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Abstract.  We study the dynamics of a classical disordered macroscopic 
model completely isolated from the environment reproducing, in a classical 
setting, the ‘quantum quench’ protocol. We show that, depending on the pre 
and post quench parameters, the system approaches equilibrium, succeeding 
to act as a bath on itself, or remains out of equilibrium, in two dierent ways. 
In the latter one, the system stays confined in a metastable state in which it 
undergoes stationary dynamics characterised by a single temperature. In the 
other, the system ages and its dynamics are characterised by two temperatures 
associated with observations made at short and long time dierences (high 
and low frequencies). The parameter dependence of the asymptotic states is 
rationalised in terms of a dynamic phase diagram with one equilibrium and 
two out of equilibrium phases. Aspects of pre-thermalisation are observed and 
discussed. Similarities and dierences with the dynamics of the dissipative 
model are also explained.
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1. Introduction

The dynamics of isolated many-body quantum systems, and especially the search of a 
statistical description of their asymptotic evolution [1], are currently receiving great 
attention. One of the motivations to study these issues theoretically is the practi-
cal realisation of quenches of isolated ultra-cold atoms trapped in optical lattices [2]. 
Another reason for the interest in these questions, is the recently proposed many-body 
localisation phenomenon in systems with quenched disorder [3].

A quantum quench is the protocol whereby the ground state (or, more generally, a 
mixed state) of a Hamiltonian H0 is unitarily evolved with a dierent Hamiltonian H. 
A similar procedure can also be realised in a classical setting. It amounts to evolving 
an isolated system initially prepared in the equilibrium state (or, more generally, a 
metastable state) of a Hamiltonian H0 with a Hamiltonian H with the same form but 
dierent parameters. The latter problem has not received as much attention as the for-
mer, although we will show that it raises very similar questions to its quantum partner.

The most natural question to pose in the context of quenches of isolated classical 
or quantum many-body physics is whether the system is able to provide a bath for 
itself, allowing it to reach equilibration thanks to the interactions. In other words, the 
question is whether the system attains, in the long time limit, a stationary state of the 
Gibbs-Boltzmann thermal kind.

Two classes of quantum systems in which the answer to this question is negative 
have already been identified. These are integrable systems, with a macroscopic num-
ber of conserved quasi-local quantities [4], and many-body localised quantum systems, 
which remain localised in states that are close to their initial conditions forced by the 
frozen randomness [5, 6]. The non-ergodic behaviour of these systems is expected to be 
destabilised by the coupling to an external environment acting as a thermal bath [7].

Our aim is to prove that another class of isolated non-ergodic models exists that 
are not able to act as baths for themselves. These are frustrated models with complex 
free-energy landscapes that include, for wide ranges of variation of their parameters, 
fully trapping regions. For the sake of clarity, and with the aim of distinguishing eects 
that may be of unique quantum origin from features that are just due to the isolation 
of the model and/or the peculiar character of the interactions, we start by treating a 
classical model.

In this paper we start a series of studies of the quench dynamics of isolated classical 
and quantum interacting disordered models of mean-field kind, that is to say, models 
with N fully-connected variables, endowed with a quenched random potential and 
kinetic energy. Their choice is motivated by the fact that their equilibrium, metastable 
and dissipative dynamics are very well understood and realise the complex free-energy 
landscape able to render the dynamics non-ergodic. Concretely, they are models with 
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random interactions between p spins that have been extensively used as a mean-field 
description of the glassy arrest and glassy phenomenology [8–10]. In the infinite p limit 
they become the random energy model [11, 12], also used in the context of many-body 
localisation studies [13, 14]. Moreover, there may be deep connections between the 
glassy physics studied using these kind of models and the physics of disordered elec-
trons undergoing a metal-insulator transition [15].

We show that, under dierent quenching conditions, the isolated dynamics of these 
non-integrable interacting systems asymptotically approach:

 (i) A paramagnetic stationary state described by a single temperature Tf, itself 
determined by the final energy of the system ef.

 (ii) A metastable state with stationary dynamics. Whether this steady state can or 
cannot be considered one of Gibbs-Boltzmann equilibrium, is a subtle issue that 
we will explain in the paper.

 (iii) A non-stationary ageing state described by two temperatures, Tf and Te, that 
are also related to the final energy of the system ef and other non-trivial proper-
ties of it. In this case, the system is clearly out of equilibrium.

The impossibility to relax to thermal equilibrium is related to two prominent features 
of the potential energy landscape. In case (ii), the system reaches stationarity within one 
(out of many) metastable state, which can be visualised as disconnected lakes in phase 
space. Provided that the quench does not change the energy landscape too drastically, 
any trajectory starting from initial conditions inside a lake will remain confined to it. 
The system will be unable to explore the whole phase space and, consequently, it will not 
reach a state compatible with thermal equilibrium. The case (iii), in which the system 
never reaches a stationary state, is related to the existence of the so-called threshold level, 
a region in phase space in which the potential energy is dominated by saddles points. 
Dynamics within the threshold level are characterised by slow relaxation and ageing.

We determine the dynamic phase diagram as a function of the pre and post quench 
parameters, with dynamic transitions lines and phases that we characterise. The behav-
iour found is robust against the coupling to a bath.

