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ABSTRACT
Although it has been argued that mechanistic explanation 
is compatible with abstraction (i.e., that there are abstract 
mechanistic models), there are still doubts about whether 
mechanism can account for the explanatory power of 
significant abstract models in computational neuroscience. 
Chirimuuta has recently claimed that models describing 
canonical neural computations (CNCs) must be evaluated 
using a non-mechanistic framework. I defend two claims 
regarding these models. First, I argue that their prevailing 
neurocognitive interpretation is mechanistic. Additionally, a 
criterion recently proposed by Levy and Bechtel to legitimize 
mechanistic abstract models, and also a criterion proposed 
by Chirimuuta herself aimed to distinguish between causal 
and non-causal explanation, can be employed to show why 
these models are explanatory only under this interpretation 
(as opposed to a purely mathematical or non-causal 
interpretation). Second, I argue that mechanism is able to 
account for the special epistemic achievement implied by 
CNC models. Canonical neural components contribute to an 
integrated understanding of different cognitive functions. 
They make it possible for us to explain these functions by 
describing different mechanisms constituted by common 
basic components arranged in different ways.

1. Introduction

Mechanism is an influential view about scientific explanation whose main thesis 
is that a model explains a given phenomenon only if it accurately describes the 
mechanism underlying it. This thesis has been interpreted by both advocates  
(e.g., Craver & Kaplan, 2011; Kaplan, 2011; Kaplan & Craver, 2011) and critics 
(e.g., Barberis, 2013; Haimovici, 2013) of mechanism as implying that the explan-
atory power of a model is increased as we include more relevant information 
about the mechanism underlying its target phenomenon. Against this claim, 
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mechanists (e.g., Boone & Piccinini, 2016b; Levy & Bechtel, 2013) have argued 
that mechanism is compatible with abstraction or, in other words, that abstract 
models can be considered fully explanatory. However, there are still doubts about 
whether mechanism can account for the explanatory power of relevant abstract 
models in computational neuroscience. Chirimuuta (2014) has recently claimed 
that we need a non-mechanistic framework to understand how models describ-
ing canonical neural computations (CNCs) explain. CNCs are computational 
modules that are implemented recurrently in various neural systems to perform 
different informational tasks. Given the wide impact that their canonical char-
acter implies for our understanding of neural processing, these models deserve 
a thorough evaluation.

In this paper, I defend two claims. First, I argue that the prevailing interpre-
tation of these models in computational neuroscience is mechanistic and that 
there are good reasons to conclude that they are explanatory only under this 
interpretation (as opposed to a purely mathematical one). Second, I claim that 
mechanism is able to account for the special contribution of CNC models to the 
study of neural processing. The discovery of CNCs makes it possible for us to 
develop an integrated understanding of many different cognitive functions. I will 
argue that this integration can be accounted for by the componential character 
of mechanistic explanation.

In section 2, I present the mechanistic approach to explanation and its pre-
sumed implication regarding the relation between explanatory power and mech-
anistic detail. I describe the criterion proposed by Levy and Bechtel (2013) as a 
way to elude this implication within a mechanistic framework. Finally, I consider 
an argument made by Chirimuuta (2014) aimed at showing that even if we accept 
mechanistic abstraction, mechanism is not able to account for the explanatory 
power of abstract models that describe CNCs. I offer a more elaborate version 
of this argument, employing Chirimuutaʼs more recent characterization of non-
causal explanation. Chirimuuta (in press) takes purely mathematical models con-
sidered by Lange (2013) as paradigm cases of non-causal explanation. In section 
3, I argue that the prevailing interpretation of CNC models is not purely math-
ematical in this sense but involves the description of causal relations between 
components of a mechanism. Also, I claim that these models can be considered 
explanatory only under this causal interpretation. Counterfactual differences in 
CNCs are difference makers for the relevant explananda only because CNCs are 
constituted by causal and not merely mathematical relations.

In section 4, I argue that mechanism can account for the special epistemic 
achievement implied by CNC models. It has been argued that one significant 
virtue of mechanism is that it can account for the increasing integration between 
different explanations produced by the development of cognitive neuroscience 
(Boone & Piccinini, 2016a). I argue that CNC models can be embedded in a hier-
archy of mechanistic explanations of the kind considered by Boone and Piccinini 
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(2016a) and, more importantly, that they can also contribute to a horizontal 
integration of models at the same level or degree of abstraction. The discovery 
of canonical components provides a language to describe different mechanisms 
and explain different tasks in a unified manner, employing (the description of) 
a common set of basic operations. This kind of integration, which is taken by 
proponents of CNCs to constitute their special epistemic value, can be accounted 
for by the componential character of the mechanistic explanations in which 
CNCs are involved.

2. Mechanism, abstraction, and causal organization

To understand the relation between CNCs and the mechanistic framework, it is 
crucial to first characterize the notions of mechanism and mechanistic explana-
tion. A mechanism can be defined as “a structure performing a function in virtue 
of its component parts, component operations, and their organization” (Bechtel 
& Abrahamsen, 2005, p. 423). Mechanisms are active structures that perform 
functions, produce regularities, underlie capacities, or exhibit phenomena, doing 
so in virtue of the organized interaction among the mechanism’s component parts 
and the processes or activities these parts carry out (Kaplan, 2011).

