
Physica A 277 (2000) 146–156
www.elsevier.com/locate/physa

Fisher information and quantum systems with
position-dependent e�ective mass

A. Puentea , A.R. Plastinoa;b;c , M. Casasa , F. Garciasa , A. Plastinoa;c;d ;∗
aDepartament de F ��sica, Universitat, de les Illes Balears, E-07071 Palma de Mallorca, Spain

bFaculty of Astronomy and Geophysics, National University La Plata, C.C. 727,
1900 La Plata, Argentina

cPhysics Department, National University La Plata, C.C. 727, 1900 La Plata, Argentina
dArgentine National Research Concil (CONICET), Argentina

Received 30 September 1999

Abstract

We show that e�ective masses in nonrelativistic quantum mechanics arise in a natural fashion
from the Frieden and So�er’s Principle of Extremal Information (EPI) when the mean values
of operators involving the momentum p̂ and exhibiting the form p̂ f(x̂) p̂ are included as con-
straints. A position-dependent e�ective mass, which is currently used in the literature as a simple
model for diverse phenomena in quantum physics, appears after extremalizing Fisher’s informa-
tion measure with the above constraints. c© 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Frieden and So�er have recently shown that many important di�erential equations
of Physics can be obtained from a general variational principle, the extreme physical
information (EPI), which �xes both the Lagrangian and the physical constants of each
scenario [1,2]. The Information here is that the version of the one originally introduced
in 1925 by Fisher [3–5] (to be denoted as FIM) that applies for translation families,
i.e., refers to a measure of the inverse uncertainty in determining a position parameter
by a maximum likelihood estimation [6]. Applications of Fisher information to diverse
problems in theoretical physics have received great impulse through the pioneering
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work of Frieden, So�er, Silver, Abe, Nikolov, Reginatto, and others [1,2,6–19], who
have unveiled many of its physically relevant properties and clari�ed its relation to
Shannon’s logarithmic information measure.
Frieden and coworkers have shown that fundamental equations of Physics can be

traced back to FIM-related extremizing procedures, while Silver has introduced an
interesting inference approach that, via a clever connection between Shannon’s infor-
mation measure and Fisher’s one, allows for the conclusion that a judicious sort of
“interpolation” between them yields deep and illuminating insights into the structure
of quantum statistical mechanics. Reginatto [16,17] has shown that Madelung’s [20,21]
hydrodynamical formulation of both the time dependent Schr�odinger equation and the
Pauli equation can be derived using the principle of extremum Fisher information. It is
worth mentioning that E. Schr�odinger’s �rst attempt to derive his celebrated equation
from an appropriate Lagrangian was based on the extremalization of a functional that,
in retrospect, can be seen to be essentially Fisher Information, although there seems to
be no record that he was aware of Fisher’s tenets at the time [22].
Given a probability distribution �(x); x∈R, Fisher’s information measure (for trans-

lation families), expressed as an expectation value over �, adopts the appearance

I =

〈(
1
�
d�
dx

)2〉
: (1)

The fact that a systematic procedure that involves an I -extremization principle with
respect to a probability density �(x) gives rise to the most important di�erential
equations of Physics is discussed at length in Refs. [1,2]. There the authors have
presented the EPI in terms of a Fisher information transfer process involving an agent
akin to the celebrated Maxwell demon [1,2].
In the particular Schr�odinger’s equation instance, if for simplicity’s sake we restrict

our attention here to the one-dimensional case of a particle of mass m that moves in a
potential well V (x), we deal, for bound states, just with real wave functions and can
write

 2(x) = �(x) : (2)

Now, if one assumes the knowledge of a set of, say, the expectation values of N
commuting operators Ôj(x); j = 1; : : : ; N [6], a constrained extremization of (1) that
respects the assumedly known values

〈Ô1(x)〉; : : : ; 〈ÔN (x)〉 ; (3)

leads to a Schr�odinger-like equation in which the potential well acquires the form