The paper is organised as follows. In section 2 we introduce the model and we recall 
some of its main properties. Section 3 explains the quenches that we implement. In 
section 4 we present the analytic developments and asymptotic results and in section 5 
we show the outcome of the numerical integration of the exact equations of motion. 
Section 6 presents the dynamic phase diagram. Finally, in section 7 we present our 
conclusions and we briefly discuss our future projects.

2. Background

2.1. The Hamiltonian spherical p-spin model

The p-spin model is a model with interactions between p spins mediated by quenched 
random couplings Ji1...ip. The potential energy is [8–12]

https://doi.org/10.1088/1742-5468/2017/00/000000
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Hpot[{si}] = − 1

p!

N∑
i1 �=···�=ip

Ji1...ipsi1 . . . sip . (1)

The coupling exchanges are independent identically distributed random variables taken 
from a Gaussian distribution with average and variance

[Ji1...ip ] = 0 , [J2
i1 �=···�=ip ] =

J2p!

2N p−1
. (2)

The parameter J characterises the width of the Gaussian. In its standard spin-glass 
setting the spins are Ising variables. We will, instead, use continuous variables, 
−
√
N � si �

√
N  with i = 1, . . . , N , globally forced to satisfy (on average) a spherical 

constraint, 
∑N

i=1 s
2
i = N , with N the total number of spins [16]. The spherical con-

straint is imposed on average by adding a term

Hconstr =
z

2

(∑
s2i −N

)
 (3)

to the Hamiltonian, with z a Lagrange multiplier. The spins thus defined do not have an 
intrinsic dynamics. In statistical physics applications their temporal evolution is given 
by the coupling to a thermal bath, via a Monte Carlo rule or a Langevin equation [17].

The model can be endowed with conservative dynamics if one changes the ‘spin’ 
interpretation into a ‘particle’ one by adding a kinetic energy [18, 19]

Hkin[{ṡi}] =
m

2

N∑
i=1

(ṡi)
2 , (4)

to the potential energy. The total energy of the Hamiltonian spherical p-spin model is 
then

Hsyst = Hkin +Hpot +Hconstr . (5)
This model represents a particle constrained to move on an N-dimensional hyper-
sphere with radius 

√
N . The position of the particle is given by an N-dimensional vec-

tor �s = (s1, . . . , sN) and its velocity by another N-dimensional vector �̇s = (ṡ1, . . . , ṡN). 
The N coordinates si are globally constrained to lie, as a vector, on the hypersphere 
with radius 

√
N . The velocity vector �̇s  is, on average, perpendicular to �s , due to the 

spherical constraint. The parameter m is the mass of the particle. The parameter p is 
an integer and we will take it to be equal to 3 in the numerical applications.

The potential energy (1) is one instance of a generic random potential V ({si}) with 
zero mean and correlations [20–22]

[V ({si})V ({s′i})] = −NV(|�s− �s′|/N) (6)

with V(|�s− �s′|/N) = −J2

2
(�s · �s′/N) p. The problem is also interesting for generic V  but 

we will focus here on the monomial case that corresponds to the p-spin model. Details 
on the changes induced by other functions V  will be given elsewhere.

The generic set of N equations of motion for the system coupled to a white bath is

ms̈i(t) + γṡi(t) + z(t)si(t) = −
∑

(i2<···<ip)�=i

Jii2...ipsi2(t) . . . sip(t) + ξi(t) (7)

https://doi.org/10.1088/1742-5468/aa7dfb
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where the random force ξi has a Gaussian distribution with zero mean and correlations 
〈ξi(t)ξj(t′)〉 = 2γTδ(t− t′), γ is the friction coecient and T is temperature. We have 
set, and we will keep, the Boltzmann constant to be kB = 1. We have added the friction 
and noise terms to the Newton equation for completeness and to make contact with the 
stochastic setting usually used in the study of this model. Still, having introduced in 
equation (4) the kinetic energy that provides an intrinsic dynamics to the system, we 
will be able to switch o the coupling to the bath, that is to say set γ = 0, and study 
the dynamics of the isolated system.

The initial condition will be taken to be {s0i , ṡ0i } ≡ {si(0), ṡi(0)} and chosen in ways 
that we specify below.

2.2. The p � 3 case

The spherical p-spin model behaves very dierently for p = 2 and p � 3. In particular, 
for p � 3 the dynamics are non-linear, whereas the dynamics of the p = 2 spin model 
can be recast, through the diagonalization of the interaction matrix, into the dynam-
ics of harmonic oscillators coupled only through the Lagrange multiplier that enforces 
the spherical constraint. Moreover, as we shall describe in detail below, the potential 
energy landscape for p � 3 is complex, with an extensive number of local minima with 
a non-trivial eect on the dynamics. For p = 2 the energy landscape possesses only one 
absolute minimum which dominates the low energy dynamics. In the present work we 
concentrate on the cases p � 3 and we leave for a future study the p = 2 model.

The model with p � 3 has a very rich and complex free-energy landscape with inter-
esting metastability. In the past, the model with just the potential energy was analysed 
in a considerable degree of detail. The kinetic energy allows one to study the dynamics 
of the isolated system without changing the picture of metastability described below, 
since it contributes a trivial Maxwell (Gaussian) factor to the canonical probability 
weight.