According to mechanism, the explanatory force of the model for a given phe-
nomenon depends on how accurately it describes the underlying mechanism. 
This commitment is expressed by Kaplan’s “model-mechanism-mapping” (3M) 
condition:

3M. A model of a target phenomenon explains that phenomenon to the extent that 
(a) the variables in the model correspond to identifiable components, activities, and 
organizational features of the target mechanism that produces, maintains, or underlies 
the phenomenon, and (b) the (perhaps mathematical) dependencies posited among 
these (perhaps mathematical) variables in the model correspond to causal relations 
among the components of the target mechanism. (Kaplan, 2011, p. 347)

Although I will not enter into the debate about the characterization of the notion 
of model, a few terminological clarifications are in order. I will follow the authors 
relevant for the present discussion (e.g., Boone & Piccinini, 2016a; Chirimuuta, 
2014; Chirimuuta, in press; Kaplan, 2011; Levy & Bechtel, 2013) in using the term 
“description” to refer to models. I will assume that (at least some) models are 
descriptions of a relevant mechanism. I interpret the 3M requirement as implying 
the idea that some explanatory models can be descriptions constituted by a set of 
symbols and relations between them whose parts can be mapped onto properties 
of a target mechanism. I will not defend this “descriptivist” view of models here. 
I will take it as a common background assumption shared both by advocates and 
critics of mechanism in the present discussion.1

A further notion that is relevant for what follows is that of abstraction. I will 
follow Levy and Bechtel (2013) and Piccinini (2015) in the idea that abstraction 
is mere information omission. To relate this idea to the 3M requirement, I will 
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not use “information” in some usual technical sense (as in Shannonʼs information 
theory) but I will identify the information a model carries with the set of mapping 
relations between model parts and target system properties. When I say that a 
given model is abstract regarding a given property P (that it omits information 
about P), I mean that there is no part of the model that maps onto an instance of 
P in the target system or mechanism.2

Kaplan (2011) considers mechanism to have a commitment in addition to 
3M. It requires that the description of the mechanism be as complete as possible. 
Kaplan claims that the more precise and detailed the model of a phenomenon is, 
the better it explains. One can improve the quality of an explanation by includ-
ing more mechanistic details in the model, for example, including additional 
variables to represent (or that map onto) additional components of the mecha-
nism. Chirimuuta (2014) calls this requirement the more details the better (MDB). 
MDB implies that models that involve some kind of abstraction, that omit some 
information about the target mechanism (e.g., models that describe only high 
level properties), are less explanatory than more detailed descriptions. This is 
problematic because there are many models that seem to be fully explanatory 
despite the fact that they constitute very selective depictions of the mechanisms 
underlying relevant phenomena.

For instance, Levy and Bechtel (2013) have recently considered a set of abstract 
models developed by Alon (2007a, 2007b) and colleagues to explain the regula-
tion of gene expression, principally in bacteria and yeast. The models describe 
the causal organization underlying this behavior in an abstract way, employing 
a set of tools from graph theory. On a graph, the components are represented as 
nodes and their operations as edges. In many cases, a node only indicates that a 
certain element in the system exists and that it has some basic response proper-
ties regarding other elements (especially the conditions under which it becomes 
active). Edges typically represent no more than the direction and magnitude of 
the interaction between two nodes and lack many other pieces of information 
(e.g., whether the interaction is mechanical, chemical, or electrical). With these 
tools, Alon models patterns of connections among a small numbers of units that 
have distinctive consequences for the behavior of a biological network. He calls 
these patterns “network motifs.”

Alon proposes, for example, a graph to represent the mechanism underlying 
regulation of arabinose in bacteria. This mechanism is represented by three nodes 
and three edges. An initial transcription factor X regulates a second transcription 
factor Y, and both of them regulate an operon Z that synthesizes the enzymes 
employed in arabinose metabolism. As Z requires both X and Y to be activated, 
the relation between Z, on the one side, and X and Y, on the other, is represented 
by a Boolean AND gate (Figure 1). cAMP (Sx) signals the absence of glucose (and 
therefore the need to use arabinose), but this signal is noisy. Pulses of cAMP are 
briefly triggered by the bacterium transitions between different growth conditions. 
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Only when the cAMP signal is longer than the typical spurious pulse it can trigger 
not only the transcription factor CRP (X) but also AraC (Y) and therefore cause 
the arabinose operon (Z) to begin synthesis of key enzymes (Mangan, Zaslaver, 
& Alon, 2003). As predicted by Alon, the motif is useful in this system as a signal 
persistence detector.

Levy and Bechtel (2013) make explicit the criterion behind the highly selective 
depiction of the underlying mechanism that constitutes Alon’s model. Based in a 
general way on Strevens’s (2008) approach to abstract causal explanations, they 
argue that the model aims to track those features of the system that make a differ-
ence to the behavior being explained, namely, persistence detection. They claim 
that a model can explain by describing the minimum conditions that constitute the 
organizational schema sufficient to produce a given behavior: “Altering the details 
of the components (as long as they meet the minimum conditions for fulfilling the 
role in the organizational schema) does not change the behavior, whereas altering 
the organization (changing what is connected to what) does” (p. 253). We can say 
that an abstract model is explanatory if it omits only information about features 
that can be changed or replaced without modifying the behavior of the system3. 
In what follows, I will call this criterion LB.

