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ABSTRACT. We study hypercyclicity properties of a family of non-convolution
operators defined on spaces of holomorphic functions on CN . These operators
are a composition of a differentiation operator and an affine composition op-
erator, and are analogues of operators studied by Aron and Markose on H(C).
The hypercyclic behavior is more involved than in the one dimensional case,
and depends on several parameters involved.
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INTRODUCTION

If T is a continuous linear operator acting on some topological vector space
X, the orbit under T of a vector x ∈ X is the set Orb(x, T) := {x, Tx, T2x, . . . }.
The operator T is said to be hypercyclic if there exists some vector x ∈ X, called
hypercyclic vector, whose orbit under T is dense in X. In the Fréchet space setting,
an operator T is hypercyclic if and only if it is topologically transitive, that is,
if for every pair of non empty open sets U and V, there exists an integer n0 ∈ N
such that Tn0U ∩V 6= ∅. An operator is said to be mixing provided TnU ∩V 6= ∅
for all large n, for any pair of non-empty open subsets U and V of X. Recently,
some stronger forms of hypercyclicity have gained the attention of researchers,
specially the concepts of frequently hypercyclic operators and strongly mixing
operators with respect to some invariant probability measure on the space.

The first examples of hypercyclic operators were found by Birkhoff [5] and
MacLane [12], whose research was focused on holomorphic functions of one com-
plex variable and not in properties of operators. Birkhoff’s result implies that
the translation operator τ : H(C) → H(C) defined by τ(h)(z) = h(1 + z) is
hypercyclic. Likewise, MacLane’s result states that the differentiation operator
on H(C) is hypercyclic. In a seminal paper, Godefroy and Shapiro [9] unified
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and generalized both results, by showing that every continuous linear operator
T : H(CN) → H(CN) which commutes with translations and which is not a
scalar multiple of the identity is hypercyclic. These operators are called non-
trivial convolution operators.

Another important class of operators on H(CN) are the composition opera-
tors Cφ, induced by symbols φ which are automorphisms of CN . The hypercyclic-
ity of composition operators induced by affine automorphisms was completely
characterized in terms of properties of the symbol by Bernal-González [3].

Besides operators belonging to some of these two classes, there are not many
examples of hypercyclic operators on H(CN). Motivated by this fact, Aron and
Markose [1] studied the hypercyclicity of the following operator on H(C),

T f (z) = f ′(λz + b), with λ, b ∈ C.

The operator T is not a convolution operator unless λ = 1. They showed that T
is hypercyclic for any |λ| > 1 (a gap in the proof was corrected in [8]) and that
it is not hypercyclic if |λ| < 1 and b = 0. Thus, they gave explicit examples
of hypercyclic operators which are neither convolution operators nor composi-
tion operators. Recently, these operators were studied in [11], where the authors
showed that the operator is frequently hypercyclic when b = 0 and |λ| > 1, and
asked whether it is frequently hypercyclic for any b 6= 0. In Section 2, we give
a different proof of the result of [1], [8], but for any λ, b ∈ C. We conclude in
Proposition 2.3 that T is hypercyclic if and only if |λ| > 1, and that in this case,
T is even strongly mixing with respect to some Borel probability measure of full
support on H(C).

In Sections 3 and 4 we define N-dimensional analogues of the operators
considered by Aron and Markose and study the dynamics they induce in H(CN).
These operators are a composition between a partial differentiation operator and
a composition operator induced by some automorphism of CN . It turns out that
their behavior is more complicated than their one variable counterpart. One pos-
sible reason is that while the automorphisms of C have a very simple structure
and hypercyclicity inducing properties, the automorphisms of CN are much more
involved. Even, the characterization of hypercyclic affine automorphisms is non-
trivial (see [3]).

In Section 3, we consider the case in which the composition operators are
induced by a diagonal operator plus a translation, that is, for f ∈ H(CN) and
z = (z1, . . . , zN) ∈ CN , we study operators of the form

T f (z)=Dα f ((λ1z1, . . . , λNzN) + b),

where α is a multi-index and b and λ = (λ1, . . . , λN) are vectors in CN . In this
case we completely characterize the hypercyclicity of these non-convolution op-
erators which, contrary to the one dimensional case studied in [1], does not only
depend on the size of λ. In the last section, we study the operators which are a
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composition of a directional differentiation operator with a general affine auto-
morphism of CN and determine its hypercyclicity in some cases.

1. PRELIMINARIES

In this section we state some known conditions which ensure that a linear
operator is strongly mixing with respect to an invariant Borel probability measure
of full support. First we recall the following definitions.

DEFINITION 1.1. A linear operator T on X is called frequently hypercyclic if
there exists a vector x ∈ X, called a frequently hypercyclic vector, whose T-orbit vis-
its each non-empty open set along a set of integers having positive lower density.

DEFINITION 1.2. A Borel probability measure on X is Gaussian if and only
if it is the distribution of an almost surely convergent random series of the form

ξ =
∞
∑
0

gnxn, where (xn) ⊂ X and (gn) is a sequence of independent, standard

complex Gaussian variables.

DEFINITION 1.3. We say that an operator T ∈ L(X) is strongly mixing in
the Gaussian sense if there exists some Gaussian T-invariant probability measure
µ on X with full support such that any measurable sets A, B ⊂ X satisfy

lim
n→∞

µ(A ∩ T−n(B)) = µ(A)µ(B).

We will use the following result, which is a corollary of a theorem due to
Bayart and Matheron (see [2]). Essentially this theorem says that a large supply
of eigenvectors associated to unimodular eigenvalues that are well distributed
along the unit circle implies that the operator is strongly mixing in the Gaussian
sense.

THEOREM 1.4 (Bayart, Matheron). Let X be a complex separable Fréchet space,
and let T ∈ L(X). Assume that for any set D ⊂ T such that T \ D is dense in T,
the linear span of

⋃
λ∈T \−D

ker(T − λ) is dense in X. Then T is strongly mixing in the

Gaussian sense.

The following result, proved by Murillo-Arcila and Peris in Theorem 1 of
[13], shows that operators defined on Fréchet spaces which satisfy the frequent
hypercyclicity criterion are strongly mixing with respect to an invariant Borel
measure with full support.