In short, the known results for the spherical p � 3 model can be summarised as fol-
lows. In the thermodynamic limit, N → ∞, the model has two ‘critical’ temperatures 
Ts < Td. At high temperatures, T > Td, with Td the dynamical critical temperature, 
the equilibrium state is the paramagnetic one, with vanishing local order parameters. 
Below Td, there is an exponentially large number of metastable states. For temper-
atures between Ts and Td the equilibrium state remains paramagnetic. However, below 
Td the dynamics is stuck into the highest lying metastable states (the threshold level) 
and departs from the paramagnetic dynamics observed above Td. In particular, for 
quenches from above to below Td the relaxation is non-stationary with ageing eects 
and other special features due to the fact that it occurs, asymptotically, on a flat region 
of phase space. Finally, below Ts the equilibrium state is no longer paramagnetic, there 
is replica symmetry breaking.

The analysis of the order-parameter dependent free-energy landscape proves that 
there is an exponentially large number of metastable states above the static critical 
temperature Ts, (and until some high temperature Tmax). Between Td and Ts equi-
librium is dominated by a class of metastable states that exist in exponentially large 
number (finite complexity). Below Ts the number of metastable states is no longer 
exponential and the Gibbs-Boltzmann measure is dominated by the low lying ones. The 
dissipative relaxation dynamics of the model is consistent with the picture emerging 

https://doi.org/10.1088/1742-5468/2017/00/000000
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from the static analysis. It is also surprising since for quenches from above to below Td 
the relaxation is non-stationary with ageing eects and other special features due to the 
fact that it occurs, asymptotically, on a flat region of phase space.

In the rest of this section we turn the description in the previous paragraph quanti-
tatively. We give some details on how to derive the picture above with three methods: 
the replica trick, the Thouless–Anderson–Palmer (TAP) approach and the dissipative 
dynamics. We give the expressions for some characteristic temperatures and energies 
that will be useful in the study of the quench dynamics of the isolated system and we 
sum up, in a table, the values these take in the p = 3 case.

2.2.1. Equilibrium. The static properties of a model with quenched randomness follow 
from the study of the disorder-averaged free-energy density in the canonical ensemble. 
The kinetic energy term in (4) is a conventional one and it does not depend on the 
quenched disordered interactions. The statistical sum over the velocities in the parti-
tion function can be readily performed and it yields the usual factor stemming from 
the Maxwell weight, [2π/(βm)]N/2. Instead, the contribution of the potential energy to 
the average over disorder of the logarithm of the partition function has been computed 
with the help of the replica trick [16]. In this framework one introduces an n× n ‘over-

lap’ matrix Qab = N−1
∑N

i=1[〈sai sbi〉] between replicas a and b (a, b = 1, . . . , n) where the 
angular brackets denote the statistical average. In the case of the p � 3 model, the one 
step replica symmetric Ansatz solves this problem exactly below Ts in the N → ∞ limit. 
Within this Ansatz the matrix is parametrized as Qab = δab + qeaεab, with εab equal to 
one if ab are within a diagonal square block of size meq ×meq and zero otherwise. The 
parameters meq and qea are determined by requiring that they extremise the free-energy 
density calculated in the limit n → 0 (after N → ∞).

The Edwards-Anderson parameter, qea, and the replica parameter, meq were derived 
in [16]. They are given, in implicit form, by the equations

1

p
= −y

1− y + ln y

(1− y)2
, (8)

p

2
q p−2
ea (1− qea)

2 = y
T 2

J2
, (9)

meq =
1− y

y

1− qea
qea

, (10)

that are easy to solve numerically. In the T → 0 limit, qea = 1− aT  and meq = bT  with 
a = (2y/p)1/2 and b = a(1− y)/y.

The static transition temperature occurs at Ts such that meq = 1. This condition 
implies

qs = qea(Ts) = 1− y (11)
that in turn fixes Ts to [16, 23, 24]

Ts =

√
py

2
(1− y)

p
2
−1 J . (12)

https://doi.org/10.1088/1742-5468/aa7dfb
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Specializing to the p = 3 case, Ts = 0.586 J . The phase transition is discontinu-

ous, in the sense that the order parameter qea jumps at Ts, limT→T−
s
qea(T ) �= 0 and 

limT→T−
s
meq(T ) = 1 while above Ts, qea(T ) = 0. The solution boils down, at high 

temper ature, to a replica symmetric one. However, there are no jumps in the thermody-
namic quantities so the transition is not of the first order in this sense. It is a ‘random 
first order phase transition’.

The equilibrium potential energy density, e
eq
pot ≡ 〈Hpot〉, is then

eeqpot(T ) = − J2

2T
[1− (1−meq)q

p
ea] (13)

that simplifies to e
eq
pot = −J2/(2T ) above Ts and takes the value e

eq
pot(Ts) = −0.853 J  at 

Ts for p = 3. At zero temperature the equilibrium potential energy is

eeqpot(T → 0) = − J√
2py

[1 + ( p− 1)y] (14)

and e
eq
pot = −1.172 J  at T = 0 for p = 3.

Above Ts the qea �= 0 solution still exists (with meq > 1) and it disappears at a much 
higher temperature, Tmax

eq , where

qmax
ea =

p− 2

p
and Tmax

eq =

√
2

yp

(
p− 2

p

)( p−2)/2

J . (15)

For p = 3, Tmax
eq = 0.791 J .

2.2.2. Metastability. The Thouless–Anderson–Palmer (TAP) method serves to derive 
mean-field equations for the local order parameters, the local magnetisations,

mi = 〈si〉 , (16)
at fixed quenched disorder in the canonical ensemble. As everywhere in the paper, the 
angular brackets denote statistical average.