Recently, Chirimuuta (2014) has argued that even if we accept that mechanism 
and abstraction are compatible, there are relevant abstract models in computa-
tional neuroscience whose explanatory power cannot be accounted for by this 
approach. One of the models she evaluates is the normalization model proposed 
by Heeger (1992). This is a quantitative model of the response properties of simple 
cells in the primary visual cortex that respond to specific stimuli (bars) in specific 
orientations. Among other things, this model can explain the fact, implied by 
the phenomenon of cross-orientation suppression (COS) (Bonds, 1989), that the 

Figure 1. From Mangan and colleagues (2003). The graph represents the motif responsible for 
arabinose regulation.
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response of simple cells is nonlinear. COS occurs when a non-preferred stimulus 
(e.g., a horizontal bar) of a simple cell in V1 is presented at the same time as the 
preferred stimulus (e.g., a vertical bar), and the response of the cell is smaller 
than its response to the preferred stimulus alone. This fact cannot be accounted 
for by the original model proposed by Hubel and Wiesel (1962). The basic idea 
of Heeger’s model is that each simple cell has a linear excitatory input from the 
lateral geniculate nucleus (LGN) but also an inhibitory input from adjacent neu-
rons in the visual cortex. The relation between these inputs and their output is 
defined by the equation:

Where Ēi describes the normalized response of a simple cell, t stands for time, 
σ2 characterizes a parameter that governs the contrast at which the neuron is 
saturated, and ΣE describes the sum of responses of all simple cells in the local 
population. The normalizer term ΣE in the denominator can explain phenomena 
such as COS. Carandini and Heeger (2012) present normalization as a canonical 
neural computation (CNC). These are defined as standard computational modules 
that apply the same operations in a variety of contexts. Other examples of CNC are 
linear filtering, recurrent amplification, associative learning, and exponentiation. 
They are presented as a toolbox of computational operations that the brain applies 
in different sensory modalities and anatomic regions and that can be described at 
a level of abstraction above their bio-physic implementation.

Chirimuuta claims that the explanatory power of the models that describe 
CNCs cannot be accounted for within mechanism. On the contrary, these models 
can be considered explanatory only if they participate in efficient coding expla-
nations that cannot be evaluated by mechanistic norms. These are a kind of the 
optimality explanations often found in biology, which explain a phenomenon by 
showing that it constitutes the optimal strategy to solve a given problem. This 
strategy can usually be specified by a purely mathematical description without 
any reference to its bio-physic implementation (Rice, 2015).

Chirimuuta (2014) concedes that there are abstract explanatory mechanistic 
models such as that considered by Levy and Bechtel. These are what she calls 
“A-minimal models,” which highlight the most relevant causal features or difference 
makers of a mechanism. But even conceding abstract mechanistic explanations, 
she insists that models that describe CNCs are non-mechanistic. Therefore, the 
non-mechanistic character of CNCs cannot be attributed merely to their abstract 
character but must depend on some form of abstraction that is problematic for 
mechanism. Indeed, Chirimuuta considers that some features of the normalization 
model imply that (if it were evaluated by the mechanistic norms for explanation) 
it should be considered a mechanism sketch. This is a kind of model commonly 
contrasted with mechanistic models. A sketch is a model that describes some 

Ē
i
(t) =

E
i
(t)

𝜎2 + Σ
i
E
i
(t)
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components of the mechanism underlying a phenomenon (and some of their 
relations) but omits details that are not yet known (Machamer, Darden, & Craver, 
2000).

Chirimuuta (2014) points out that the normalization model gives a quantita-
tively accurate prediction of cross-orientation suppression and numerous other 
phenomena (Heeger, 1992). The model is able to make these predictions by 
merely describing the suppressive effect, ΣE, which characterizes the underlying 
inhibitory mechanism in a very schematic way. However, pace Chirimuuta, this 
is not sufficient to affirm that the model is a sketch. The information omitted 
from the model is not unknown. Shunting inhibition and synaptic depression 
are well studied mechanisms that underlie normalization, and we even know 
the specific way in which they contribute to its implementation (see section 4). 
The abstract character of the normalization model is not due to an imprecise 
knowledge of the relevant mechanism and therefore cannot be considered a 
mechanism sketch.

Chirimuuta considers a further form of abstraction that is problematic for 
mechanism. Although she does not address the normalization model, Chirimuuta 
(in press) claims that neurocognitive models providing efficient coding explana-
tions cannot be considered mechanistic because they are not causal. Even mech-
anists that defend abstract models consider that an explanatory model cannot 
omit all information about causal properties of a relevant mechanism. Levy and 
Bechtel (2013) affirm that mechanistic explanations address organized systems. A 
system is organized with respect to a given behavior of a phenomenon if different 
components of the system make a different causal contribution to the behavior 
and the component’s differential contributions are integrated (that is, each com-
ponent interacts in particular ways with a subset of the other components). An 
explanation is mechanistic only if it describes causal organization, that is, only 
if it describes the different causal contributions of the mechanism underlying a 
phenomenon and how these contributions are integrated.

