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The capacity of dark septate endophytes (DSE; Phialocephala turiciensis, Acephala applanata, P.

glacialis and Phaeomollisia piceae) to solubilize inorganic phosphate (P) and to mineralize the

organic form was studied. We analysed the effect of DSE strains on P uptake by Trifolium

repens in the presence or absence of arbuscular mycorrhizal fungi (AMF). Phosphatases

were observed both in the absence of the host plant and the organic resource, showing that

the P mineralization process is not induced by the enzyme substrate or the host. DSE were

more efficient at mineralizing organic P. Independently of the presence of AMF, DSE

increased the pool of P in the soil, with significant differences being found in P levels

among the different DSE. In contrast, plant P uptake was increased by AMF. The P content

of plants increased with the co-inoculation of AMF and P. turiciensis or P. piceae. We

hypothesize a close relationship between DSE and AMF in relation to P availability and

uptake in plants. Whereas DSE increase the pool of P in the rhizosphere, AMF are

responsible for P transfer to the host, with co-colonization of plants by DSE and AMF

showing a synergistic outcome.

ª 2015 Elsevier Ltd and The British Mycological Society. All rights reserved.
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the colonization of roots by fungal endophytes and arbus-
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dwelling fungal symbiont, the so-called dark septate endo-

phytes (DSE), have been identified as one of the most abun-

dant and widespread groups of plant root colonists. DSE
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represent a form taxon composed of many different fungal

species with regularly septate and melanised mycelia

(Jumpponen and Trappe, 1998; Mandyam and Jumpponen,

2005). Among the DSE, species belonging to the genus Phia-

locephala are abundant, showing a world-wide distribution,

and include the well characterized Phialocephala fortinii e

Acephala applanata species complex (Gr€unig et al., 2008). DSE

have been found to increase or reduce the growth of their

host plants, arousing controversy regarding their symbiotic

roles, and have also been shown to affect plant nutrition and

both phosphate (P) and nitrogen (N) assimilation (Jumpponen

and Trappe, 1998; Jumpponen, 2001; Barrow and Osuna, 2002;

Newsham, 2011). The dual colonisation of plant roots by DSE

and AMF has been recognised since the work of Peyronel

(1924). However, reports showing tripartite interactions

among DSE, AMF and plants are scarce, with previous

authors emphasizing the need for integrating research on

mycorrhizal and fungal root endophytes (Scervino et al.,

2009; Porras-Alfaro and Bayman, 2011; Reininger and

Sieber, 2012). One such study shows that AMF can be influ-

enced by the metabolism of Dreschlera sp., a DSE, with exu-

dates from the latter being found to modulate the

mycorrhizal state in the two stages of the life cycle of the

symbionts (Scervino et al., 2009). During the pre-symbiotic

stage, the DSE modulates AMF growth, promoting hyphal

branching and affecting the development of the host plant

(Scervino et al., 2009). Later on, once the symbiosis with a

host root has been successfully established (the symbiotic

phase), the effect of microbial exudates in the rhizosphere

affects the host plant indirectly, modifying the mycorrhizal

status of the plant (Sampedro et al., 2004; Lioussanne et al.,

2009).

P is an essential and limiting nutrient for plant growth. It

is found in inorganic and organic forms, some of which are

unavailable to plants. Only a few soil fungi are capable of

solubilizing inorganic P sources, a process commonly ach-

ieved through the acidification of the environment by proton

pumping or the release of organic acids. Alternatively, P

release from organic sources can be achieved by the action

of nonspecific phosphomonoesterase enzymes, which are

usually termed phosphatases (Seshadri et al., 2004). Once

free in the soil solution, P is taken up directly by plants and

microbial symbionts, such as DSE and AMF. The AMF

directly allocate P to the plant in the arbuscules. The P

released in the rhizosphere directly affects the plant sym-

biosis and might be involved in DSE-AMF interactions. To

date, there have only been a few studies reporting how

interactions between these micro-organisms change phos-

phatase enzyme activities. These activities may affect the

solubilization and mineralization of P by DSE and its avail-

ability to plants, either directly or mediated by AMF (Barrow

and Osuna, 2002; Osuna and Barrow, 2009). In the present

work, we describe the solubilization and mineralization of

inorganic and organic P sources by four DSE (P. turiciensis, A.