THEOREM 1.5 (Murillo-Arcila, Peris). Let X be a separable Fréchet space and
T ∈ L(X). Suppose that there exists a dense subset X0 ⊂ X such that ∑

n
Tnx is un-

conditionally convergent for all x ∈ X0. Suppose further that there exists a sequence of
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maps Sk : X0 → X such that T ◦ S1 = Id, T ◦ Sk = Sk−1 and ∑
k

Sk(x) is uncondi-

tionally convergent for all x ∈ X0. Then there exists a Borel probability measure µ in X,
T-invariant, such that the operator T is strongly mixing with respect to µ.

It can be shown that the hypotheses of Theorem 1.5 imply the corresponding
ones of Theorem 1.4. So, in any case, both theorems allow us to conclude the
existence of an invariant Gaussian probability measure for linear operators of
full support which are strongly mixing. Finally, the next proposition states that
the existence of such measures is preserved by linear quasi-conjugation. Its proof
is standard.

PROPOSITION 1.6. Let X and Y be separable Fréchet spaces and T ∈ L(X), S ∈
L(Y). Suppose that SJ = JT for some continuous linear mapping J : X → Y of dense
range then, if T has an invariant Borel measure then so does S. Moreover, if T has an
invariant Borel measure that is Gaussian, strongly mixing, ergodic or of full support,
then so does S.

2. NON-CONVOLUTION OPERATORS ON H(C)

Let us denote by D and τa the derivation and translation operators on H(C),
respectively. Namely, for an entire function f , we have

D( f )(z) = f ′(z) and τa( f )(z) = f (z + a).

MacLane’s theorem [12] says that D is a hypercyclic operator, and Birkhoff’s theo-
rem [5] states that τa is hypercyclic provided that a 6= 0. The translation operators
are a special class of composition operators on H(C). By a composition operator
we mean an operator Cφ such that Cφ( f ) = f ◦ φ, where φ is some automorphism
of C. The hypercyclicity of the composition operators on H(C) has been com-
pletely characterized in terms of properties of the symbol function φ. Precisely,
the relevant property of φ is the following.

DEFINITION 2.1. A sequence {φn}n∈N of holomorphic maps on C, is called
runaway if, for each compact set K ⊂ C, there is an integer n ∈ N such that
φn(K) ∩ K = ∅. In the case where φn = φn for every n ∈ N, we will just say that
φ is runaway.

This definition was first given by Bernal-González and Montes-Rodríguez
in [4], where they also proved the following (see also Therorem 4.32 of [10]).

THEOREM 2.2. Let φ be an automorphism of C. Then Cφ is hypercyclic if and
only if φ is runaway.

It is known that the automorphisms of C are given by φ(z) = λz + b, with
λ 6= 0 and b ∈ C. In addition, φ is runaway if and only if λ = 1 and b 6= 0 (see
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Example 4.28 of [10]). This means that the hypercyclic composition operators on
H(C) are exactly Birkhoff’s translation operators.

Aron and Markose in [1] studied the hypercyclicity of the following opera-
tor on H(C),

T f (z) = f ′(λz + b),

with λ, b ∈ C, which is a composition of MacLane’s derivation operator and a
composition operator, i.e., T = Cφ ◦ D with φ(z) = λz + b. The main motiva-
tion for the study of this operator was the wish to understand the behavior of a
concrete operator belonging neither to the class of convolution operators nor to
the class of composition operators. As mentioned before, in [1] (see also [8]) the
authors proved that T is hypercyclic if |λ| > 1, and that it is not hypercyclic if
|λ| < 1 and b = 0.

In this section we give a simple proof of the result by Aron and Markose,
for the full range on λ, b. This will allow us to illustrate some of the main ideas
used in the next section to prove the more involved N-variables case.

Suppose that λ 6= 1. The key observation is that T is conjugate to an oper-
ator of the same type, but with b = 0. Indeed, define T0 f (z) = f ′(λz), then we
have that the following diagram commutes:

H(C) T //

τ[b/(1−λ)]

��

H(C)

τ[b/(1−λ)] .

��
H(C)

T0

// H(C)

Note that b
1−λ is the fixed point of φ. This observation will be important

later.

PROPOSITION 2.3. Let T be the operator defined on H(C) by T f (z) = f ′(λz +
b). Then T is hypercyclic if and only if |λ| > 1. In this case, T is also strongly mixing
with respect to some Borel probability measure of full support on H(C).

Proof. If λ = 1, then T is a non-trivial convolution operator, thus it is hy-
percyclic. Moreover, by the Godefroy and Shapiro’s theorem and its extensions
(see [6], [9], [14]), T is strongly mixing in the Gaussian sense. Hence, by Proposi-
tion 1.6, it suffices to prove the case b = 0 and λ 6= 1, i.e. for the operator T0.

Suppose first that |λ| < 1 and let f ∈ H(C). Note that Tn
0 f (z) = λn(n−1)/2·

f (n)(λnz). By the Cauchy’s estimates we obtain that

|Tn
0 f (0)| 6 |λ|n(n−1)/2n! sup

‖z‖61
| f (z)| −→

n→∞
0.

Since the evaluation at 0 is continuous, the orbit of f under T0 can not be dense.
Suppose now that |λ| > 1. Let us see that we can apply the Murillo-Arcila

and Peris criterion, Theorem 1.5. Let X0 be the set of all polynomials, which is
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dense in H(C). Then, for each polynomial f ∈ X0, the series ∑
n

Tn
0 f is actually a

finite sum, thus it is unconditionally convergent.
For n ∈ N we define a sequence of linear maps Sn : X0 → X as

Sn(zk) =
k!

(k + n)!
zk+n

λnk+n(n−1)/2
.

It is easy to see that the sequence (Sn) satisfies the hypotheses of Theorem 1.5:

Case T0 ◦ S1 = I: T0 ◦ S1(zk) = T0

(
1

k+1
zk+1

λk

)
= zk.

Case T0 ◦ Sn = Sn−1:

T0 ◦ Sn(zk) = T0

( k!
(k + n)!

zk+n

λnk+n(n−1)/2

)
=

k!
(k + n− 1)!

λk+n−1zk+n−1

λnk+n(n−1)/2

=
k!

(k + n− 1)!
zk+n−1

λ(n−1)k+(n−1)(n−2)/2
= Sn−1(zk).