The TAP method also constructs the full free-energy and potential energy density 
landscapes. It has been applied to the study of the disordered p-spin models landscapes 
in, e.g. [25–28]. The outcome for the potential energy as a function of temperature is 
summarised in figure 1. We explain the meaning of the dierent lines, and the special 
values of the potential energy and temperature highlighted in the figure, in the rest of 
this section.

First of all, it is convenient to introduce

q ≡ 1

N

N∑
i=1

m2
i (17)

and then observe that, for the spherical p-spin model [27],

Hpot[{mi}] = q p/2Hpot[{si}] , (18)

due to the homogeneity of the potential energy. This property is not general and 
makes the structure of the potential energy landscape of the spherical p-spin model 
particularly simple, with no level crossings nor birth of states at finite temperature, as 

https://doi.org/10.1088/1742-5468/2017/00/000000
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temperature potential energy.

The extremisation conditions on the TAP free-energy lead to [27]

( p− 1)(1− q) q( p−2)/2 =
T

J2

(
−e0 −

√
e20 − e2c

)
, (19)

with

ec = −

√
2( p− 1)

p
J , (20)

and e0 the zero temperature energy. This equation admits real solutions for e0 such 
that eeq(T = 0) < e0 < ec < 0, with ec the threshold energy at zero temperature. Each 
of these solutions is an equilibrium or metastable state of the system. Equation (19) 

Figure 1. Sketch of the potential energy epot as a function of temperature T. 
The lines represent the temperature dependence of the potential energy for some 
selected states (the equilibrium state, the threshold state and an intermediate 
state). We also show the paramagnetic energy (with a full red line) and the spinodal 
line (with a dotted blue line). We mark on the plot all the relevant energies 
and temperatures. Notice that the potential energy is negative. In the table we 
show some typical values of temperatures and energies in units of J for the p = 3 
spherical model.
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determines q as a function of the energy density of a TAP solution at T = 0, e0, 
and temperature, T, both measured in units of J. In particular, one can check that 
replacing e0 by eeq(T = 0) as given by equation (14), the equation fixing the equilib-
rium Edwards-Anderson parameter, equation (9), is recovered. Otherwise, replacing 
e0 by ec the equation for the threshold qth is obtained. The left-hand-side (lhs) has a 
bell-shaped form with a maximum at qmax = ( p− 2)/p. For q = qmax the same equa-
tion determines Tmax(e0) above which the equation has no more solution. The physi-
cal solution is the one taking the largest value of q, since it continuously connects 
to the zero-temperature one in which q = 1. Dierent TAP states cease to exist at 
dierent temperatures, as sketched in figure 1. The temperature at which this occurs 
for the equilibrium level is given in equation (15). The threshold level, instead, dis-
appears at

Tmax
th =

√
2

p
( p− 1)

(
p− 2

p

) p−2
2

J (21)

and Tmax
th = 2/3 J  for p = 3.

An expression of the potential energy e as a function of e0 and q (itself a function 
of T ) is

e(T, e0) = q p/2e0 −
J2

2T

[
( p− 1)q p − pq p−1 + 1

]
. (22)

Of particular interest is the threshold potential energy that we will give explicitly in 
equation (32).

The equation that fixes the q values of the TAP states that combine (because of 
their macroscopic degeneracy) to yield equilibrium in the range Ts < T < Td is [23, 27]

p

2
q p−2(1− q) =

T 2

J2
. (23)

(These states have thermodynamic properties, like the internal energy, that coin-
cide with the continuation of the high-temperature paramagnetic one. In the sketch 
in figure 1 these states correspond to points along the continuation of the PM line 
(red) inside the region where metastable states exist, i.e. the portion of the PM curve 
between Ts and Td. Once again, the bell-shape form of the lhs of equation (23) implies 
that this equation admits a solution q �= 0 for temperatures such that T < Tmax with

(Tmax)2 = a2( p)J2 , (24)

were we have introduced the numerical constant

a2( p) =
p

2

( p− 2) p−2

( p− 1) p−1 (25)

that is smaller than 1 for all p � 3.
We will recall the dynamic significance of these TAP states in the next section. We 

announce here that Tmax and q(Tmax) coincide with Td and qd, the critical dynamical 
temperature and the value of the parameter q at this temperature. In particular, for 

p = 3, Tmax =
√

3/8 J � 0.612 J = Td and at this temperature, q = qmax = 1/2.
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The scenario with a large multiplicity of metastable states has been confirmed with 
the exhaustive enumeration of the extrema of the TAP potential energy landscape of 
finite (small) size spherical p-spin models at fixed randomness [29].

2.2.3. Relaxation dynamics. The over-damped relaxation dynamics of the spherical 
p-spin model (coupled to a Markovian bath) were studied in [17, 30, 31]. The dynam-
ics considered in these papers evolve a completely random initial condition, {s0i }, that, 
for purely relaxational dynamics corresponds (formally) to an infinite temperature ini-
tial state. The latter is then quenched to a final state in contact with a bath at finite 
temper ature T. The analysis is performed in the thermodynamic limit, N → ∞, and 
times are taken to infinity only after, remaining therefore finite with respect to N.

For quenches with T > Td the dynamics quickly approach equilibrium at the new 
temperature. The correlation and linear response are invariant under translations of 
time and they are related by the fluctuation dissipation theorem.