applanata, P. glacialis and Phaeomollisia piceae). Additionally,

we show a positive effect of two of these DSE strains on P

uptake by clover (Trifolium repens). The potentially crucial

influence of DSE-AMF interactions on phosphatase activity

in the rhizosphere is discussed.
Materials and methods

Fungal strains

Stock cultures of the four DSE were maintained on slants of

malt extract agarmediumat 4 �C in darkness andwere used as

inoculum sources. The development of typical DSE structures

with an absence of pathogenic effects have been confirmed for

the four DSE by resynthesis assays with Loliummultiflorum and

Lycopersicum solanum (Schadt et al., 2001). An AMF, Gigaspora

rosea (BEG No. 9), was also used in plant interaction assays. G.

roseawas maintained in open pot systems using a sterile mix-

ture of soil: perlite:vermiculite (1:1:1) as the growth substratum

and Sorghum vulgare as the host under controlled conditions in

a glasshouse (Scervino et al., 2009). Wet sieving was used to

isolate spores ofG. rosea from5gof soil (Gerdemann, 1955). The

spores were sterilized according to Mosse (1962) and used as

pure inoculum in the plant interaction assays.

Measurements of P mineralization and solubilization

Pmineralization and solubilizationwere tested in liquidmedia

according to Scervino et al. (2011). The cultures were main-

tained under controlled conditions (20 �C in darkness) and P

availability was checked as described below (see P measure-

ments). DSE mycelia were macerated with sterile distilled

water (1 ml) to obtain a homogeneous suspension. The

mycelial suspension (100 ml) from each strain was mixed with

National Botanical Research Institute’s Phosphate liquid

medium (200 ml; Nautiyal, 1999) at pH 6.5 (buffer MES), con-

taining glucose (10 g l�1),MgSO4 (0.12 g l
�1), KCl (0.2 g l�1),MgCl2

6H2O (5 g l�1) and (NH4)2SO4 (0.1 g l�1), supplemented with

ampicillin (0.1 g l�1) and amendedwith Ca3(PO4)2 (5 g l
�1) as the

inorganic P source, or sodium phytate (1 g l�1) as the organic P

source. There were five replicates of each treatment. After 28

days, when they had reached stationary phase, each culture

was filtered through a cellulose membrane (0.45 mm) and the

mycelia were oven dried (80 �C) to calculate dry weight. The

supernatant was also collected and frozen at �20 �C until use.

In-plant interaction assays under controlled conditions

Clover plants (T. repens) inoculated with pieces of agar over-

grown by mycelium of DSE from 4 week old in the presence

and absence of G. roseawere cultured in pots (100ml capacity)

with a sterilemixture of soil:perlite (2:1 v:v) andmaintained in

a culture chamber with an incandescent cold light (Sylvania,

400 Em�2 s�1 of 400e700 nm), with 16/8 hr of light/darkness at

25 �C and 50% relative humidity. The pieces of agar containing

DSE and the AMF spores, according to treatments, were placed

3 cm below the clover plants to allow roots contact with fungal

mycelia.

Total C in the growing medium was 12.08 g kg�1, total N

was 1.10 g kg�1, total P was 34.20 mg kg�1. The cationic

exchange capacity of the medium was 13.4 cmol kg�1 and its

pH value was 6.5. Plants were grown for 60 d before being

harvested, when roots and shoots were separated. A fraction

of the roots was retained to measure the frequencies of the



Fig 1 e P release from tribasic calcium phosphate or

sodium phytate to the culture media by DSE in in vitro

assays. Vertical bars denote 95 % confidence intervals.

