A(x∗), then μ∗

i > 0 and for all μi near μ∗
i

and we have that | r
μi

| ≤ m2r . Therefore, ‖∇μΘ‖ ≤ mr .

(iii) ∇rΘ(x, y, μ, r, α) =
(
0 [−ln(

y
μ
)]A(x∗) [μe

g(x)
r

r2
]J

)
. Then, if j ∈ J , for

r > 0 small enough, |μ j e
g j (x)
r g j (x)
r2

| ≤ m3μ j , and if i ∈ A(x∗), we have that
| − ln(

yi
μi

)| ≤ m4|yi − μi |. Therefore, we obtain the bound:

‖∇rΘ‖ ≤ m̃max

{
max

i∈A(x∗)
{|yi − μi |},max

j∈J
{μ j }

}
≤ m̃(‖y − μ‖ + ‖μ − μ∗‖). Then,

replacing the bounds obtained in (i)–(iii) in (12) there is M̃ > 0 such that ‖y(μ, r, α)−
μ∗‖ ≤ M̃(2r‖μ−μ∗‖+r‖y(μ, r, α)−μ∗‖+‖α‖), and by choosing r small enough
such that 1 − r M̃ > 0, we have that

‖y(μ, r, α) − μ∗‖ ≤ M̃

1 − r M̃
(‖α‖ + 2r‖μ − μ∗‖).

Then, there is a neighbourhood N of (μ∗, r, 0) such that, for all (μ, r, α) ∈ N ,

‖y(μ, r, α) − μ∗‖ ≤ M max{r‖μ − μ∗‖, ‖α‖}

as we wanted to prove.
By using the same ideas, it is possible to prove 2(a). ��

Proposition 3.1 Suppose that Assumptions 1 and 2 hold.

1. Then, lim
k→∞ μk+1 = μ∗.

2. Suppose that also Assumption 4 holds, then μk = μ̄k for k large enough.
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Proof 1. By Assumption 2, the matrix ∇gA(x∗) := [∇g(x∗)]A(x∗) has full rank, and
since x∗ is a KKT point, μ∗

A = (∇gA(x∗)T∇gA(x∗))−1(−∇gA(x∗)T∇ f (x∗)). By
using the stopping criterion, we have that

∇ f (xk) + ∇gA(xk)μk+1
A = δk −

∑

i /∈A(x∗)
μk+1
i ∇gi (x

k).

ByAssumption 2, let us consider k large enough such that {∇gi (xk)}i∈A(x∗) is linearly
independent. Then, as we did before we have that

μk+1
A =(∇gA(xk)T∇gA(xk))−1

[
∇gA(xk)T

(
δk−

∑

i /∈A(x∗)
μk+1
i ∇gi (x

k)−∇ f (xk)

)]
.

By taking limits in the last equality and using that δk → 0 and Proposition 2.1, we
have that lim

k→∞ μk+1
A = (∇gA(x∗)T∇gA(x∗))−1(−∇gA(x∗)T∇ f (x∗)) = μ∗

A.

If i /∈ A(x∗), the result follows from Proposition 2.1.
2. It is a consequence of item 1, Assumption 4 and the definition of μ̄k+1. ��

Observe that, as opposed to the quadratic case, the term
∑

i /∈A(x∗)
μk+1
i ∇gi (x

k)—

mentioned in Remark 2.1—appears in the proof of the previous proposition.

Corollary 3.1 Suppose that Assumptions 1–3 hold and assume that
lim
k→∞ ρk = ∞. Define αk ∈ R

n such that ‖αk‖ ≤ εk . Then, there exists M > 0 such

that, for all k ∈ N, ‖xk − x∗‖ ≤ M max

{
‖μ̄k−μ∗‖

ρk
, εk

}
.

And, if μk+1 = μ̄keρk g(xk ),

‖μk+1 − μ∗‖ ≤ M max

{‖μ̄k − μ∗‖
ρk

, εk

}
. (13)

Proof Let us consider k0 ∈ N such that ρk ≥ ρ̄ for all k ≥ k0 for ρ̄ defined in
Lemma 3.1.

Since the sequence {μ̄k} is bounded and ‖αk‖ → 0, there exists k1 ≥ k0 such that
‖αk‖ and 1

ρk
‖μ̄k − μ∗‖ are small enough for all k ≥ k1.

By Lemma 3.3, define (xk, yk) := (x(μ̄k, 1
ρk

, αk), y(μ̄k, 1
ρk

, αk)). Then,

∇ f (xk) +
∑p

i=1
yki ∇gi (x

k) = αk, and by using that ‖αk‖ ≤ εk , we obtain that

‖xk − x∗‖ ≤ M max

{‖μ̄k − μ∗‖
ρk

, εk

}
.