Case when the series ∑
n

Sn( f ) are unconditionally convergent for each f ∈

X0. If |z| 6 R, we get that,

∑
n
|Sn(zk)| 6 ∑

n

k!
(k + n)!

Rk+n 6 k!eR.

Thus, the operator T0 is strongly mixing in the Gaussian sense.

We can summarize the results of this section in the following table. It is
worth noticing that neither the hypercyclicity of Cφ nor the hypercyclicity of D
imply the hypercyclicity of Cφ ◦ D.

λ < 1 λ = 1 λ > 1
Cφ Not Hypercyclic Hypercyclic⇔ b 6= 0 Not Hypercyclic
D Hypercyclic Hypercyclic Hypercyclic
Cφ ◦ D Not Hypercyclic Hypercyclic Hypercyclic

As we shall see in the next section, we may replace Cφ ◦ D by Cφ ◦ Dr, for any
positive integer r, on the third row of the table above.

3. NON-CONVOLUTION OPERATORS ON H(CN) — THE DIAGONAL CASE

The operators considered in the previous section were differentiation oper-
ators followed by a composition operator. In this section we consider N-dimen-
sional analogues of those operators. First, we will be concerned with symbols
φ : CN → CN , which are diagonal affine automorphism of the form

φ(z) = λz + b = (λ1z1 + b1, . . . , λNzN + bN),
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where λ, b ∈ CN ; and the differentiation operator is a partial derivative operator
given by a multi-index α = (α1, . . . , αN) ∈ NN

0 ,

Dα f =
∂|α| f

∂zα1
1 ∂zα2

2 · · · ∂zαN
N

.

Thus in this section T will denote the operator on H(CN) defined by

T f (z) = Cφ ◦ Dα( f )(z) = Dα f (λ1z1 + b1, . . . , λNzN + bN).

Note that, in the definition of T, we allow α to be zero. In this case, the operator
is just a composition operator and its hypercyclicity is determined by the sym-
bol φ. These symbol functions are special cases of affine automorphisms of CN .
The existence of universal functions for composition operators with affine sym-
bol on CN has been completely characterized by Bernal-Gonzalez in [3], where he
proved that the hypercyclicity of the composition operator depends on whether
or not the symbol is runaway. Recall that an automorphism ϕ of CN is said to be
runaway if for any compact subset K there is some n>1 such that ϕn(K)∩ K=∅.

THEOREM 3.1 (Bernal-González). Assume that ϕ : CN → CN is an affine auto-
morphism of CN , say ϕ(z) = Az + b. Then, the composition operator Cϕ is hypercyclic
if and only if ϕ is a runaway automorphism if and only if the vector b is not in ran(A− I)
and det(A) 6= 0.

The proof of this result is based on the following N-variables generalization
of Runge’s approximation theorem, which will be useful for us later.

THEOREM 3.2. If K and L are disjoint convex compact sets in CN and f is a
holomorphic function on a neighborhood of K ∪ L, then there is a sequence of polynomials
on CN that approximate f uniformly on K ∪ L.

REMARK 3.3. It is easy to prove that the mapping φ(z)=(λ1z1+b1, . . . , λNzN
+bN) is runaway if and only if some coordinate is a translation, that is, for some
i = 1, . . . , N we have, simultaneously, that λi = 1 and bi 6= 0.

If λj = 0 for some j, then we have that the differential d(Tn f )(ej) = 1, for
every n ∈ N. Since, the application d(·)(ej) is continuous, we conclude that the
orbit of f under T can not be dense.

The next result completely characterizes the hypercyclicity of the operator
T = Cφ ◦ Dα, with λ 6= 0 and α 6= 0 (the case α = 0 is covered in [3], and as
mentioned above T is not hypercyclic if λj = 0 for some j). Write λα = ∏

i6N
λ

αi
i .

THEOREM 3.4. Let T be the operator on H(CN), defined by T f (z) = Cφ ◦
Dα f (z), where α 6= 0, φ(z) = (λ1z1 + b1, . . . , λNzN + bN) and λi 6= 0 for all i,
1 6 i 6 N. Then,

(i) If |λα| > 1 then T is strongly mixing in the Gaussian sense.
(ii) If for some i = 1, . . . , N we have that bi 6= 0 and λi = 1, then T is mixing.
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(iii) In any other case, T is not hypercyclic.

REMARK 3.5. The item (iii) above includes the following sub-cases:
(a) |λα| < 1 and b = 0.
(b) |λα| < 1 and λi 6= 1 for every i, 1 6 i 6 N.
(c) |λα| < 1 and bi = 0 for every i such that λi = 1.

In all three sub-cases we have that the application φ(z) = λz + b has a
fixed point and thus φ is not runaway. Also in case (ii) the application φ has one
coordinate which is a translation, thus it is runaway. So, in particular, Theorem 3.4
implies that T = Cφ ◦ Dα is hypercyclic if and only if either |λα| > 1 or φ is
runaway.

We can summarize our main theorem in the following table.

|λα| < 1 and |λα| < 1 and |λα| > 1
no coord. of φ is a translation a coord. of φ is a translation

Cφ Not Hypercyclic Hypercyclic depends on φ

Dα Hypercyclic Hypercyclic Hypercyclic
Cφ ◦ Dα Not Hypercyclic Hypercyclic Hypercyclic

We will divide the proof of part (i) of Theorem 3.4 in two lemmas. Through
a change in the order of the variables, we may suppose that the first j variables,
0 6 j 6 N, correspond to the coordinates in which λi = 1. The operator T is then
of the form

(3.1) T f (z) = Dα f (z1 + b1, . . . , zj + bj, λj+1zj+1 + bj+1, . . . , λNzN + bN).

Moreover, we can assume that bi = 0 for all i > j, because T is topologically
conjugate to

(3.2) T0 f (z) = Dα f (z1 + b1, . . . , zj + bj, λj+1zj+1, . . . , λNzN)

through a translation. Indeed, defining c ∈ CN by cl = 0 if l 6 j, and cl =
bl

1−λl
if

l > j, we get that T0 ◦ τc = τc ◦ T.
We first study the case in which for some i, we have λi 6= 1 and αi 6= 0 (note

that if all λi = 1, then T is a convolution operator and it is thus strongly mixing
in the Gaussian sense [6], [14]).