Chirimuuta (in press) develops some of Woodward’s ideas to distinguish 
between causal and non-causal explanation. She claims that Woodward’s approach 
to explanation, which is accepted by mechanists (e.g., Kaplan, 2011; Kaplan & 
Craver, 2011), can be generalized beyond causal explanation. The main thesis of 
this interventionist theory of causal explanation is that the explanatory power of a 
model is given by its ability to address what-if-things-had-been-different questions 
or w-questions. Woodward considers that to address these questions “a model must 
describe the conditions that ‘make a difference’ to the explanandum in the sense 
that changes in these factors lead to changes in the explanandum” (Woodward, 
in press, p. 5). These changes are characterized as the result of an intervention. 
An intervention is “an idealized, unconfounded experimental manipulation of 
one variable which causally affects a second variable only via the causal path 
running between these two variables” (Woodward, 2013, p. 46). It is relevant 
to notice the similarity between this requirement and LB. As I mentioned, LB 
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affirms that a model can explain by referring only to the features of a mechanism 
that are difference makers in this sense, that is, features whose modification cause 
modifications in the explanandum.

As Chirimuuta points out, Woodward himself suggests that a model can address 
w-questions without referring to causal properties (Woodward, 2003, p. 221). The 
example mentioned by Woodward is that of the hypothesis that the stability of 
the planets is counterfactually dependent on the four-dimensional structure of 
space-time. The w-question of “what if space-time had been six-dimensional?” 
associated with this hypothesis has no associated causal intervention. There seems 
to be no possible (idealized or otherwise) intervention that could result in the 
modification of the structure of space-time. But the hypothesis does provide an 
answer to this question because it implies that if things had been different, then 
planetary orbits would indeed be less stable. The claim that the description of a 
CNC is not mechanistic can then be interpreted as the claim that these descriptions 
do not include causal information to address relevant w-questions.

Although Chirimuuta (2014) does not claim that CNC models provide non-
causal explanations, she considers that their explanatory power comes from their 
ability to address w-questions. More importantly, she gives us an idea of what 
the relevant w-question for these models should look like. These w-questions 
concern the set of counterfactual dependences between the input of the system 
that runs a CNC (e.g., sensory information) and/or the system requirements (e.g., 
the task for which the information is needed) and the computational properties 
of the system (e.g., CNCs themselves). The model implies that if the task that the 
system needs to perform and/or its sensory input were different, then the under-
lying computations would also be different. Chirimuuta offers the example of a 
study by Wainwright and colleagues (2002), which shows that the normalization 
parameters are adjusted by variations in the statistics of recent visual input. In 
the following section, I will argue that to address w-questions of this kind, the 
normalization model must be interpreted as providing a causal explanation.

3. Mechanistic abstraction and canonical neural computations

As I mentioned in the previous section, Chirimuuta (in press) points out that the 
difference makers that can be employed to address relevant w-questions regarding 
a phenomenon can be non-causal features described by a model. To provide a 
more accurate characterization of this kind of non-causal model (and compare it 
with what I take to be the correct interpretation of the normalization model) it is 
helpful to consider some paradigmatic cases. Chirimuuta takes the distinctively 
mathematical explanations described by Lange (2013) as typical examples of non-
causal explanations.

According to Lange, a mathematical explanation in empirical science is an 
explanation that depends only on mathematical laws or principles, that is, prin-
ciples that have a stronger modal force than natural laws. To understand how a 
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distinctively mathematical explanation works, let’s consider the example of the 
determination of the mathematical relation between the two current gains β and 
α of an NPN transistor. In the representation of a transistor circuit, we can dis-
tinguish three currents Ic, Ib, and Ie that correspond, respectively, to the currents 
in the collector C, the base B, and the emitter E of the transistor (Figure 2).

The current Ic flows between terminals C and E when the transistor is “on,” 
which happens only when a small current Ib flows into the terminal B. Thus, 
current Ie in E is given by equation (1):

 

The base works as current control input (as a switch). The transistor also possesses 
a gain β, defined by the equation:
 

And another gain α, defined by the equation:
 

From these three equations we can infer the mathematical relation between gains 
β and α (and thus calculate one from the other) in the following way:
 

 

 

 

And finally:
 

The relation between gains β and α is mathematically deduced from the way 
we define them using the transistor currents plus the mathematical relation (1) 
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c
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b
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e
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c
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b
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Figure 2. From horowitz and Winfield (1989). The schematic representation of an NPN transistor.
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that the currents maintain.4 Each step of the derivation is mathematically valid, 
since it is warranted by some arithmetic principle or axiom. This means that the 
implication derived is warranted by principles that have a modal force greater 
than that of a natural law. I agree with Chirimuuta (in press) that the epistemic 
value of these explanations can be accounted for by Woodwardʼs requirement of 
addressing w-questions. I also agree that (at least some of) these w-questions do 
not involve situations that result from causal interventions. We could ask how a 
transistor would behave if the mathematical principle that leads from step 5 to 
6 in the derivation above were false. If this were the case, the relation between 
the two gains would be different. But this difference could not be attributed to 
any causal intervention on a component of the mechanism that constitutes the 
transistor. The relevant mathematical principle is no something on which one 
could causally intervene.