V (x) =−
N∑

j=1


jÔj ; (4)

where the 
’s are Lagrange’s multipliers that arise in the FIM extremizing process [6].
What happens if, additionally, one a priori knows the expectation values of observ-

ables that involve the momentum operator p̂? Such a situation has not been thus far
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addressed, as far as we know. Up to now all applications of the Frieden–So�er vari-
ational principle to quantum mechanics were based on the assumption that the only
available information is given by the expectation values of functions of the coordi-
nate operator x̂ alone. However, from a physical point of view, the mean value of
observables involving the momentum operator p̂ are as legitimate input information as
are the functions of x̂. There is no fundamental reason for restricting the discussion
of the principle of extreme information to such a limited kind of prior information.
We show here that interesting consequences can be traced to the foreknowledge of
these additional pieces of information. We discuss their role in detailed fashion in the
next section. Some applications are discussed in Section 3, and, �nally, conclusions
are drawn in Section 4.

2. The constrained Fisher information extremization

Consider now the set of operators

Ĉi =
1
2m

p̂fi(x̂)p̂; i = 1; : : : ; M ; (5)

and assume we add, to the set Ôj (j = 1; : : : ; N ) discussed in the preceding section
(cf. (3)), the foreknowledge of the set of expectation values 〈Ĉi〉 (associated multipliers
�i). The associated variational problem involves the Lagrangian L

L=
˝2
2m

∫
dx
(
d 
dx

)2
−

N∑
j=1


j

∫
dx  2Ôj(x)

− ˝
2

2m

M∑
i=1

�i

∫
dx fi(x)

(
d 
dx

)2
− E

∫
dx  2 : (6)

The �rst term is the Fisher information measure for translation families while the
second and third ones impose appropriate constraints via the Lagrange multipliers 
j
and �i (a partial integration step is needed in the case of the �-integrals). The last
term represents the normalization condition, with Lagrange multiplier E. Extremizing
(6) with these constraints leads now to

− ˝2
2m∗(x)

d2 (x)
dx2

− d
dx

(
˝2

2m∗(x)

)
d (x)
dx

+ V = E ; (7)

which can be regarded as a Schr�odinger’s equation only if we are willing to consider
a position-dependent e�ective mass m∗(x), which constitutes indeed a well known and
useful model for the description of many physical problems.
In particular, the e�ective mass approximation is an important tool for the de-

termination of electronic properties in semiconductors [23] and quantum dots [24].
The concept of e�ective mass is also relevant in connection with the popular energy
density functional (EDF) treatment of the quantum many body problem [25]. In the
EDF approach the non-local terms of the associated potential can be expressed in
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terms of a position-dependent e�ective mass m∗(x). The ensuing formalism is exten-
sively used in nuclei [25], quantum liquids [26], 3He clusters [27], and metal clusters
[28].
The e�ective mass in (7) adopts the appearance

˝2
2m∗(x)

=
˝2
2m

(
1−

M∑
i=1

�ifi(x)

)
; (8)

while, as stated above,

V =−
N∑

j=1


jÔj : (9)

By recourse to the standard transformation [25],

 =

√
m∗(x)
m

u(x) ; (10)

one is in a position to write down a Schr�odinger equation

− ˝2
2m

d2u(x)
dx2

+ V (x; E)u(x) = Eu(x) ; (11)

that involves a local equivalent potential V (x; E),

V (x; E) =
m∗(x)
m

[
V (x)− (Q′)2

4Q
+
1
2
Q′′
]
+
(
1− m∗(x)

m

)
E ; (12)

where the primes indicate derivatives with respect to x and

Q =
˝2

2m∗(x)
: (13)

Some comments concerning our particular choice (5) for the observables Ci are in
order before proceeding with the applications of the above formalism. Operators of the
form p̂fi(x̂)p̂ are among the simplest hermitic operators quadratic in p. Alternative
choices like

C̃i = p̂2fi(x̂) + fi(x̂)p̂
2 (14)

are also possible, leading to a Schr�odinger equation with e�ective mass exhibiting es-
sentially the same form (7). Our particular choice (5) for the momentum-dependent
constraints has, however, an appealing formal property. When no prior knowledge of
expectation values of operators depending only on x̂ is available, Schr�odinger equa-
tions with no potential energy terms are obtained. Operators linear in p̂ do not lead
to a Schr�odinger equation with an e�ective mass. A kinetic energy term with a vector
potential-like contribution is obtained instead (this can be appreciated more clearly in
a three dimensional setting). On the other hand, constraints associated with observ-
ables involving cubic or larger powers of the momentum would originate eigenvalue
di�erential equations with higher than second spatial derivatives.
In the following section we show that both the Lagrange multipliers 
j and �i can

be selfconsistently determined according to the methodology detailed in Refs. [29,30].
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Good results are obtained. The addition of information concerning operators (5) is seen
to improve on the quality of inferred wave functions obtained with the sole knowledge
of the operators Ôj. One also infers the e�ective mass.