LEMMA 3.6. Let T be as in (3.1). Suppose that |λα| > 1 and αi 6= 0 for some
i > j. Then T is strongly mixing in the Gaussian sense.

Proof. By the above comments, we may suppose that bi = 0 for i > j, so the
operator T is as in (3.2). We apply Theorem 1.5 with

X0 = span{eγzβ := eγ1z1+···+γjzj zβ with βi = 0 for i 6 j and γ ∈ Cj}.
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The set X0 ⊂ H(CN) is dense. Indeed, since the set {eγ : γ ∈ Cj} generates a
dense subspace in H(Cj) (see for example Proposition 2.4 of [6]), given a mono-

mial zθ1
1 · · · z

θj
j , ε > 0 and R > 0, there is f ∈ span{eγ : γ ∈ Cj} with

sup
‖z‖6R

| f (z1, . . . , zj)− zθ1
1 · · · z

θj
j | < ε.

We obtain

sup
‖z‖6R

| f (z1, . . . , zj)z
β j+1
j+1 · · · z

βN
N︸ ︷︷ ︸

∈X0

−zθ1
1 · · · z

θj
j z

β j+1
j+1 · · · z

βN
N | < εR|β|.

Therefore we can approximate any monomial in H(CN) by functions of X0 uni-
formly on compacts sets.

The series ∑
n

Tn(eγzβ) is unconditionally convergent because the operator

T differentiates in some variable zi with i > j, and so it is a finite sum. On the
other hand, if we denote by α(1) := (α1, . . . , αj) and α(2) := (αj+1, . . . , αN) 6= 0,
we obtain

Tn(eγzβ) = γnα(1)en〈γ,b〉λnβ−n(n+1)/2α(2)
β!

(β− nα(2))!
eγzβ−nα(2) .

Now, we define a sequence of maps Sn : X0 → X0. First, we do that on the
set {eγzβ} and then extending them by linearity

Sn(eγzβ) =
β!

γnα(1)en〈γ,b〉λnβ+n(n−1)/2α(2)(β + nα(2))!
eγzβ+nα(2) .

The following assertions hold:
Case T ◦ S1 = I:

T ◦ S1(eγzβ) =
1

γα(1)e〈γ,b〉λβ

β!
(β + α(2))!

T(eγzβ+α(2))

=
1

γα(1)e〈γ,b〉λβ

β!
(β + α(2))!

γα(1)e〈γ,b〉eγ

(β + α(2))!
β!

zβλβ = eγzβ.

Case T ◦ Sn = Sn−1:

T ◦ Sn(eγzβ)

=
1

γnα(1)en〈γ,b〉λnβ+n(n−1)/2α(2)

β!
(β + nα(2))!

T(eγzβ+nα(2))

=
β!γα(1)e〈γ,b〉λβ+(n−1)α(2)(β + nα(2))!

γnα(1)en〈γ,b〉λnβ+n(n−1)/2α(2)(β + nα(2))!(β + (n− 1)α(2))!
eγzβ+(n−1)α(2)

=
β!

γ(n−1)α(1)e(n−1)〈γ,b〉λ(n−1)β+(n−1)(n−2)/2α(2)(β+(n−1)α(2))!
eγzβ+(n−1)α(2)
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=Sn−1(eγzβ).

Case given R > 0, let |z| 6 R and denote C =
∣∣ R

α(2)

λβγ
α(1)e〈γ,b〉

∣∣. We have

|Sn(eγzβ)| 6 M Cn

(β+nα(2))!
for some constant M > 0 not depending on n. Since,

α(2) 6= 0, we get that for each γ ∈ Cj and β ∈ CN with βi = 0 for i 6 j,
∑
n
|Sn(eγzβ)| is uniformly convergent on compacts sets.

We have thus shown that the hypothesis of Theorem 1.5 are fulfilled. Hence
T is strongly mixing in the Gaussian sense, as we wanted to prove.

The other case we need to prove is when T does not differentiate in the
variables zi with i > j. This means that αi = 0 for all i > j. To prove this case we
will use Theorem 1.4.

LEMMA 3.7. Let T be as in (3.1). Suppose that |λα| > 1 and αi = 0 for every
i > j. Then T is strongly mixing in the Gaussian sense.

Proof. We may suppose that bi = 0 for i > j, so the operator T is as in (3.2).
The functions eγzβ, with γi = 0 for all i > j and βi = 0 for every i 6 j, are
eigenfunctions of T. Indeed,

T(eγzβ) = γα(1)e∑ γi(zi+bi)(λz)β = γα(1)λβe〈γ,b〉eγzβ,

where, as in the proof of the last lemma, α(1) = (α1, . . . , αj) 6= 0 (note that in this
case we have α(2) = (αj+1, . . . , αN) = 0).

By Theorem 1.4 it is enough to show that for every set D ⊂ T such that
T \ D is dense in T, the set

{eγzβ : β ∈ CN with βi = 0 for i 6 j and γi = 0 for i > j,(3.3)

such that γαλβe〈γ,b〉 ∈ T \ D},

spans a dense subspace on H(CN).
Fix β ∈ CN with βi = 0 for every i 6 j and consider the map

fβ : Cj → C

γ 7→ γαλβe〈γ,b〉.

The application fβ is holomorphic and non constant. So there exists γ0 ∈ Cj

such that |γ0
αλβe〈γ0,b〉| = 1. Since, T \ D is a dense set in T, the vector γ0 is an

accumulation point of T \ D. Thus, by Proposition 2.4 of [6], we get that the set

{eγ : with γ such that γαλβe〈γ,b〉 ∈ T \ D},
spans a dense subspace in H(Cj). It is then easy to see that the set defined in
(3.3) spans a dense subspace in H(CN). In particular, we have shown that the set
of eigenvectors of T associated to eigenvalues belonging to T \ D span a dense
subspace in H(CN). So, the hypothesis of Theorem 1.4 are satisfied and hence T
is strongly mixing in the Gaussian sense.
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The following remark will be useful for the next proof and in the rest of the
article.

REMARK 3.8. Recall the Cauchy’s formula for holomorphic functions in CN ,

Dα f (z1, . . . , zN) =
α!