Values with the same letter are not significantly different

(Tukey’s test; P > 0.05) between DSE. Abbreviations: PT,

Phialocephala turiciensis; AA, Acephala applanata; PG,

Phialocephala glacialis; PP, Phaeomollisia piceae.
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symbionts using the statistical program Mycocalc (http://

www2.dijon.inra.fr/mychintec/Mycocalc-prg/download.html)

according to Newman (1966) and Trouvelot et al. (1986).

P measurements

Soluble P levels in liquid cultures of DSE and extractable sol-

utions from plant material and growth substrates were esti-

mated according to Scervino et al. (2010) using Spectroquant

Phosphate-Test (Art.-Nr. 1.14842 Merck). Extractable solutions

were obtained according to Sadzawka et al. (2007) for plant

material and Self-Davis et al. (2000) for soil-perlite medium.

The soil water-soluble P was estimated using the Water

Extractable Phosphate method (WEP) described by Kovar and

Pierzynski (2009).

Extracellular phosphatase activity

The activities of acid (at pH 5.5) and alkaline (at pH 9.0)

phosphatases were measured using p-nitrophenylphosphate

as the substrate in aliquots from supernatants of 28-d-old

liquid cultures (Pawar and Thaker, 2009) and rhizosphere soil-

perlitemedium fromplant interaction assays (G�omez-Gui~nan,

2004). An enzymatic unit (EU) was defined as the amount of

enzyme produced per gram of dry mycelia that hydrolysed

1 mmol p-nitrophenylphosphate per minute in either 1 ml of

supernatant or 1 g of soil-perlitemedium. P release per EUwas

expressed as mg P EU�1.

Statistical analysis

The data were analysed by one and two way ANOVAs using

Statistica 7.0 software. After normality assumptions were

tested, differences identified by ANOVA were compared with

Tukey’s HSD test.
Results

P transformation and phosphatase activities in cultures

P release and enzymatic activities of solutions weremeasured

without DSE in each experiment. No enzyme activities or

traces of P were found in the media used in any experiments.

P solubilization and mineralization

Liquid cultures amendedwithCa3(PO4)2 or sodiumphytate and

inoculated with each DSE were prepared in order to analyse P

release. No transparency of the liquid cultures was apparent

with the naked eye. However, a low amount of soluble P in

liquid culture was detected by spectrophotometry. Two way

ANOVAshowed significant (P� 0.05) interactions betweenDSE

and P form (organic or inorganic) on P release to the culture

medium. The data showed that DSE were more efficient at

releasing P from phytate (0.11e0.22 mg PO4
�2 � ml�1 � g�1) than

from the inorganic source (0.007e0.04) (Fig 1). When cultured

with calciumphosphate, P. turiciensis andA. applanata released

0.01 mg PO4
�2� ml�1� g�1mycelia, while P. glacialis and P. piceae

released 0.04. In the presence of phytate, P. piceae released 0.22,
while P. glacialis, P. turiciensis and A. applanata released 0.155,

0.130 and 0.115, respectively (Fig 1).

Extracellular phosphatase activity in culture media

Acid phosphatases
Liquid cultureswith or without the organic P sourcewere used

to analyse phosphatase activities of DSE. Due to the lack of

interaction of the two factors (two way ANOVA: DSE � P form,

P � 0.05), the main effects of DSE and P source on acid phos-

phatase activity were tested (Fig 2A and B). These analyses

showed that the enzymatic activities of P. turiciensis and A.

applanata (20.12 and 23.23 EU) were higher than those of P.

piceae and P. glacialis (4.93 and 6.41 EU), irrespective of the form

of P supplied (Fig 2A). On the other hand, when data for all DSE

were combined, the enzymatic activity in the presence of the

organic P source was higher than the activity with the inor-

ganic source (16.65 and 10.70 EU, respectively; Fig 2B).