3. Applications

3.1. Morse potential

We tackle, as a �rst example, the Morse potential, used in modelling the interaction
of diatomic molecules [31,32]

V (x) = A(1− e−x)2 (15)

with A=40. We assume the foreknowledge of the expectation values 〈x̂m〉, m=1; : : : ; 4
and 〈Ĉi〉, i = 1; 2, with f1 = exp(−x2) and f2 = x exp(−x2). The results are depicted
in Fig. 1. The e�ective mass that results from the foreknowledge of the 〈Ĉi〉 is also
displayed in Fig. 2. Assuming one particle per level and N = 5 occupied levels,
the inferred density obtained with the informational supplement represented by the
expectation values of the operators Ĉi improves upon the density obtained assuming
only the foreknowledge of xm-mean values. A similar assertion applies in the case of
inferred xm-moments (see Table 1).

Fig. 1. Morse potential with �ve occupied states (see text for details). Comparison between the exact density
(continuous line) and two inferred ones by assuming (i) only the knowledge of x-space expectation values
(dashed line) and (ii) also the knowledge of p-expectation values (dot–dashed line).
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Fig. 2. Inferred e�ective mass for the Morse potential obtained by assuming the knowledge of the expectation
values of two p-space operators (dot–dashed line) as compared to the bare mass (continuous line).

Table 1
Morse potential. Inferred moments corresponding to N=5 occupied states.
The values 〈xm=N〉 listed under (I1) correspond to predictions made with-
out taking into account momentum space information. Those under (I2) do
take into account that information. For the sake of comparison, the (exact)
quantal results are also displayed

Quantal I1 I2

〈x5〉 3.328 3.310 3.324
〈x6〉 6.178 6.082 6.154
〈x7〉 11.98 11.58 11.87
〈x8〉 24.16 22.78 23.74
〈x9〉 50.53 46.03 49.01
〈x10〉 109.3 95.27 104.1

3.2. Harmonic oscillator

Let us face now a di�erent situation, one in which an e�ective mass is involved
from the very beginning in the description of the system under study. Consider then
an harmonic oscillator potential with a position-dependent e�ective mass of the form

m∗(x)
m

=
�+ x2

1 + x2
: (16)

We assume the foreknowledge of the expectation values of x̂2 and of some opera-
tors Ĉi. As shown in Fig. 3, adding only 〈Ĉ1〉 (with f1 = exp(−x2)) to the knowledge
of 〈x̂2〉 one obtains a quite reasonable �t of the density for a system with N = 5
occupied levels. Note that the (exact) quantal results are obtained by numerically
solving (11). Assuming the knowledge of 〈Ĉi〉; i = 1; : : : ; 4, with f1 = exp(−0:1x2);
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Fig. 3. Harmonic oscillator potential with a position-dependent e�ective mass given by Eq. (16) (�= 0:25).
The exact density (continuous line) is compared to two inferred ones by assuming the knowledge of (i)
〈Ĉ1〉 (dashed line) and (ii) 〈Ĉ1〉; : : : ; 〈Ĉ4〉 (dot–dashed line).