I consider that CNC models are not mathematical models in this sense. They 
do not explain by describing purely mathematical relations, but rather causal 
relations mathematically characterized. To begin, this is their common neurocog-
nitive interpretation. Neural arithmetic is defined by a set of operations in which 
a modulatory input modifies the input–output relation between two neurons or 
neural populations in a given direction (Silver, 2010). Given three responses N1, 
N2, and N3 from three different neurons or neural populations, these responses 
perform an arithmetic operation only if N1 is a response driven by N2 and if the 
input–output relation between N1 and N2 is modulated by N3. An addition occurs, 
for instance, when N3 modulates the relation between N1 and N2 in an additive 
way, that is, when N3 excites (causes an increase in the value of) N1 in such a way 
that the value of N1 is equal to the value of the driving input N2 plus the value of 
the modulating input N3. Although descriptions of neural arithmetic operations 
often have the form of mathematical equations, the arithmetic symbols in these 
descriptions refer to (or are mapped onto) mathematically characterized causal 
relations between neural responses. The addition symbol “+” does not refer to a 
mathematical relation that different variables of the target system have, but to a 
causal relation of additive (as opposed to multiplicative) excitation of the activity 
of one component by another. This causal interpretation can be seen in pioneering 
theoretical work on neural arithmetic. For instance, Blomfield (1974) character-
izes neural arithmetic as operations that a (modulatory) neuron performs on its 
synaptic input. This interpretation is also explicit in more recent development 
on canonical computation. Carandini and Heegerʼs (2012) review of the differ-
ent applications of the normalization model shows that in different instances of 
the equation the denominator refers to an inhibitory input, which modulates the 
output response. In contrast, when a multiplication symbol appears in a CNC 
equation, it does not refer to a relation that can be equivalent to a divisive relation 
(as in a purely mathematical description). For instance, in Reynolds and Heeger’s 
(2009) model of attention, multiplication is an excitatory response of an attention 
field that modulates the output firing rate (see section 4).
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This causal interpretation of CNCs is not only the prevailing one but also the 
one that can be said to have explanatory power. This claim can be motivated by 
the idea underlying LB and Woodward’s requisite that an explanatory model must 
describe the relevant difference makers. In what follows, I will argue that the 
normalization model does pick up difference makers and then show that these 
must be interpreted as causal and not purely mathematical properties. As we have 
seen, the normalization model is employed to explain the phenomenon of cross 
orientation suppression (COS), among others. There are reasons to think that the 
model excludes information about features that are not difference makers regard-
ing this phenomenon and includes information about the properties that are.

First, the non-computational properties underlying normalization are not dif-
ference makers for COS. Mechanisms underlying normalization are not the same 
in different systems and species. For instance, synaptic suppression and shunting 
inhibition are different mechanisms that implement normalization in different 
brain areas. Normalization can produce the nonlinear response of a neural pop-
ulation required by COS even if it is implemented by different circuits or neural 
mechanisms. Second, if divisive normalization did not affect the response of sim-
ple cells in V1, then these would not have the nonlinear properties required to 
produce COS. As I mentioned, these properties are not predicted by the model 
proposed by Hubel and Wiesel, which does not include divisive normalization. 
This means that the model does pick up difference makers regarding COS.

We can interpret the model as mapping onto difference makers only if we 
take these to be causal, and not merely mathematical, properties. If we interpret 
normalization as a purely mathematical description, then it follows that it does 
not refer to difference makers relevant to addressing the w-questions regarding 
its explanandum. COS is an inhibitory phenomenon, in other words, one that 
occurs when a given input decreases a given neural response. This decrease in the 
value of neural activity is explained by normalization because the model describes 
an inhibitory circuit. We have seen that although the normalization model has 
the form of a mathematical equation in that it uses mathematical symbols, the 
symbols do not have their standard mathematical meaning. They represent (or 
are mapped onto) causal (and not solely mathematical) relations. If the model 
represented purely mathematical relations between the relevant variables, then 
it could also be satisfied by an excitatory circuit and, specifically, by a circuit 
that does not perform a divisive inhibition but that does multiplicatively excite 
a neural response. The purely mathematical relations between the variables of 
this excitatory circuit are equivalent to those described by a purely mathematical 
interpretation of the normalization model.

Purely mathematical descriptions have all the implications that can be arith-
metically deduced. If the relations described by the mathematical interpretation 
of the normalization model can be deduced from the mathematical organization 
of an excitatory circuit, then the model does not describe some features that are 
relevant difference makers for COS. In some counterfactual situation in which 
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the response of a simple cell in V1 is not decreased but rather is increased by its 
non-preferred stimulus (that is, some situation in which COS does not occur), 
the mathematical relations between the responses could remain the same as in 
the actual situation. We could describe the circuit in this counterfactual situation 
using the term “Ei” to refer to the simple cell response, the term “Ēi” to refer to its 
driving input, and the term “ΣE” to refer to a modulatory input that multiplica-
tively excites the simple cell. If this is the case, these three variables will still satisfy 
the relations described by the (mathematical interpretation of the) normalization 
equation (that is, Ēi will still be equal to Ei divided by ΣE). This means that in a 
purely mathematical interpretation, the model could not be employed to address 
the w-question of what would happen if COS did not occur. As we saw in section 
2, this is one of the kinds of w-questions that are relevant for CNCs (how would 
the computations change if the task were different). Therefore, if normalization 
is explanatory according to LB and Woodwardʼs requirement, then it cannot 
describe merely mathematical relations, but rather causal relations and their quan-
titative properties.