Alkaline phosphatases
Alkaline phosphatase activity was detected in the presence

and absence of sodium phytate as the enzymatic substrate.

Two way ANOVA (factors: DSE and P form) showed that some

combinations of DSE and P sources produced an increase in

the enzymatic activity of themedia. The alkaline phosphatase

activities of P. piceae and P. glacialiswere higher in the presence

of the organic P source than the inorganic source (ranges

4.386e12.235 EU and 0.256e0.354 EU, respectively). The other

DSE maintained the same enzymatic activities, irrespective of

the form of P supplied (Fig 3).

P release per EU with sodium phytate as the enzymatic
substrate
P release per EU of acid or alkaline phosphatase (mg

PO4
�2 � EU�1) released to the culture media was compared for

http://www2.dijon.inra.fr/mychintec/Mycocalc-prg/download.html
http://www2.dijon.inra.fr/mychintec/Mycocalc-prg/download.html


Fig 2 e Principal effects in the acid phosphatase activity experiment independently of P source and DSE treatments. (A) Acid

phosphatase activity independent of P sources and (B) acid phosphatase activity independent of DSE. Main effect:

F4,93 [ 17.4, P [ 0.029. Error bars, notation and abbreviations as in Fig 1.
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each DSE by one way ANOVA. These analyses indicated that

there were significant (P � 0.05) differences between DSE in

their capacities to release P (Table 1). The P concentration

released from phytate per EU showed no significant differ-

ences for alkaline or acid phosphatases, except for P. piceae, for

which the release of P per EU of alkaline phosphatases

(5.152 � 10�2 mg PO4
�2 � EU�1) was higher than for acid

phosphatases (1.953 � 10�2 mg PO4
�2 � EU�1; Table 1).
In vivo experiments

Root length of T. repens and AMF colonization
DSE inoculation had no effect on the root length of T. repens in

the presence or absence of AMF. Similarly, the frequencies of

AMF hyphae and arbuscules were not affected by the DSE

(P ¼ 0.612 and P ¼ 0.624, respectively). The frequencies of AMF
Fig 3 e Alkaline phosphatase activities of DSE in in vitro

assays with organic (sodium phytate) or inorganic (tribasic

calcium phosphate) sources of P. Error bars, notation and

abbreviations as in Fig 1.
colonization in roots co-inoculated with AMF and P. turiciensis

(65.3 %), P. glacialis (61.4 %), A. applanata (71.3 %) and P. piceae

(77.3 %) were not significantly different from plants inoculated

solely with AMF (68.3 %). Similarly, the frequencies of arbus-

cules in roots co-inoculated with AMF and P. turiciensis

(33.4 %), P. glacialis (26.0 %), A. applanata (32.5 %), P. piceae

(26.3 %) were also not significantly different from plants ino-

culated only with AMF (27.5 %).

DSE colonisation in plants inoculated with AMF

Two way ANOVA indicated that the frequency of DSE in roots

was not affected by AMF. Irrespective of AMF colonization, the

frequencies of A. applanata and P. glacialis hyphae in roots

(Table 2) were higher than those of P. turiciensis (Table 2). The

presence of AMF also did not affect the frequency of sclerotia,

with a decrease in sclerotia only being found for P. turiciensis

co-inoculated with AMF (P � 0.05).

P measurement in soils

The effects of DSE and AMF on the release of P from soil sol-

ution (WEP) was analysed in in vivo experiments. ANOVA

showed that P concentration in the soil was unaffected by the

presence of AMF (P � 0.05), but that each of the four DSE
Table 1e P release per UE of acid or alkaline phosphatase.
Values with the same letter are not significantly different
( p ‡ 0.05) as determined by Tukey’s test between DSE.