(2πi)N

∫
|w1−z1|=r1

· · ·
∫

|wN−zN |=rN

f (w1, . . . , wN)

∏N
i=1(wi − zi)αi+1

dw1 · · ·dwN .

Therefore, we can estimate the supremum of Dα f over a set of the form B(z1, r1)×
· · ·× B(zN , rN), where B(zj, rj) denotes the closed disk of center zj ∈ C and radius
rj. Fix positive real numbers ε1, . . . , εN , then

(3.4) ‖Dα f ‖∞,B(z1,r1)×···×B(zN ,rN) 6
α!

(2π)N

‖ f ‖∞,B(z1,r1+ε1)×···×B(zN ,rN+εN)

εα1+1
1 · · · εαN+1

N

.

Proof of Theorem 3.4. Part (i) is proved by Lemmas 3.6 and 3.7.
(ii) Suppose that bl 6= 0 for some l such that λl = 1. We will prove that T is

a mixing operator, i.e., that for every pair U and V of non empty open sets for the
local uniform topology of H(CN), there exists n0 ∈ N such that Tn(U) ∩ V 6= ∅
for all n > n0. Let f and g be two holomorphic functions on H(CN), L be a
compact set of CN and θ a positive real number. We can assume that

U = {h ∈ H(CN) : ‖ f − h‖∞,L < θ} and V = {h ∈ H(CN) : ‖g− h‖∞,L < θ},

and that g is a polynomial and that L is a closed ball of (CN , ‖ · ‖∞). We do so
because we can define a right inverse map over the set of polynomials. Since
T = Cφ ◦ Dα, we can define

Iα(zβ) =
β!

(α + β)!
zα+β.

Thus, S = Iα ◦Cφ−1 is a right inverse for T when restricted to polynomials. Hence,
we assume that L = B(0, r)× B(0, r)× · · · × B(0, r), for some r > 0 and denote
φi(z) = λiz + bi, for z ∈ C. We get that φ(z1, . . . , zN) = (φ1(z1), . . . , φN(zN)) and
φi(B(zi, ri)) = B(φi(zi), |λi|ri).

Now, suppose that P is a polynomial in CN . Applying the inequality (3.4)
several times, in which each time we use it we divide each εi by 2, we get that

‖g− TnP‖∞,L

= ‖Cφ ◦ Dα(Sg− Tn−1P)‖∞,L = ‖Dα(Sg− Tn−1P)‖∞,φ(L)

= ‖Dα(Sg− Tn−1P)‖∞,∏ B(bi ,|λi |r)

6
α!

(2π)Nεα1+1
1 · · · εαN+1

N

‖Sg− Tn−1P‖∞,∏ B(bi ,|λi |r+εi)

6
α!

(2π)Nεα1+1
1 · · · εαN+1

N

‖Cφ ◦ Dα(S2g− Tn−2P)‖∞,∏ B(bi ,|λi |r+εi)
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6
α!

(2π)Nεα1+1
1 · · · εαN+1

N

‖Dα(S2g− Tn−2P)‖∞,∏ B((λi+1)bi ,|λi |(|λi |r+εi))

6
2|α|+Nα!2

(2π)2Nε
2(α1+1)
1 · · · ε2(αN+1)

N

‖S2g− Tn−2P‖∞,∏ B((λi+1)bi ,|λi |(|λi |r+εi)+εi/2).

Thus following, we get that

‖g− TnP‖∞,L 6
2(n(n+1)/2)(|α|+N)α!n

(2π)nNε
n(α1+1)
1 · · · εn(αN+1)

N

· ‖Sng− P‖∞,∏ B(φn
i (0),|λi |nr+εi ∑n−1

k=0 |λi |k/2n−k−1).

Let us denote by l, the coordinate of φ that is a translation in C. Thus, we
have that λl = 1 and bl 6= 0. This implies that

B
(

φn
l (0), |λl |nr + ε l ∑n−1

k=0
|λl |k

2n−k−1

)
= B

(
nbl , r + ε l ∑n−1

k=0
1
2k

)
⊂ B(nbl , r + 2ε l).

Fix n0 ∈ N, such that B(0, r)∩ B(nbl , r + 2ε l) = ∅ for all n > n0. Now, take δn > 0
and Λn a ball of (CN , ‖ · ‖∞), such that [L + δn]∩ [Λn + δn] = ∅ for all n > n0 and

N

∏
i=1

B
(

φn
l (0), |λl |nr + ε l ∑n−1

k=0
|λl |k

2n−k−1

)
⊂ Λn.

Also, denote by Kn = 2(n(n+1)/2)(|α|+N)α!n

(2π)nN ε
n(α1+1)
1 ···εn(αN+1)

N

. Then, use Theorem 3.2 with hn =

χL+δn f + χΛn+δn Sng. We get a polynomial Pn such that

‖ f − Pn‖L < θ and ‖Sng− Pn‖Λn <
θ

Kn
.

Hence,
‖ f − Pn‖L < θ and ‖g− TnPn‖L < θ.

Thus, Pn ∈ U ∩ T−nV for all n > n0 and T is a mixing operator as we wanted to
prove.

(iii) Let b
1−λ = ( b1

1−λ1
, . . . , bN

1−λN
) where, if bj = 0 and λj = 0 for some

j = 1, . . . , N, we will understand that
bj

1−λj
= 0. Then b

1−λ is a fixed point of φ,
and thus

Tn f
( b

1− λ

)
= λn(n−1)/2αDnα f

( b
1− λ

)
.

Applying the Cauchy estimates we obtain∣∣∣Tn f
( b

1−λ

)∣∣∣6 |λα|n(n−1)/2
∣∣∣Dnα f

( b
1−λ

)∣∣∣6 |λα|n(n−1)/2(nα)!
rn|α| sup

‖z‖6r
| f (z)| −→

n→∞
0.

Since the evaluation at the vector b
1−λ is a continuous functional, this implies that

the orbit of f under T is not dense.
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Notice that in case (ii) of Theorem 3.4 we do not know if the operator Cφ ◦Dα

is strongly mixing in the Gaussian sense or even frequently hypercyclic. If |λi| 6
1 for 1 6 i 6 N, we are able to show that the operator is frequently hypercyclic.
To achieve this we prove that Cφ ◦ Dα is Runge transitive.