The purely mathematical description can be contrasted with a description in 
which a mathematical “equation” represents a causal process that implements a 
mathematical function. In this description, the terms on one side of the equa-
tion refer to (are mapped onto) the inputs of the process, and the result on the 
other side refers to the output. If we interpret the normalization model this way, 
then this “equation” describes causal relations mathematically characterized. The 
model represents a causal relation (a divisive inhibition) between an output (the 
normalized response Ēi) and its inputs (the non-normalized response Ei and the 
sum of responses ΣE of all simple cells in the local population). To be satisfied 
by the excitatory circuit, the term Ēi should represent one of its inputs and not 
the output, as it does in the normalization model under this causal interpreta-
tion. Also, ΣE should not appear as a denominator, which indicates an inhibitory 
modulation under this interpretation. The description of the computation would 
change if the behavior were excitatory. Therefore, this interpretation can be said 
to capture the difference makers of the relevant phenomena. This is why both LB 
and Woodward’s criteria motivate a mechanistic interpretation of the modeling 
of neural arithmetic operations that define different CNCs.

One may worry that this is not sufficient to affirm that these models are mech-
anistic or, in other terms, that my argument presupposes conditions for abstract 
mechanistic explanation that are too weak, thus trivializing the notion of a mech-
anistic explanation. CNCs models describe the inputs and outputs of a neural 
system. But mere input–output descriptions are, according to mechanism, phe-
nomenological models. Phenomenological models physically or mathematically 
represent the input–output behavior of a system without revealing anything about 
the underlying mechanisms, merely “saving” the explanandum phenomenon 
(Craver, 2006; Mauk, 2000). Mechanism implies that phenomenological models 
are not (fully) explanatory.
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To provide a mechanistic explanation, a model must not only represent an 
input/output behavior but also satisfy the 3M requirement. A model that satisfies 
3M to some degree is, by definition, not phenomenological. If a model describes 
some of the components and activities underlying an explanandum behavior, then 
it does not merely describe the input–output mapping that defines that behavior. 
CNC models satisfy 3M because the input–output mappings they describe are 
more complex than those required to describe their explananda. For instance, 
the normalization model includes more input variables than those required to 
represent COS. COS is a phenomenon that can be described by the variables that 
refer to the preferred stimulus, the non-preferred stimulus, and the suppressed 
neural response. The variable “ΣE” representing the modulatory input and the 
division symbol “–” that maps onto its suppressive activity are not part of the 
description of phenomenon. They refer to an inhibitory modulation that shapes 
the input–output relation defining the phenomenon.

Furthermore, the main functions that are attributed to neurons exhibiting 
COS, such as stimulus selectivity maximization, are not explained by normaliza-
tion alone but rather by more complex computations. As we will see in the next 
section, normalization is only one computational step for the maximization of 
stimulus selectivity. A sum of inputs performed by a series of linear filters and an 
umbralization process are activities that, together with normalization, explain the 
relevant input–output behavior. More generally, explanation by neural arithmetic 
requires the specification of modulatory inputs (and their operations) that is not 
part of the input–output mapping used to define the phenomenon. This is why 
these models are not phenomenological.5

4. Mechanism and integration

The mechanistic interpretation of the normalization model not only accounts for 
its explanatory power but also for a further epistemic virtue. It has been argued 
that one main virtue of mechanism is that it can account for the increasing inte-
gration between different explanations produced by the development of cognitive 
neuroscience (Boone & Piccinini, 2016a). I claim that CNC models can be inte-
grated with related models in different ways. They can be part of a hierarchy of 
mechanistic explanations of the kind described by Boone and Piccinini (2016a) 
and they can also take part in a horizontal integration of mechanistic models at 
the same degree of abstraction. This last kind of integration is what makes CNC 
models especially valuable for our understanding of neural processing, and this 
depends on the componential character of the mechanistic explanations in which 
(descriptions of) CNCs figure.

Boone and Piccinini (2016a) propose a mechanistic framework to understand 
the reconfiguration of cognitive science produced by the development of cogni-
tive neuroscience. Traditional cognitive science was characterized by a division 
of labor between the study of a functional (or computational and algorithmic) 
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level and the study of an implementation (neural or mechanistic) level. They 
consider that this framework is being replaced by cognitive neuroscience, where 
there is no longer a division of labor. According to the multilevel framework, 
mechanistic explanation of a phenomenon is given by a set of models that are 
not isolated but rather articulated in a hierarchy of mechanistic explanations. 
The description of activities (and organization) of components at a given level 
L0 provides the explanation of activities of components at a subsequent superior 
level L1. In turn, the description of activities (and organization) of components 
at L1 provide the explanation for activities of components at a superior level L2, 
and so on.

Models that describe canonical computations can be said to be integrated in 
this way with related models. The difference maker criterion employed in the 
previous section can motivate a hierarchy of mechanistic explanations in which 
CNC models can be embedded.6 I will argue that the information excluded by the 
criterion as irrelevant for the explanandum of the normalization model refers or 
maps onto the difference makers for normalization itself. The description of neural 
circuits explains computations whose description explains informational tasks. For 
instance, there are specific features of shunting inhibition (one of the mechanisms 
that underlie normalization) that explain why the inhibition is specifically divisive 
(that is, they are difference makers for divisive inhibition).