If yk = y(μ̄k, 1
ρk

, αk), by item 1 of Lemma 3.3 we have that yk = μ̄keρk g(xk ) and

then yk = μk+1. Thus, we obtain that ‖μk+1 − μ∗‖ ≤ M max

{
‖μ̄k−μ∗‖

ρk
, εk

}
as we

wanted to prove. ��
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Theorem 3.1 Suppose that Assumptions 1–4 are satisfied by the sequence generated
by Algorithm 2.1. In addition, assume that there exists a sequence ηk → 0 such that,
for all k ∈ N,

εk ≤ ηk‖σ k‖. (14)

Then, the sequence of penalty parameters {ρk} is bounded.
Proof Assume, by contradiction, that limk→∞ ρk = ∞. Let us consider k1 ≥ k0 large
enough such that, for item 2 of Proposition 3.1, μ̄k = μk for all k ≥ k1.

By the definition of σ k and using Corollary 3.1, we have that, for all k ≥ k1,

‖σ k‖ =
∥∥∥∥
μk+1 − μk

ρk

∥∥∥∥ ≤
∥∥∥∥
μk+1 − μ∗

ρk

∥∥∥∥ +
∥∥∥∥
μ∗ − μk

ρk

∥∥∥∥ ≤

≤ M

ρk
max

{‖μk − μ∗‖
ρk

, εk

}
+ ‖μk − μ∗‖

ρk
.

We consider two possibilities:

1. If max

{
‖μk−μ∗‖

ρk
, εk

}
= ‖μk−μ∗‖

ρk
, then ‖σ k‖ ≤

(
M
ρk

+ 1

)
‖μk−μ∗‖

ρk
.

2. If max

{
‖μk−μ∗‖

ρk
, εk

}
= εk , then ‖σ k‖ ≤ M

ρk
ηk‖σ k‖ + ‖μk−μ∗‖

ρk
, and we have

that, for k large enough such that ρk − Mηk > 0, the inequality: ‖σ k‖ ≤
ρk

ρk−Mηk

‖μk−μ∗‖
ρk

, holds.

Thus, for k large enough such that ρk − Mηk > 0 we obtain that

‖σ k‖ ≤ ‖μk − μ∗‖
ρk

max

{
M

ρk
+ 1,

ρk

ρk − Mηk

}
. (15)

For another side, from (13)–(14): ‖μk − μ∗‖ ≤ M

(
‖μk−1−μ∗‖

ρk−1
+ ηk−1‖σ k−1‖

)
.

Thus,
‖μk−1 − μ∗‖

ρk−1
≥ ‖μk − μ∗‖

M
− ηk−1‖σ k−1‖. (16)

By definition of σ k−1 and considering (16),

‖σ k−1‖ = ‖μk − μk−1‖
ρk−1

≥ ‖μk − μ∗‖
M

− ηk−1‖σ k−1‖ − ‖μk − μ∗‖
ρk−1

.

Therefore, (1 + ηk−1)‖σ k−1‖ ≥ ‖μk − μ∗‖
(

1
M − 1

ρk−1

)
≥ 1

2M ‖μk − μ∗‖, and we

have that ‖μk − μ∗‖ ≤ 2M(1 + ηk−1)‖σ k−1‖.
Thus, by (15), ‖σ k‖ ≤ 2M(1+ηk−1)

ρk
max

{
M
ρk

+ 1, ρk
ρk−Mηk

}
‖σ k−1‖.

If we assume that ρk → ∞ and ηk → 0, there exists k2 such that

123



J Optim Theory Appl

2M(1+ηk−1)
ρk

max{ M
ρk

+ 1, ρk
ρk−Mηk

} < τ for all k ≥ k2 and this shows that ‖σ k‖ ≤
τ‖σ k−1‖,∀k ≥ k2. So, ρk+1 = ρk for all k ≥ k2 contradicting the hypothesis. Thus,
{ρk} is bounded. ��
Remark 3.1 The proof of the previous theorem can be deduced from the ideas pre-
sented in [5], adapted to the exponential penalty function. It is worth noting that the
authors’ method of proof in [5]—to obtain the same thesis—is based on the reduction
to the original problem to a problemwith only equality constraints by using slack vari-
ables (see Section 5.2 in [5]). This technique cannot be adopted when the exponential
penalty function is considered for inequality constraints.

4 Illustrative Examples

The objective of this section is to illustrate the behaviour of the exponentialAugmented
Lagrangian algorithm introduced in this paper by providing three small constrained
problems. The main idea is to show that there are specific problems which the expo-
nential penalty function can be more useful than the quadratic one to find local/global
minimizers.

We have considered the ALGENCAN solver from TANGO software in www.
ime.usp.br/~egbirgin/tango/. ALGENCAN is a Fortran code for general nonlinear
programming which is able to solve extremely large size problems with moderate
computer time. The general algorithm is of Augmented Lagrangian type; it is based
on the multiplier method described in [5] which uses the quadratic penalty function.