Above but close to Td the relaxation exhibits a strong slowing down with the cor-
relation decaying in two steps, with a first approach to a plateau and a further decay 
from this plateau, in a much longer time-scale, to zero. This is similar to what is 
observed in super-cooled liquids and it is the reason why this model has been used as a 
toy model for glass formers of fragile kind.

For T < Td, the evolution of the correlation and linear response functions conform 
to the weak-egodicity breaking scenario [17, 31] in which they separate in two contrib-
utions evolving in dierent two-time regimes

C(t1, t2) = Cst(t1 − t2) + Cag(t1, t2) , (26)

R(t1, t2) = Rst(t1 − t2) +Rag(t1, t2) , (27)
with the stationary and a non-stationary terms linked by the fluctuation-dissipation 
theorem (FDT) at the temperature of the bath and a modified FDT at an eective 
temperature Te [32, 33] selected by the dynamics,

Rst(t1 − t2) = − 1

T

dCst(t1 − t2)

d(t1 − t2)
, (28)

Rag(t1 − t2) =
1

Teff

∂Cag(t1, t2)

∂t2
, (29)

always with t1 � t2. In the asymptotic limit, the two terms added to form C and R 
evolve in dierent regimes in the sense that when one changes the other one is constant 
and vice versa. The limiting values of the various contributions to the correlation func-
tion are

Cst(0) = 1− q , lim
τ→∞

Cst(τ) = 0 , (30)

lim
t2→t−1

Cag(t1, t2) = q , lim
t1�t2

Cag(t1, t2) = 0 ,
 (31)

with q being equal to qth, the value at the threshold of the TAP free-energy density.
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The asymptotic potential energy reached after the quench for T < Td is the one of 
the threshold level in the free-energy landscape:

eth = −J2

2

[
1

T
(1− q p

th) +
1

Teff

q p
th

]
. (32)

This expression will be very useful in the numerical analysis. The parameters qth and 
Te are given by

p( p− 1)

2
(1− qth)

2q p−2
th =

T 2

J2
, (33)

mth ≡ T

Teff

=
( p− 2)(1− qth)

qth
. (34)

The parameter mth measures the violation of the fluctuation-dissipation theorem out of 
equilibrium and can be interpreted in terms of an eective temperature Te [32] (note 
that mth � 1 and Teff > T  for quenches from high to low temperature).

The bell-shaped function in the lhs of equation (33) indicates, once again, that this 
equation has two solutions until a temperature Tmax

th  given by the same expression, 
equation (21), obtained with the TAP formalism. The relevant solution is the one tak-
ing the higher value, the one that is connected to qth = 1 at T = 0. Its value and the 
energy at this temperature are given in the table that accompanies figure 1.

The equation fixing qth as a function of T is implicit so we cannot write an explicit 
expression for eth(T ). We can, instead, eliminate T from equation (32) using equa-
tions (33) and (34), and then recast equation (32) as

eth = − J√
2p( p− 1)

q
(2−p)/2
th

[
1− q p

th

1− qth
+ ( p− 2)q p−1

th

]
. (35)

At T � 0, qth � 1− aT  with a2 = 2/( p( p− 1)) and mth � ( p− 2)aT . Expanding in 
powers of T one finds eth � −a( p− 1)/2 and then

eth(T = 0) = −

√
2( p− 1)

p
J ≡ ec (36)

as expected. Its concrete value for p = 3 is given in table.
The dynamic critical temperature arises when mth = 1:

Td = a( p) J (37)
that coincides with equation (24). Specialising to the p = 3 case Td = 0.612 J . When 
this occurs eth(Td) = eeq(Td) = −J2/(2Td) and q = qd = qth(Td) = ( p− 2)/( p− 1).

The dynamic relevance of the TAP states that are non trivial but ‘confused’ with 
the paramagnetic solution with the conventional replica calculation, the ones with q 
values determined by equation (23), is understood from the analysis of the relaxation 
dynamics starting from initial conditions in equilibrium at the range of temperature 
Ts < T ′ < Td [34–37]. These initial conditions are confined within TAP states that 
do not let the system escape. The asymptotic dynamics remain within the depart-
ing state, as indicated by the fact that limt1→∞ limt2→∞ C(t1, t2) = q, with q given by 
equation (23).
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For finite N the threshold level dynamics and evolution within TAP states should 
have finite, though exponentially large in N, lifetime. Some numerical evidence for this 
was given in, e.g. [38–40].

3. Quenches and dynamics of the isolated system

The Hamiltonian (5) with Hkin and Hpot given in equations (4) and (1) has two param-
eters, the variance of the couplings Ji1...ip and the mass of the particle. We will consider 
initial conditions sampled from equilibrium at T ′ with Hamiltonian H0 and evolve them 
with a dierent Hamiltonian H. Since the potential and kinetic energies play dierent 
roles, as the former depends on the quenched randomness while the latter does not, the 
treatment of the quenches induced by a change in the random interactions needs a bit 
more care.