Shunting inhibitory synapses are often located close to the soma, where their 
conductance can have a large effect on somatic input resistance (and thus spiking) 
because of the proximity to the spike initiation zone. Fast inhibitory transmission 
is typically mediated by GABAa (γ-aminobutyric acid type A) receptors, which 
conduct Cl– and HCO3 ions and often have a reversal potential close to the resting 
potential. The increase in membrane conductance introduced by these synapses 
short-circuits the excitatory post-synaptic potentials (EPSPs) by locally reducing 
the input resistance. These shunting inhibitory conductances scale down EPSPs in 
a multiplicative manner in accordance with Ohm’s law. Classical theoretical work 
(e.g., Blomfield, 1974; Vu & Krasne, 1992) suggests that the arithmetic operations 
resulting from shunting inhibition depend on the size and location of the conduct-
ance. Inhibition may have a divisive effect on the EPSP if the conductance is large 
and located close to the soma, but may have a subtractive effect if the conductance 
is small and spatially distributed (Figure 3). This means that there are features of 
shunting inhibition which, although they are not difference makers for stimulus 
selectivity (and therefore can be excluded from the normalization model), are 
indeed difference makers for normalization (and therefore must be included in 
the model that explains this behavior).

This implies that the difference maker criterion not only motivates the idea 
that CNC models provide mechanistic explanations but also that they take part in 
mechanistic integration. Information omitted from the computational explanation 
of informational tasks can be recycled by the model that explains the computa-
tions themselves. Mechanisms as shunting inhibition are part of a hierarchy in 
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which description of circuits explains computations whose description explains 
informational tasks.

The mechanistic approach to CNCs makes it possible for us to account for 
another kind of integration that I take to be more significant because, as men-
tioned earlier, it constitutes the special value that these models have for our under-
standing of neural processing. Levy and Bechtel (2013) emphasize the abstractness 
of Alon’s models as a feature that is in contrast with a common way of under-
standing mechanistic models. Here, I want to emphasize another characteristic 
of these models, namely that they describe motifs or patterns, that is, abstract 
structures that are recurrently implemented in a system. Alon’s motifs are connec-
tivity patterns that occur in networks or biological circuits much more frequently 
than in random networks (Alon, 2007a, 2007b; Milo et al., 2002; Shen-Orr, Milo, 
Mangan, & Alon, 2002). One of Alon’s contributions is precisely an algorithmic 
procedure to determine the presence of a motif in a biological network (Alon, 
2007a, Chapter 3; Kashtan, Itzkovitz, Milo, Alon, 2004). The presence of recur-
rent components is a common feature in many artificial and biological systems. 
Electronic devices, for example, involve many instantiations of the same type of 
components at different levels (transistors, logic gates, memory registers, etc.). 
Alon maintains that biological systems, such as metabolic networks, also often 
employ the same component types. These components are modules in the sense of 
a set of nodes that interact and have a common function (Alon, 2003). Detection 
of these motifs can be employed to represent complex biological networks, such 
as the complete transcription network of E. coli, in a compact and modular way, 
where each component of the circuit can be identified with a different motif 
(Shen-Orr et al., 2002).

Figure 3.  From Blomfield (1974). Divisive inhibition depends on the size and location of 
conductance.
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Alon (2003) points out that motif detection makes it possible not only to 
unveil the modular structure of a given circuit, but also to form a motif diction-
ary through which we can individuate the components of other circuits not yet 
studied. Understanding the modular structure of a new system facilitates the 
understanding of its global function. This means that motif detection makes it 
possible to unify different models at a methodological level since the same motif 
dictionary is used to model different mechanisms, and at an explanatory level, 
since the global functions of different systems can be explained by a common set 
of components or sub-functions.

The global functions of these systems can be completely different. This can be 
seen in the case of digital binary computation. The development of this kind of 
computation was born of the idea of employing a particular symbolic system to 
define a set of canonical abstract components for certain electrical circuits. In 
his A Symbolic Analysis of Relay and Switching Circuits, Shannon showed that 
Boolean or binary algebra can be used to analyze (and simplify the design of) 
the organization of relay circuits (the basic components of the electro-mechanic 
mechanisms employed by different communication devices at his time) (Shannon, 
1938). Since then, the utilization of binary properties of electrical switches to 
perform logic functions is the basic concept underlying the design of most digital 
electronic computers.

In digital binary computation, we have two digits symbolically represented by 
“1” and “0,” called logic levels. These levels can represent values of different physical 
variables. When digital binary computation is implemented by an electronic or 
electrical medium, the digits are value ranges of the voltage variable of a compo-
nent of the system. The rules that regulate the digits of binary computation are a set 
of basic components defined by Boolean algebraic functions, such as conjunction, 
disjunction, and negation or inversion. These components, commonly referred 
to as logic gates, can be combined in various ways to form different mechanisms 
that implement very different global functions. For instance, sets of logic gates 
can be combined to build two combinatory (or non-sequential) circuits that per-
form different arithmetic operations: the addition and subtraction of digits. The 
addition of digits can be performed by a combination of logic gates known as 
a “full adder.” This circuit consists of the combination of two circuits known as 
“half adders” that can be implemented by different combinations of logic gates. 
The combination of two half adders is necessary to have an additional input that 
works as a carry added to another column of higher power. In a similar manner, 
subtraction of digits is performed by a circuit known as a “full subtracter” com-
posed of two “half subtracters,” in order to have an additional input that works 
as a borrow from another column of higher power (Figure 4).7

Descriptions of different computational mechanisms explain different capaci-
ties by employing (the description of) a common set of basic operations. When we 
discover these basic operations through abstraction and employ them in different 
mechanistic models, I will say that a horizontal integration of these models is 
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produced (as opposed to Boone and Piccinini’s hierarchic or vertical integration). 
This integration is horizontal because it is the same degree of abstraction (the 
degree at in which the basic operations appear) that allows us to explain different 
capacities employing (the description of) a common set of basic operations. The 
integration is mechanistic because it depends on the compositional character of 
the relevant models. A set of models can be said to provide a unified understanding 
of different phenomena insofar as they describe different mechanisms constituted 
by (different arrangements of) a shared set of components (and their activities). 
In the case just considered, addition and subtraction of digits are different capac-
ities that can be implemented by different mechanisms composed of logic gates.