DSE Phosphatase activity (P � UE�1)

Acid Alkaline

Phialocephala glacialis 1.802 � 10�2ab 1.276 � 10�2ab

Phialocephala turiciensis 5.696 � 10�3a 2.901 � 10�2b

Acephala applanata 4.963 � 10�3a 2.260 � 10�2ab

Phaeomollisia piceae 1.953 � 10�2ab 5.152 � 10�2c



Table 2 e Development of DSE mycelia independent of
AMF. Main effects: F 8.74 [ 13.10 p [ 0.007. Values with
the same letter are not significantly different ( p ‡ 0.05) as
determined by Tukey’s test between DSE.

DSE Frecuency of DSE mycelia (I %)

Phialocephala glacialis 45.62b

Phialocephala turiciensis 31.6a

Acephala applanata 59.31b

Phaeomollisia piceae 17.25ab

Fig 5 e Extracellular phosphatase activities in the

14 I.F. Della Monica et al.
significantly increased total soil WEP compared with

controls. A. applanata, P. turiciensis, P. piceae and P. glacialis

released 19.90 � 2.9, 20.56 � 0.59, 17.33 � 0.56 and

17.32 � 0.7 mg P � l�1 � g�1 soil respectively, in comparison

with the total WEP in the control (13.20 mg P � l�1 � g�1; Fig 4).
rhizosphere of Trifolium repens. Error bars, notation and

abbreviations as in Fig 1.
Extracellular phosphatase activity in the rhizosphere

TwowayANOVA showed no interactive effect of DSE and AMF

on extracellular phosphatase activity (P � 0.05). The main

effects indicated significant differences (P � 0.05) between the

DSE species on the activities of both alkaline and acid phos-

phatases (Fig 5). Irrespective of AMF inoculation, the presence

of alkaline phosphatases in soils inoculated with P. turiciensis

and P. glacialis (147.86 and 152.89 EU) were higher than in soils

with A. applanata and P. piceae (136.76 and 131.59 EU). The

alkaline phosphatase activities of the latter two DSE were not

significantly different from the control (Fig 5). Only P. glacialis

elicited an increase in acid phosphatase activity (254.38 EU)

relative to controls and other DSE (Fig 5).
P uptake by plants

There was a statistically significant interaction between DSE

and AMF on plant P uptake. P content increased when plants
Fig 4 e Principal effect of DSE treatments, independently of

AMF inoculation, on P concentration in soil solution (WEP).

Main effect: F33,58 [ 10.7, P [ 0.012. Error bars, notation

and abbreviations as in Fig 1.
were co-inoculated with AMF and either P. turiciensis or P.

piceae (Fig 6A). In contrast, P concentrationwas lower in plants

co-inoculated with AMF and P. glacialis compared with plants

inoculated with AMF alone (Fig 6A). P translocation from root

to shoot was studied by analysing the ratio of P between the

two plant parts. Shoot:root P ratio was higher in plants co-

inoculated with P. piceae and AMF than in plants inoculated

with AMF alone (Fig 6B). This ratio was lower in plants co-

inoculated with P. glacialis and AMF, compared with plants

inoculated with P. glacialis alone (Fig 6B). There were no dif-

ferences in shoot:root P ratios between plants co-inoculated

with A. applanata or P. turiciensis and AMF, compared with

plants inoculated with AMF alone (Fig 6B).
Discussion

In the present study, we analysed the in vitro abilities of four

DSE isolates to solubilize and mineralize inorganic and

organic P sources, and examined the effects of DSE on P

mineralization and uptake by T. repens plants with or without

AMF colonisation. To our knowledge, this is the first report

showing that DSE are responsible for solubilising P in the

rhizosphere. The isolate of P. piceae used here came from

needles of Picea abies, whilst P. glacialis had been isolated from

roots and needles. The latter species has an intermediate

position between P. piceae and the P. fortinii-A. applanata spe-

cies complex (PAC) (Gr€unig et al., 2009). PAC have so far only

been isolated from belowground tissues of trees or stem bases

close to the ground. Based on 18S rDNAand ITS sequences, the

PAC species complex is phylogenetically well separated from

P. piceae and P. glacialis (Gr€unig et al., 2007, 2009; Tellenbach

et al., 2011). In contrast, the two PAC strains are closely rela-

ted, but can nevertheless be classified as belonging to two

separate species.