Let us take the p-spin model (1) and (4) with coupling constants J0
i1...ip

 in canonical 
equilibrium at temperature T ′ and evolve it in isolation from the environment with a 
modified Hamiltonian. Quenches in the random exchanges that do not keep any mem-
ory of the values before the quench are not interesting. We therefore impose quenches 
in the potential energy such that each random choice of the exchanges is changed into 
Ji1...ip, with the new couplings related to the old ones by

J0
i1...ip

= Ji1...ip x ∀ i1, ..., ip . (38)

This transformation is such that for each sample (disorder realisation) at t = 0 we uni-
formly change the value of all random couplings by the same factor. In other words, we 
prepare the system in a thermal state of a Hamiltonian with potential energy

H0
pot[{si}] = −

∑
1�i1<...<ip�N

J0
i1...ip

si1 . . . sip ,

but let each initial condition sampled from this state evolve with the Hamiltonian with 
potential energy

Hpot[{si}] = −
∑

1�i1<...<ip�N

J i1...ipsi1 . . . sip .

Note that with x < 1 we enhance the interactions and with x > 1 we depress the inter-
actions between the spins. Technically, after relating the coupling strengths one by one 
we have only one quenched disorder average to make.

It is important to note that under this change, the potential energy levels in figure 1 are 
translated upwards or downwards, and stretched or contracted, for x < 1 or x > 1, respec-
tively. Indeed, one can easily see the translation by noticing that e0 is proportional to J, and 
the contraction by noticing that the various Tmax are proportional to J. Concomitantly, 
the static and dynamic critical temperatures T 0

s = Ts(J0) and T 0
d = Td(J0) of the initial 

potential are shifted to new values Ts = Ts(J) and Td = Td(J) after the quench,

Ts

T 0
s

=
J

J0
=

1

x
⇒ T 0

s = x Ts and T 0
d = x Td . (39)
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We will also consider quenches in the mass, m0 �→ m, that change the kinetic 
contrib ution to the energy as

H0
kin =

m0

2

∑
i

ṡ2i �→ Hkin =
m

2

∑
i

ṡ2i . (40)

3.1. Dynamical equations

Importantly enough, all our results will be derived after having taken the limit N → ∞ 
from the start, and eventually considering the long-times asymptotic limit only after.

In the limit N → ∞ the dynamics of the model are fully characterised by the behav-
iour of the two-time correlation and linear response function. The equations ruling their 
evolution are easily derived using the Martin–Siggia–Rose functional formalism.

Particular initial conditions can be imposed by including in the dynamic generat-
ing function an integration over the initial conditions weighted with their distribution. 

Equilibrium initial conditions at a temperature T ′ = β′−1
 are distributed according to 

the Gibbs–Boltzmann measure

P ({si(0), ṡi(0)}) = Z−1(β′) e−β′H0({si(0),ṡi(0))} (41)

with H0 defined in equations (1)–(5). The Hamiltonian depends on the quenched ran-
dom interactions. The average over disorder in the case of initial states correlated 
with the quenched randomness needs the use of the replica trick, as explained in [34]. 
This means that the spin variables evaluated at the initial time have to be replicated, 
si(0) �→ sai (0), with a = 1, . . . , n, to perform the average over the random exchanges. 
The subsequent evolution of each of these replicas has to be followed in time, and it 
turns out that the replica structure of the initial condition is conserved.

For the dissipative spherical p-spin model this calculation has been carried out 
in [36, 37], and it can be adapted to the isolated model with kinetic energy with 
just minor modifications. We therefore present the outcome here without giving many 
details of the derivation. In order to facilitate the comparison to the expressions for the 
dissipative model we keep the coupling to the white bath active in the presentation of 
the dynamic equations. Later on, we will focus on the isolated problem.

In the N → ∞ limit, the only relevant correlation and linear response functions that 
determine the dynamics of the model are

Cab(t1, t2) = N−1

N∑
i=1

[〈sai (t1)sbi(t2)〉] , (42)

Cab(t1, 0) = N−1

N∑
i=1

[〈sai (t1)sbi(0)〉] , (43)

Rab(t1, t2) = N−1 δ

δhb(t2)

N∑
i=1

[〈sa(h)i (t1)〉]

∣∣∣∣∣
h=0

, (44)
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for t1, t2 > 0, where the infinitesimal perturbation h is coupled linearly to the spin 

H �→ H − h
∑N

i=1 si at time t2 and the upperscript (h) indicates that the configuration is 
measured after having applied the field h. The square brackets denote here and every-
where in the paper the average over quenched disorder. The angular brackets indicate 
the average over thermal noise if the system is coupled to an environment, and over the 
initial conditions of the dynamics sampled with the probability distribution P. When 
the coupling to the bath is set to zero, γ = 0, the last average is the only one remaining 
in the angular brackets operation.

Without loss of generality we will focus on initial states in equilibrium at T ′ � T 0
s , 

where the replica structure is symmetric, although there can still be a complex struc-
ture of metastable states, as explained in section 2.2.2. Considering the case T ′ < T 0

s  
would add quite a lot of unnecessary complexity to the calculations, while we do not 
expect major changes in the dynamic behaviour under such initial conditions. For these 
reasons, the following expressions are valid only for T ′ � T 0

s .
The dynamical equations of the model coupled to a bath at temperature T, starting 

from a random state, are well known and can be found in Refs. [17, 23, 24, 31]. They 
can be derived from the dynamical Martin–Siggia–Rose action

SJ =
N∑
i=1

∫ ∞

0

dt ŝi(t)

(
γT ŝi(t) + γṡi(t) +ms̈i(t) +

∂Hpot

∂si
+ z(t)si(t)

)
, (45)

where the subscript J in SJ indicates that the action depends explicitly on the dis-
ordered couplings and the ŝi are (imaginary) auxiliary variables used to rewrite a delta 
function that enforces the validity of the equation of motion in the path integral. (This 
form corresponds to the Ito convention in which there is no Jacobian contribution.) We 
included here the kinetic energy contribution not present in these publications.