I propose that the same kind of integration takes place in computational neu-
roscience as a result of the discovery of CNCs. As we saw in section 3, the neural 
computations considered by Carandini and Heeger are not merely abstract pro-
cesses but also, like Alon’s motifs, canonical. They are recurrently implemented 
by different systems of one organism and by different organisms. In fact, like 
Alon’s motifs and logic gates, canonical computations can be combined in different 
ways to form more complex computations, which are responsible for different 
capacities.

In the previous section, we have seen that normalization is a computation rel-
evant for the selectivity and invariance of V1 neurons. However, normalization 
does not produce this effect on its own, but rather is part of a more complex com-
putational circuit. Divisive normalization operates on a sum of inputs that result 
from a series of linear filters and an umbralization process (e.g., Rust, Schwartz, 

Figure 4. From Maini (2007). arithmetic circuit diagrams for a full adder and a full substracter.



18   A. WAJNERMAN PAZ

Movshon, & Simoncelli, 2005). But normalization is also a component in a com-
putational process related to attention. It is part of the computational process 
whose description explains the way in which a neural response is modified as a 
result of attention (Figure 5). In this model, normalization operates on the result 
of a multiplication performed by an attention field on the response of a neuron 
or population to its preferred stimulus (Reynolds & Heeger, 2009).

This example shows how descriptions of sets of canonical computations can 
be used to explain different cognitive processes or tasks in a unified way. In their 
defense of normalization as a canonical computation, Carandini and Heeger (2012) 
emphasize the value of this kind of unification. They argue that identifying and 
characterizing modular computations as normalization can provide a toolbox for 
obtaining a principled understanding of cerebral functions. They provide “a uni-
fied language to explain functional specialization of different brain areas” (p. 51).

Figure 5.  From Reynolds and heeger (2009). Normalization operates on the result of a 
multiplication performed by an attention field on the response of a neuron to its preferred 
stimulus.



PHILOSOPHICAL PSYCHOLOGY   19

To conclude, it is useful to distinguish between the horizontal integration which 
I argue that abstract mechanistic models can provide and another epistemic virtue 
related to abstraction and emphasized by Levy and Bechtel (2013). The authors 
point out that abstraction in models such as Alon’s (and also in CNCsʼ models) can 
maximize generality. Any mechanism that has the abstract connectivity described 
by Alon’s model will exhibit the kind of behavior present in the bacteria arabinose 
system (namely, persistence detection). When this happens, abstraction implies 
a kind of unification in which apparently different phenomena or behaviors can 
be explained by the same model: a model that describes the same underlying 
abstract mechanism.8 In contrast, the kind of unification that I am considering 
in this section occurs when different phenomena can be explained by different 
models that describe sets of shared or common basic components or operations. 
Abstract models, then, can provide an epistemic virtue in addition to generality 
maximization. It is a kind of theoretical integration which, like the hierarchical 
integration described by Boone and Piccinini, is non-reductive since it does not 
point to a privileged model at the expense of a variety of models, but integrates 
different models by providing a way to understand how they can be related to 
each other.

5. Conclusion

I have argued against the idea that canonical neural computation constitutes a 
counter-example for the thesis that mechanism can account for the explanatory 
power of abstract models. I claimed that the neurocognitive interpretation of 
these models is mechanistic in the sense that they describe the causal organization 
underlying a phenomenon and that only this interpretation (as opposed to a purely 
mathematical one) captures the relevant difference makers necessary for the model 
to be explanatory. I have also shown that mechanism is relevant to characterizing 
the kind of horizontal integration that makes CNC models especially valuable for 
our understanding of neural processing.

Notes

1.  This approach to models is not universally accepted. Weisberg (2013) considers that 
we must distinguish between models and descriptions.

2.  This notion is neutral regarding whether abstraction (or some specific form of 
abstraction) is compatible with explanation or whether abstraction diminishes the 
explanatory power of a model. An abstraction criterion for mechanistic explanation 
will be discussed shortly.

3.  Alternatively, we can say that an abstract explanatory model can omit only the 
properties whose modification or replacement does not modify the probability of the 
behavior. This seems more accurate given that the relevant causes of a given behavior 
cannot be normally seen as sufficient to produce that behavior but only to increase its 
probability. I thank an anonymous referee for pointing out this alternative and more 
accurate version of the requirement. However, my main arguments do not depend 
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on this point. I will remain neutral regarding which version of the requirement we 
should endorse.

4.  See, for example, Amos and James (2000, pp. 28–29).
5.  I thank an anonymous referee for pointing out the relevance of clarifying that my 

argument does not imply a trivialization of the requirements for mechanistic 
explanation.

6.  However, I do not claim that this hierarchy has the specific level structure that Boone 
and Piccinini propose.

7.  See Mano (1979, pp. 116–119) and Maini (2007, Chapter 7).
8.  As indicated at the end of the previous section, a mere input–output description does 

not count as a description of an abstract mechanism. A mechanistic model needs to 
satisfy 3M.
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