Low levels of inorganic P solubilisation by fungi were found

when DSE were cultured in liquid medium. The ability of the

DSE isolates to solubilise P in liquid culture, although subtle,



Fig 6 e P in clover plants inoculated with DSE alone (open columns) or co-inoculated with DSE and AMF (filled columns). (A)

Total plant P content and (B) shoot:root P ratio. Error bars and notation as in Fig 1. Adjacent filled and open columns are not

significantly different (Tukey’s test; P > 0.05).
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indicates the potential of these fungi to promote plant growth,

and suggests that they might be used in agriculture to pro-

mote productivity, forming part of a plethora of strategies of

interaction known as the “additive hypothesis” (Bashan and

Levanony, 1990).

We also evaluated the in vitro phosphatase activities of

DSE isolates grown in the absence of an organic P source to

test if these fungi produce phosphatases by an alternative to

the substrate-responsive pathway. The DSE isolates tested

showed extracellular phosphatase activity (both acid and

alkaline) in the absence of the host plant and the organic

resource. When grown in the presence of an inorganic P

source, we only observed the production of alkaline phos-

phatases by A. applanata or P. turiciensis. These results suggest

that the induction and production of alkaline phosphatases

by DSE differs between taxa. Similarly, Kapri and Tewari

(2010) reported that both extracellular alkaline phospha-

tases and organic acids are produced by Trichoderma spp. in

response to the presence and absence of tricalcium phos-

phate, which is in accordance with the participation of con-

stitutive and inorganic P-induced mechanisms related to P

solubilisation.

Although our data showed that the four DSE isolates pro-

duce phosphatases and that they can mineralise or solubilise

P through metabolic or co-metabolic processes respectively,

they appear to be more efficient at releasing P from organic

sources such as phytate than from insoluble inorganic sources

(c.f. Newsham, 2011). This might have a link with the inter-

active role of DSE with plants, since root exudates might be a

main source of P, such as phytate, for these fungi and their

role in the soil P cycle (Singh and Mukerji, 2006; Uren, 2001).

Analyses of phosphatase activity showed that the four DSE

isolates showed similar P release per EU for acid enzyme

activity as that reported by Yadav and Tarafdar (2003). How-

ever, as previously reported by Aseri et al. (2009), alkaline

phosphatase activity differed among the isolates, with P. gla-

cialis having a higher activity compared with that of the other

three DSE isolates.
Tripartite interactions between DSE, T. repens and the AMF

G. rosea were studied. The frequencies of intraradical AMF

mycelia and the abundance of arbuscules did not change in

presence of the DSE, suggesting that there were no antago-

nistic interactions between these micro-organisms in the

system studied. Scervino et al. (2009) previously reported that

another DSE (Dreschlera sp.) altered the mycorrhizal status of

the plant, indicating that the relationship between DSE and

AMF must be carefully evaluated. Furthermore, the colo-

nisation of T. repens plants by G. rosea did not affect DSE

development. Independently of AMF infection, each DSE

species tested in our study produced different levels of

infection in the root system. On the other hand, only one

fungal combination (P. turiciensis and G. rosea) decreased the

frequency of DSE sclerotia. The intensity of T. repens root

infection by intraradical DSE mycelium was not modified by

the presence of AMF, showing that both symbionts coexist in

several environments (Priyadharsini et al., 2012; Khodke,

2013).