The replicated dynamical action that includes the contribution from the distribu-
tion of the initial conditions reads

SJ =
n∑

a=1

N∑
i=1

∫ ∞

0

dt ŝai (t)

(
γT ŝai (t) + γṡai (t) +ms̈ai (t) +

∂Hpot

∂sai
+ z(t)sai (t)

)
− 1

T ′H0[s
a
i (0), ṡ

a
i (0)] .

 (46)
The kinetic energy term in the initial distribution does not depend on the quenched 

random interactions, it does not aect the dynamic equations, but will appear only in 
the energetic considerations that we will develop below.

We will now show how to perform the average over the couplings in some detail. 
Two terms in (46) depend on the interactions, they are the ones in which Hpot appears 
in the force in the evolution equation and in the initial contribution H0. We collect 
them in Sdis. (Note that we use, as a working assumption, that z(t) does not depend on 
Jijk.) The average over disorder of the exponentials of these two terms is

[eSdis ] =
∏

i<k<l

∫
dJikl exp

{
−J2

ikl2N
p−1

2p!J2
− 1

T ′J
0
ikl

∑
a

sai (0)s
a
k(0)s

a
l (0)

−Jikl
∑
a

∫ ∞

0

dt (ŝai (t)s
a
k(t)s

a
l (t) + sai (t)ŝ

a
k(t)s

a
l (t) + sai (t)s

a
k(t)ŝ

a
l (t))

}
,

 (47)
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where we have included the Gaussian distribution over the couplings (we average over 
the final couplings Jikl but the same results would be obtained had we chosen to aver-
age over the initial ones, J0

ikl). We have symmetrised the term originating in ∂Hpot/∂s
a
i . 

Following our choice of quench we set J0
ikl = xJikl ∀{i, k, l}, in which case the disorder 

dependent part of the action becomes

[eSdis ] =
∏

i<k<l

∫
dJikl exp

{
−J2

ikl2N
p−1

2p!J2
− x

T ′Jikl
∑
a

sai (0)s
a
k(0)s

a
l (0)

−Jikl
∑
a

∫ ∞

0

dt (ŝai (t)s
a
k(t)s

a
l (t) + sai (t)ŝ

a
k(t)s

a
l (t) + sai (t)s

a
k(t)ŝ

a
l (t))

}
.

 (48)
After performing the Gaussian integration over the couplings we have

[eSdis ] ∝
∏

i<k<l

exp

{
p!J2

4N p−1

[∫ ∞

0

dt
∑
a

(ŝai (t)s
a
k(t)s

a
l (t) + sai (t)ŝ

a
k(t)s

a
l (t) + sai (t)s

a
k(t)ŝ

a
l (t))

+
x

T ′

∑
a

sai (0)s
a
k(0)s

a
l (0)

]

×

[∫ ∞

0

dt′
∑
b

(ŝbi(t
′)sbk(t

′)sbl (t
′) + sbi(t

′)ŝbk(t
′)sbl (t

′) + sbi(t
′)sbk(t

′)ŝbl (t
′))

+
x

T ′

∑
b

sbi(0)s
b
k(0)s

b
l (0)

]}
.

 

(49)

The product between the two terms involving integrals in time produces the terms 
already present in the dynamical equations starting from a random initial condition. 
These terms are proportional to J2. The product between a term with one time integral 
and one term with the initial condition generates the new terms. They are proportional 
to J2x, that is to say JJ0, if we call J0 = xJ . The product of the terms involving only 
the initial conditions yields the equilibrium equations of the model decoupled from the 
dynamics, and are proportional to J2

0, as they should.
Taking now N → ∞ one derives the dynamical equations that read

(
m∂2

t1
+ γ∂t1 + z(t1)

)
R(t1, t2) =

J2p( p− 1)

2

∫ t1

t2

dt′R(t1, t
′)C p−2(t1, t

′)R(t′, t2) + δ(t1 − t2) ,

 (50)
(
m∂2

t1
+ γ∂t1 + z(t1)

)
C(t1, t2) =

J2p( p− 1)

2

∫ t1

0

dt′R(t1, t
′)C p−2(t1, t

′)C(t′, t2) + γTR(t2, t1)

+
J2p

2

∫ t2

0

dt′R(t2, t
′)C p−1(t1, t

′) +
JJ0p

2T ′ C
p−1(t1, 0)C(t2, 0) ,

 (51)
z(t1) =−m∂2

t1
C(t1, t2)|t2→t−1

+ γT R(t1, t2)|t2→t−1

+
J2p2

2

∫ t1

0

dt′R(t1, t
′)C p−1(t1, t

′) +
JJ0p

2T ′ C
p(t1, 0) .

 (52)

One can check that these equations coincide with the ones in [36, 37] when inertia is 
neglected and J = J0.

https://doi.org/10.1088/1742-5468/2017/00/000000


Non equilibrium dynamics of isolated disordered systems: the classical Hamiltonian p-spin model

17https://doi.org/10.1088/1742-5468/aa7dfb

J. S
tat. M

ech. (2017) 083301

In the rest of the paper we switch o the connection to the environment by setting 
γ = 0. With inertia and no coupled bath, the equal-time conditions are

C(t1, t1) = 1 ,

R(t1, t1) = 0 ,

∂t1C(t1, t2)|t2→t−1
= ∂t1C(t1, t2)|t2→t+1

= 0 ,

∂t1R(t1, t2)|t2→t−1
= 1

m
,

R(t1, t2)|t2→t+1
= 0 ,

for all times t1, t2 larger than 0+, when the dynamics start.