DEFINITION 3.9. An operator T on a Fréchet space X is called Runge transi-
tive if there is an increasing sequence (pn) of seminorms defining the topology of
X and numbers Nm ∈ N, Cm,n > 0 for m, n ∈ N such that:

(i) for all m, n ∈ N and x ∈ X,

pm(Tnx) 6 Cm,n pn+Nm(x);

(ii) for all m, n ∈ N, x, y ∈ X and ε > 0 there is some z ∈ X such that

pn(z− x) < ε and pm(Tn+Nm z− y) < ε.

The concept of Runge transitivity was introduced by Bonilla and Grosse-
Erdmann in [7]. They proved in Theorem 3.3 of [7] that every Runge transitive
operator on a Fréchet space is frequently hypercyclic. They also showed that
every translation operator on H(C) is Runge transitive. However, the differenti-
ation operator on H(C) is not Runge transitive, even though we know that it is
strongly mixing in the Gaussian sense. Now, we prove that some of the operators
which are included in the case (ii) are frequently hypercyclic.

PROPOSITION 3.10. Let T be the operator on H(CN), defined by T f (z) = Cφ ◦
Dα f (z), with α 6= 0, φ(z) = (λ1z1 + b1, . . . , λNzN + bN) and λi 6= 0 for all i, 1 6
i 6 N. Then, if |λi| 6 1 for every i, 1 6 i 6 N and we have that bj 6= 0 and λj = 1 for
some j, 1 6 j 6 N, then T is Runge transitive.

Proof. Define the increasing sequence of seminorms

pm( f ) = sup
∏N

i=1 B(0,ri(m))

| f (z)|,

where the radius ri(m) are defined as follows:

ri(m) =

{
|bi|m if bi 6= 0,
m if bi = 0.

We will prove that both conditions of the Definition 3.9 are satisfied with Nm =
m+1. For the first condition, we proceed as in the proof of part (iii) of Theo-
rem 3.4. We will apply several times the Cauchy inequalities (3.4) with εi de-
fined as

εi =

{ |bi |
2 if bi 6= 0,

1
2 if bi = 0,

and in each step we divide it by 2. So, we get that

pm(Tn f ) 6
2(n(n+1)/2)(|α|+N)α!n

(2π)nNε
n(α1+1)
1 · · · εn(αN+1)

N

sup
Λ

| f (z)|,
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where Λ = ∏ B
(

φn
i (0), |λi|nri(m) + εi ∑n−1

k=0
|λi |k

2n−k−1

)
.

Since |λi| 6 1 for every i, 1 6 i 6 N, we obtain that

|φn
i (0)| =

∣∣∣bi

n−1

∑
k=0

λk
i

∣∣∣ 6 |bi|n,

and that

|λi|nri(m) + εi

n−1

∑
k=0

|λi|k
2n−k−1 6 ri(m) + 2εi.

From here it is easy to prove that Λ ⊆ ∏ B(0, ri(n + m + 1)). Thus, if we denote

Cm,n =
2(n(n+1)/2)(|α|+N)α!n

(2π)nNε
n(α1+1)
1 · · · εn(αN+1)

N

,

we get that

pm(Tn f ) 6 Cm,n pn+m+1( f ).

Suppose that ε is a positive number, n and m are two integer numbers and
that f , g are two holomorphic functions on H(CN), we want to prove that there
exists some function h ∈ H(CN) such that

pn( f − h) < ε and pm(Tn+m+1h− g) < ε.

Similarly, for the second condition we can estimate pm(Tn+m+1h− g) in the same
way we did previously by making use of the right inverse for T. We get that

pm(Tn+m+1h− g) 6 C sup
Γ

|Sn+m+1g− h|

where C is some positive constant and

Γ = ∏ B
(

φn+m
i (0), |λi|n+m+1ri(m) + εi

n+m

∑
k=0

|λi|k
2n−k−1

)
.

To assure the existence of such function h, by Runge’s Theorem 3.2, it is
enough to prove that Γ ∩∏ B(0, ri(n)) = ∅. We study this set in the j-th coordi-
nate. We get that

Γj = B(bj(n + m), rj(m) + 2ε j) = B(bj(n + m), |bj|(m + 1)),

which is disjoint from B(0, |bj|n). Then, we have proved that the operator T is
Runge transitive, hence it is frequently hypercyclic.
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4. THE NON-DIAGONAL CASE

We are now interested in the case in which the automorphism φ(z) = Az +
b, is given by any invertible matrix A ∈ CN×N . Let v 6= 0 be any vector in CN

and let T be the operator on H(CN) defined by

T f (z) = Cφ ◦ Dv f (z) = Dv f (Az + b),

where Dv f is the differential operator in the direction of v,

Dv f (z0) = lim
s→0

f (z0 + sv)− f (z0)

s
= ∇ f (z0) · v = d f (φ(z0))(v).

The next two remarks show that we may consider a simplified version of the
operator T.

REMARK 4.1. We can assume that the matrix A is given in its Jordan form.
Indeed, let Q be an invertible matrix in CN×N such that A = QJQ−1, where J
is the Jordan form of A. Also let c = Q−1b and denote Q∗( f )(z) = f (Qz) for
f ∈ H(CN). Thus, we have that

Q∗(Cφ ◦ Dv f )(z) = ∇ f (AQz + b) · v.

If we denote ψ(z) = Jz + c and w = Q−1v then,

(Cψ ◦ Dw)Q∗( f )(z) = ∇ f (Q(Jz + c)) ·Qw = ∇ f (AQz + b) · v.

We have proved that the following diagram commutes:

H(CN)
Cφ◦Dv //

Q∗

��

H(CN)

Q∗

��
H(CN)

Cψ◦Dw

// H(CN)

This shows that Cφ ◦ Dv is linearly conjugate to Cψ ◦ Dw.

REMARK 4.2. We can assume that b = 0 if the affine linear map φ has a fixed
point z0 = φ(z0). Indeed, if we denote ϕ(z) = Az then,

τz0(Cφ ◦ Dv)( f )(z)=Dv( f )(A(z + z0) + b)=τz0 Dv( f )(Az)=(Cϕ ◦ Dv)τz0( f )(z).