Our results showed that, independently of AMF, DSE

increased the pool of P in the soil, and that the level of P varied

according to the DSE isolate. The AMF inoculated did not

produce changes in the P pool in rhizospheric soil containing

inorganic or organic forms of P. However, co-inoculation with

DSE and AMF modified the plant P content. These findings

support the role of extraradical AMF mycelia in P transport

from soil to root (Ohtomo and Saito, 2005). Furthermore, some

treatments also showed that P transport to the plant was

either increased or decreased by the presence of both micro-

organisms (P. turiciensis þ AMF, P. piceae þ AMF and P.

glacialis þ AMF), which was apparently dependent on the DSE

infection level. It is possible that P. turiciensis and P. piceae

might solubilize inorganic P and/or mineralize organic P more

efficiently in our experimental glasshouse conditions than the

other strains tested.

We observed an increase in alkaline phosphatase activity

in the rhizosphere of T. repens when plants had been inocu-

lated with DSE isolates. Similar observations were made by



16 I.F. Della Monica et al.
Tarafdar and Rao (1995) in a tripartite system with Trifolium,

DSE and G. rosea. Alkaline phosphatases are not produced by

plants, and so such increases are possibly related to higher

microbial activity in the rhizosphere (Chonkar and Tarafdar,

1981). The enzymatic activity was higher in P. glacialis when

this fungus was grown axenically in liquid medium with

organic P sources. This result suggests that P. glacialis is par-

ticularly efficient in producing phosphatase enzymes, both in

axenic culture and in tripartite systems, and might therefore

participate actively in organic P mineralisation. On the other

hand, the activity of acid phosphatases was higher in P. turi-

ciensis and A. applanata in liquid medium compared with the

other DSE isolates tested. Yadav and Tarafdar (2001) showed

that rhizospheric acid phosphatases released in the soil

diminish their activity by five times when the P level is

increased from 10 mg l�1 to 50 mg l�1, suggesting that these

enzymes are inhibited by the presence of soluble P in the soil

due to be a competitive phosphatase inhibitor.

Although an increase in phosphatase activity might be

related to enhanced plant P uptake (Dodd et al., 1987;

Tarafdar and Jungk, 1987), our data suggest that this

increase might be more dependent on the interaction among

micro-organisms (DSE and AMF) and plants than on the

amount and availability of enzymes in the rhizosphere. This

might be related to the efficiency of P uptake by AMF, which

overshadows the influence of the enzymes on P mineralisa-

tion and P uptake by plants. In this sense, numerous studies

have shown that mycorrhizal roots are more efficient at P

uptake than non-mycorrhizal roots (Klironomos, 2003; Bush,

2008).

According to Cabello et al. (2005) and Kohler et al. (2007),

DSE isolates such as P. turiciensis and P. piceae in tripartite

assays show increases in P uptake, though for P. glacialis such

increases are not dependent on the presence of AMF. Our

results provide evidence supporting an effect on plant nutri-

tion and P uptake efficiency of microbial interactions in the

rhizosphere (Bryla and Koide, 1998; Olsen et al., 1999).

Vaz et al. (2012) failed to find synergistic effects between a

DSE (Drechslera sp.) and an AMF (Glomus sp.) in Sorghum plants.

As both symbionts (DSE and AMF) did not affect the root

development of T. repens, the reasons for the changes in plant

P may be due to increased bioavailability of P in the rhizo-

sphere, or the effect on the development of the DSEmycelium.

In addition, our results showed that clover plants inoculated

with P. piceae and AMF presented not only a higher level of

total P, but also a higher P shoot:root ratio. This suggests that P

translocation in T. repens from root to shoot is promoted by

DSE strains, particularly in the presence of mycorrhizal fungi,

thus showing a possible synergistic relationship between both

fungal symbionts.

In conclusion, the co-existence between DSE and AMF

appears to affect the pool of P in T. repens plants. DSE isolates

apparently participate in this process by mineralising and

solubilising P. Since both DSE and AMF utilise organic and

inorganic P sources commonly found in soil, their interaction

with plants may lead to an increase in plant P content. We

thus propose a synergistic relationship involving both micro-

organisms that may promote plant growth. However, addi-

tional research is required to confirm this tripartite

interaction.
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