Fig. 4. Inferred e�ective masses for the potential of Fig. 3 are compared to the exact one (see the text and
the caption of Fig. 3 for more details).

f2=exp(−x2); f3=exp(−2x2) and f4=exp(−3x2), the inferred density and the (exact)
quantal one coincide within the �gure’s scale. The inferred e�ective mass generated by
the informational supplement represented by the 〈Ĉ〉 is also displayed. The agreement
with the mass given by (16) improves as the amount of suppletory information grows
(see Fig. 4).
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Table 2
Harmonic oscillator potential with a position-dependent e�ective mass given by
Eq. (16) (� = 0:25). Inferred moments 〈xm=N〉 for N = 5 occupied states
obtained using input information concerning both x̂2 and Ĉ1 are listed under
(I1). The predictions made using input information concerning x̂2 and Ĉ1; : : : ; Ĉ4
are listed under (12). For the sake of comparison, the (exact) quantal results
are also displayed

Quantal I1 I2

〈x4〉 22.643 22.737 22.648
〈x6〉 182.90 184.65 183.04
〈x8〉 1706.1 1736.2 1709.1
〈x10〉 17766.0 18271.0 17825.0

The inferred moments 〈xm〉 are compared to the exact quantal results in Table 2.
The results are of a rather good quality.

3.3. In�nite square well

As an example of an steep potential we consider now the in�nite square well

V (x) =
{
0 if − 16x61
∞ otherwise

(17)

with a position-dependent e�ective mass of the form

m∗(x)
m

=
1

1 + exp(−10x2) : (18)

We assume the foreknowledge of the expectation values of the operators Ĉn, with
fn = exp(−nx2) and n = 2; 3; 5; and 7. Two di�erent combinations are used, namely,
〈Ĉ2〉 and 〈Ĉ5〉, on the one hand, and 〈Ĉ2〉; 〈Ĉ3〉, 〈Ĉ5〉, and 〈Ĉ7〉, on the other. The
ensuing results corresponding to the inferred densities and the inferred masses for a
system with N = 5 occupied levels are depicted in Figs. 5 and 6. In Table 3 the
predictive power of the approach is tested with reference to some moments. Good
agreement is obtained.

Table 3
In�nite square well with a position-dependent e�ective mass given by Eq. (18).
Inferred moments 〈xm=N〉 for N = 5 occupied states obtained using input
information related to Ĉ2 and Ĉ5 are listed under (I1). Those evaluated using
input information related to Ĉ2; Ĉ3; Ĉ5, and Ĉ7 are listed under (I2). For the
sake of comparison, the (exact) quantal results are also displayed

Quantal I1 I2

〈x2〉 0.30428 0.30380 0.30427
〈x4〉 0.15507 0.15450 0.15506
〈x6〉 0.09293 0.09227 0.09293
〈x8〉 0.06060 0.05994 0.06059
〈x10〉 0.04171 0.04110 0.04171
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Fig. 5. In�nite square well with a position-dependent e�ective mass given by Eq. (18). The exact density
(continuous line) is compared to two inferred ones by assuming the knowledge of (i) 〈Ĉ2〉 and 〈Ĉ5〉 (dashed
line) and (ii) 〈Ĉ2〉; 〈Ĉ3〉; 〈Ĉ5〉, and 〈Ĉ7〉 (dot–dashed line).

Fig. 6. Inferred e�ective masses for the potential of Fig. 5 are compared to the exact one (see the text and
the caption of Fig. 5 for more details).
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The (exact) quantal density (obtained by solving (11)) and the inferred one practi-
cally coincide if enough information is available. The inferred e�ective mass generated
by the informational supplement represented by the 〈Ĉ〉 is also displayed. The corre-
sponding �t improves as one increases the information supply.

4. Conclusions

We have shown that assuming the knowledge of the expectation values of some oper-
ators involving the momentum, a constrained extremalization of the Fisher information
measure leads to a Schr�odinger equation that involves an e�ective mass.
By recourse to an appropriate transformation, this Schr�odinger equation with e�ective

mass can be recast as an ordinary one (i.e., with constant mass), but endowed with a
local (albeit energy dependent) equivalent potential [33]. The energy dependence of the
local equivalent potential (see Eq. (12)) actually entails nonlocal contributions to the
system’s potential energy. Invoking the Frieden–So�er variational principle, one could
advance the idea that including operators of the form p̂ f(x̂) p̂ among the relevant
constraints is tantamount to introducing nonlocal e�ects.
The results reported here may be regarded, perhaps, as yet another hint pointing

towards Wheeler’s view that an informational content underlies all things physical
[34,35].
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