We have that the following diagram commutes:

H(CN)
Cφ◦Dv //

τz0
��

H(CN)

τz0
��

H(CN)
Cϕ◦Dv

// H(CN)

We conclude that Cφ ◦ Dv is linearly conjugate to Cϕ ◦ Dv.
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The first two results of this section deal with affine transformations that
have fixed points.

PROPOSITION 4.3. Let A ∈ CN×N be an invertible matrix and let v be a nonzero
vector in CN . Suppose that the affine linear map φ(z) = Az + b has a fixed point and
that

lim
k→∞

k!
k−1

∏
i=0
‖Aiv‖ < +∞.

Then the operator Cφ ◦ Dv acting on H(CN) is not hypercyclic.
Consequently, Cφ ◦ Dv is not hypercyclic if v belongs to an invariant subspace M

of A such that the spectral radius of the restriction, r(A|M), is less than 1. This happens
in particular if r(A) < 1 or if v is an eigenvector of A associated to an eigenvalue of
modulus strictly less than 1.

Proof. We denote by dk f (z) to the k-th differential of a function f at z, which
is a k-homogenous polynomial, and we denote by (dk f )∨(z) to the associated
symmetric k-linear form.

It is not difficult to see that the orbits of the operator Cφ ◦ Dv are deter-
mined by

(Cφ ◦ Dv)
k f (z) = (dk f )∨(φkz)(v, Av, . . . , Ak−1v).

Assume that z0 is a fixed point of φ, then applying the Cauchy’s inequalities
we get

|(Cφ ◦ Dv)
k f (z0)| = |(dk f )∨(φkz0)(v, Av, . . . , Ak−1v)|

= |(dk f )∨(z0)(v, Av, . . . , Ak−1v)| 6 k!
k−1

∏
i=0
‖Aiv‖ sup

|z−z0|<1
| f (z)|.

Therefore {(Cφ ◦ Dv)k f (z0)} is a bounded set of C. Since the evaluation at
z0 is continuous, Cφ ◦ Dv cannot have dense orbits.

For the last assertion, first note that if J = Q−1 AQ is the Jordan form of A,
we have that w = Q−1v belongs to the invariant subspace Q−1M of J and that
r := r(J|Q−1 M) < 1. By Remarks 4.1 and 4.2 it suffices to prove that CJ ◦Dw is not
hypercyclic.

It is not difficult to show that for every i > N,

‖Jiw‖ 6 cri−N iN‖w‖,
where c is a constant that depends only on r and N. Therefore,

k!
k−1

∏
i=0
‖Jiw‖ 6 k!

N−1

∏
i=0
‖Jiw‖

k−1

∏
i=N

cri−N iN‖w‖

6 (k!)N+1‖J‖(N+1)N/2ck−N‖w‖kr(k−N)(k−N−1)/2 → 0,

which implies that CJ ◦ Dw is not hypercyclic by the first part of the proposi-
tion.
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In contrast with the previous result, if the matrix A is expansive when
restricted to an invariant subspace then the operator is strongly mixing in the
Gaussian sense. This assumption is similar to the hypothesis of the results in
the previous sections. Indeed, in the one dimensional case we have that φ(z) =
λz + b and if |λ| > 1, then the operator Cφ ◦ D is strongly mixing in the Gauss-
ian sense. Here, the linear part of the composition operator is expansive. This
situation still holds in the diagonal case in H(CN). In this last case, we have that
φ(z1, . . . , zN) = (λ1z1 + b1, . . . , λNzN + bN). Suppose that α is a multi-index of
modulus one, i.e. that Dα is a partial derivative, then the hypothesis |λα| > 1
turns out to be exactly the same as imposing that the linear part of φ is expansive
on the subspace spanned by α. The precise result may be stated as follows.

PROPOSITION 4.4. Let A ∈ CN×N be an invertible matrix and let v 6= 0 be a
vector in CN . Suppose that the affine linear map φ(z) = Az + b has a fixed point and
that v belongs to a subspace M that reduces A and such that ‖(A|M)−1‖ < 1. Then the
operator Cφ ◦ Dv acting on H(CN) is strongly mixing in the Gaussian sense.

Proof. We will show that the hypothesis of the Theorem 1.5 are fulfilled,
taking as dense sets the polynomials in N complex variables. It is clear that ∑

n
Tn f

converges unconditionally for every polynomial f . Now we will define a right
inverse for Cφ ◦Dv, but first we set some notation. Let us denote the fixed point of
φ by z0. Let us denote by π1 to the orthogonal projection over M, π2 = I−π1 the
orthogonal projection over M⊥. Set µ(z) = 〈z,v〉

‖v‖2 . We have that z 7→ µ(z)v is the
orthogonal projection over span{v}, and we denote π̃ = π1 − µ(z)v. Finally, set
φi(z) = Az + πi(b), for i = 1, 2. Since, M reduces A, we have that φi is invertible
and that πi(z0) is a fixed point of φi, for i = 1, 2.

We define now for each g ∈ H(CN),

Rg(z) =

µ(z)∫
µ(z0)

g(φ−1
1 (tv + π̃(z)) + π2(z))dt,

and C(g)(z) = g(π1(z) + φ−1
2 (π2(z))). Note that R ◦ C = C ◦ R. Finally, let

S = C ◦ R. Observe that, Sg(z) =
µ(z)∫

µ(z0)

g(φ−1(tv+ π̃(z) +π2(z)))dt. We have that

DvSg(z)= lim
s→0

Sg(z + sv)− Sg(z)
s

= lim
s→0

1
s

[µ(z+sv)∫
µ(z0)

g(φ−1(tv+π̃(z)+π2(z)))dt−
µ(z)∫

µ(z0)

g(φ−1(tv+π̃(z)+π2(z)))dt
]
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= lim
s→0

1
s

µ(z)+s∫
µ(z)

g(φ−1(tv + π̃(z) + π2(z)))dt

= g(φ−1(µ(z)v + π̃(z) + π2(z))) = g(φ−1z).

Thus, [Cφ ◦ Dv] ◦ Sg = g for every g ∈ H(CN). To conclude the proof we need to
show that ∑

n
Sng converges unconditionally for every polynomial g.