We have introduced modifications of some subroutines of ALGENCAN with the
objective of considering the exponential penalty function and its derivatives instead
of the quadratic ones.

Other modifications of ALGENCAN that we have introduced are: the multiplier
estimate is computed using formula (3) and the parameter measuring the progress in
terms of infeasibility and complementarity is (5).

In [4,5], the infeasibility–complementarity measure for the quadratic case was σ k
j

= max

{
g j (xk),− μ̄k

j
ρk

}
, and in the experiments in [9], the measure considered was

σ k
j = max{g j (xk),−μ̄k

j }, differently from the one used to obtain the convergence
results, cited in (9).

As we have defined in Step 3 of Algorithm 2.1, the penalty parameter for inequality
constraints is updated according to the following criteria: if ‖σ k‖ ≤ τ‖σ k−1‖ define
ρk+1 = ρk , else define ρk+1 = γρk , where τ < 1, γ > 1.

We have adopted the default parameters of ALGENCANwith respect to maximum
number of inner and outer iterations, stopping criteria, precision of subproblems and
other algorithmic parameters of subproblem solver.Also,we have used the samevalues
for the parameters μ1, ρ1, τ ,γ and μ̄max . The modified version of ALGENCAN with
the use of the exponential penalty function was called ALExp.

The experiments were run on a personal computer with INTEL (R) Core (TM) 2
Duo CPU E8400 at 3.00 GHz and 3.23 GB of RAM.
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Example 4.1 For x ∈ R
2, we consider the following indefinite quadratic problem:

minimize
(
x21 − x22

)
s. t. ‖x‖2 ≤ 1.

By using the initial point (0.5, 0), ALGENCAN converges to the interior saddle point
(0, 0) in one iteration, whereas ALExp converges to the global minimizer (0,−1) in
two iterations.

Example 4.2 For x ∈ R
2, we consider the following problem (Problem 19 in [36]):

minimize
(
x41 − 14x21 + 24x1 − x22

)

s. t. −x1 + x2 − 8 ≤ 0, x2 − x21 − 2x1 + 2 ≤ 0
−8 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 11.

By using the initial point (0, 1), ALGENCAN converges to the saddle point (2, 0),
with the functional value f = 8.00, in two iterations, whereas ALExp converges to
the local minimizer (2.702, 10.702), with the functional value f = −98.597, in
10 iterations.

We have observed a similar behaviour considering other different initial points, for
example: (0, a) with a = 2, 3, . . . , 7.

We also consider the following example to show the necessity to define methods
based on second-order information in order to obtain global minimizers instead of
local or saddle points.

Example 4.3 For x ∈ R
2, we consider the following problem (Problem 1 in [36],

Example 2 in [37]):

minimize (−x1 − x2)
s. t. x1x2 ≤ 4, 0 ≤ x1 ≤ 6, 0 ≤ x2 ≤ 4.

For this problem, we have observed that by using the initial feasible point (2, 2), both
methods stay in this saddle point.

5 Perspectives

The analysis we presented in this paper can be extended in several fields of interest. For
instance, it is possible to verifywhetherwe can replace the exponential penalty function
by more general penalty functions, provided that they agree with some conditions the
exponential function verifies. This extension, although less direct, is also worthy to
investigate.

Example 4.3 shows the situation in which a saddle point is found considering
methods based on first-order information. In our opinion, this example is an important
motivation to study the second-order approach of the Augmented Lagrangian algo-
rithm. Since the Lagrangian function of the problem in Example 4.3 has a negative
curvature direction in (2, 2), we could use this information—as it was suggested in
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[37]—to move to a stationary point verifying second-order necessary optimality con-
ditions. This will be the subject of future research in the context of non-quadratic
twice differentiable penalty functions. We believe that this study can be the key to
define a method to solve optimization problems with degenerate or complementarity
constraints. Our expectations for a good behaviour of these methods on degenerate
or complementarity constraints problems are based on the attractive global and local
convergence properties that the Augmented Lagrangian methods have.

Finally, since Augmented Lagrangian methods proceed by sequential resolution of
simple (generally unconstrained or box-constrained) problems and they are useful in
different contexts in the optimization field, we are interested in using the technique for
solving the smooth multiobjective problem. As far as we know, the investigation of
this approach for constrained multicriteria minimization problems is still very limited.

6 Conclusions

We have proposed an Augmented Lagrangian algorithm based on the exponential
penalty function for inequality constrained optimization. One potential feature of our
algorithm is that it possesses global convergence to first-order stationary points under
the weak constant positive generator constraint qualification (CPG). We have proved
that the proposed algorithm guarantees that the penalty parameter remains bounded
away from zero; this happens when it is applied to solve problems where the linear
independence constraint qualification, the strict complementarity and the second-order
sufficient optimality condition are satisfied.

Acknowledgments The authors are grateful to the anonymous referees for their contribution to the final
preparation of the paper.
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