First we will bound the supremum of |Rg| on B(π1z0, r) × B(π2z0, s), for
a fixed polynomial g. Suppose that z ∈ B(π1z0, r) × B(π2z0, s) and that t ∈
[µ(z0), µ(z)] i.e. t lives in the complex segment from µ(z0) to µ(z). Then we
have that

‖tv+π̃(z)−π1z0‖2=‖(t−µ(z0))v+π̃(z−z0)‖2= |t−µ(z0)|2‖v‖2+‖π̃(z−z0)‖2

6 |µ(z)− µ(z0)|2‖v‖2 + ‖π̃(z− z0)‖2 = ‖π1(z− z0)‖2 < r2.

Also, suppose that σ := ‖(A|M)−1‖ < 1. We get that

‖φ−1
1 (π1(z))− π1(z0)‖ = ‖φ−1

1 (π1(z))− φ−1
1 (π1(z0))‖

= ‖A−1(π1(z)− π1(b))− A−1(π1(z0)− π1(b))‖

6 ‖(A|M)−1‖‖π1(z)− π1(z0)‖ = σr.

Gathering the previous statements we get that

|Rg(z)| 6 |µ(z)− µ(z0)| sup
t∈[µ(z0),µ(z)]

|g(φ−1
1 (tv + π̃(z)) + π2(z))|

6
r
‖v‖2 sup

w∈B(π1z0,r)×B(π2z0,s)
|g(φ−1

1 (π1(w)) + π2(w))|

6
r
‖v‖2 sup

w∈B(π1z0,σr)×B(π2z0,s)
|g(w)|.

Thus, we have proved that

sup
B(π1z0,r)×B(π2z0,s)

|Rg| 6 r
‖v‖2 sup

B(π1z0,σr)×B(π2z0,s)
|g|.

Following by induction we obtain that

sup
B(π1z0,r)×B(π2z0,s)

|Rng| 6 r
‖v‖2 sup

B(π1z0,σr)×B(π2z0,s)
|Rn−1g|

6
rn

‖v‖2n σn(n−1)/2 sup
B(π1z0,σnr)×B(π2z0,s)

|g|.

Finally, to conclude the proof we compute sup
B(π1z0,r)×B(π2z0,s)

|Sng(z)|:

sup
B(π1z0,r)×B(π2z0,s)

|Sng(z)| = sup
B(π1z0,r)×B(π2z0,s)

|RnCng(z)|
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6
rn

‖v‖2n σn(n−1)/2 sup
B(π1z0,σnr)×B(π2z0,s)

|Cng(z)|

6
rn

‖v‖2n σn(n−1)/2 sup
B(π1z0,σnr)×φ−n

2 (B(π2z0,s))
|g(z)|.

Since σ < 1, we have proved that ∑
n

Sng converges unconditionally for every

polynomial g. Hence the operator Cφ ◦ Dv is strongly mixing in the Gaussian
sense, as we wanted to prove.

We turn now our discussion to the cases in which the affine linear map
φ(z) = Az + b does not have a fixed point. This is equivalent to say that b /∈
Ran(I − A). Thus, 1 belongs to the spectrum of A. Then the Jordan form of A,
which we denote by J, has a sub-block with ones in the principal diagonal and
the first sub-diagonal and zeros elsewhere. It is easy to see that there exists some
k ∈ N, k 6 N such that the canonical vector ek does not belong to Ran(I − J) and
such that bk 6= 0. This argument will be the key to show that φ is a runaway map,
hence the operator Cφ ◦ Dv is topologically transitive. The proof of this result is
in the spirit of part (ii) of Theorem 3.4.

PROPOSITION 4.5. Let A ∈ CN×N be an invertible matrix and let v 6= 0 be a
vector in CN . Suppose that the affine linear map φ(z) = Az + b does not have a fixed
point. Then the operator Cφ ◦ Dv acting on H(CN) is mixing.

Proof. Due to the previous observations it is enough to prove that Cψ ◦Dw is
topologically transitive if ψ(z) = Jz + b with b /∈ Ran(I − J) and w ∈ CN , w 6= 0.
We will denote T = Cψ ◦ Dw.

Given KU , KV two compact sets of CN , hU , hV two holomorphic functions
in H(CN) and θ a positive real number, we want to prove that there exists k ∈ N
and g ∈ H(CN) such that

(4.1) ‖g− hU‖KU < θ and ‖(Cψ ◦ Dw)
kg− hV‖KV < θ.

We will use Runge’s theorem to show the existence of such function g. As
before, we denote by S the right inverse of Dw. We have that

sup
KV

|Cψ ◦ Dwg(z)− hV(z)| = sup
KV

|Cψ(Dwg(z)− Cψ−1 hV(z))|

= sup
Cψ(KV)

|Dw(g(z)− Cψ−1 hV(z))|

= sup
J(KV)+b

|Dw(g(z)− S ◦ Cψ−1 hV(z))|

6
‖w‖N

εN
1

sup
J(KV)+Bε1 (b)

|g(z)− S ◦ Cψ−1 hV(z)|.
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Following in this way inductively, we will get an estimate of ‖(Cψ◦Dw)kg−
hV‖KV ,

sup
KV

|(Cψ ◦ Dw)
l g(z)− hV(z)| 6 α(l) sup

Al

|g(z)− (S ◦ Cψ−1)lhV(z)|,

with α(l) > 0 and Al = Jl(KV) +
l

∑
i=1

Ji(B(0, εi)) +
l

∑
i=1

Ji(b).

It is enough to find some l ∈ N such that KU ∩ Al = ∅. Without loss of gen-
erality we can assume that e1 /∈ Ran(J − I) and b1 6= 0 (see the comments before
the proposition). This means that J acts like the identity in the first coordinate.

Suppose that KV ⊂
N
∏
i=1

B(0, ri), then if we project in the first coordinate and

choose proper εi > 0 we obtain

[Al ]1 = [Jl(KV)]1 +
l

∑
i=1

[Ji(B(0, εi))]1 +
l

∑
i=1

[Ji(b)]1

⊂ B(0, r1) + B
(

0, ∑l
i=1εi

)
+ lb1 ⊂ B(0, R) + lb1.

Thus, we will be able to find l0 ∈ N such that [KU ]1 ∩ [Al ]1 = ∅ for all l > l0.
Therefore, by Runge’s theorem, there exists some gl ∈ H(CN) such that (4.1) is
satisfied for all l > l0. We have proved that the operator Cψ ◦Dw is mixing, as we
wanted to prove.
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