3.2. The Lagrange multiplier

We found convenient to numerically integrate the integro-dierential equations that 
determine the time-evolution of the system to use an expression of the Lagrange mul-
tiplier that trades the second-time derivative of the correlation function into the total 
conserved energy after the quench. More precisely, we proceeded as explained below.

Firstly, we provide an expression for the kinetic energy density,

ekin(t1) ≡
Ekin(t1)

N
=

m

2N

∑
i

〈ṡ2i (t1)〉. (53)

Using the definition of C(t1, t2), and the fact that, for suciently short time dierences 
(t1 − t2) it is always possible to write C(t1, t2) = 1− a(t1 − t2)

2 +O((t1 − t2)
4), with 

a > 0, we find that

ekin(t1) = −m

2
∂2
t1
C(t1, t2)|t2→t−1

. (54)

On the other hand, the potential energy is linked to the kinetic energy and the 
Lagrange multiplier via a general equation proven as follows. Take the microscopic 
evolution of si(t1), multiply it by si(t2), and take the average over initial conditions:

m 〈s̈i(t1)si(t2)〉 = −p
∑
i2...ip

Jii2...ip〈si(t2)si2(t1) . . . sip(t1)〉 − z(t1)〈si(t1)si(t2)〉 .

 

(55)

Summing now over i, normalising by N, and taking the limit t2 → t−1 ,

m

N
lim

t2→t−1

∑
i

〈s̈i(t1)si(t2)〉 = m lim
t2→t−1

∂t21C(t1, t2) = −pepot(t1)− z(t1) . (56)

This implies that

epot(t1) ≡
Epot(t1)

N
=

−m∂2
t1
C(t1, t2)|t2→t−1

− z(t1)

p
. (57)

The two contributions added together yield the total energy density of the system

e(t1) = ekin(t1) + epot(t1) , (58)
conserved after the quench.
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Rearranging now the equation for e(t1), equation (58), with the help of equation (56), 
we obtain a new expression for the Lagrange multiplier

z(t1) = −m
(p
2
+ 1

)
∂2
t1
C(t1, t2)|t2→t−1

− pe(t1) .

Using now the original equation for z(t1), equation (52), we can eliminate the second 
time derivative to obtain

z(t1) = 2e(t1) +
J2p ( p+ 2)

2

∫ t1

0

dt′ R(t1, t
′)C p−1(t1, t

′) +
JJ0( p+ 2)

2T ′ C p(t1, 0) .

 

(59)

It seems that we have simply traded z(t1) by e(t1). However, for an isolated system 
e(t1) = ef, a constant. Then, the last expression allows a straightforward numerical 
solution of the evolution equations for the isolated system since it does not involve 
the second time derivative of the correlation function. In practice, in the numerical 
algorithm we fix the total energy ef and we then integrate the set of coupled integro-
dierential equations with a standard Runge–Kutta method. We only have to define 
which is the total energy density of the system, the subject of the next two sections.

Before moving on, it is important to note that the Lagrange multiplier in equa-
tion (59) fixes the total energy and the spherical constraint only on average over the 
initial conditions ensemble. This means that if we consider the trajectory that satisfies 
the Newton equation (7) with an initial configuration specified by arbitrary values of 
{si(0), ṡi(0)}, with z(t) given by equation (59), such trajectory will not, in general, sat-
isfy the spherical constraint nor have a constant energy density.

3.3. Energy change

We now determine the energy changes induced by a quench in the disorder exchanges 
and a quench in the mass of the particle. As these two act separately on the potential 
and kinetic contributions to the total energy, the total energy change is the sum of the 
two variations.

3.3.1. The energy change after a potential energy quench. Let us investigate what is 

the change in energy density induced by the change in potential energy J0
i1...ip

�→ Ji1...ip, 
while keeping the mass constant m0 = m.

The energy density just before the quench is the energy density of a canonical equi-
librium paramagnetic state at temperature T ′ and it is given by

ei = e(0−) =
T ′

2
− J2

0

2T ′ . (60)

The first term is the equipartition of the kinetic energy and the second one is the poten-
tial energy of the paramagnet in equilibrium. Note that this is still true if we choose 
T 0
s < T ′ < T 0

d , since, although metastable states still dominate the energy landscape in 
that range of temperatures, the thermodynamics of the equilibrium states is indistin-
guishable from the one of the paramagnet (see section 2.2.2).
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The energy density at time t1 = 0+ right after the instantaneous quench is

e(0+) = ekin(0
+) + epot(0

+) = −m

2
∂2
t1
C(t1, t2)|t2→t−1 =0+ +

−m∂2
t1
C(t1, t2)|t2→t−1 =0+ − z(0+)

p
.

Using the fact that with no mass change the kinetic energy does not vary between 
t = 0− and t = 0+

−m

2
∂2
t1
C(t1, t2)|t2→t−1 =0+ =

T ′

2
,

as confirmed numerically in section 5, and the value of the Lagrange multiplier evalu-
ated from equation (52) at t = 0+ is

z(0+) = T ′ +
JJ0p

2T ′

we find

ef ≡ e(0+) =
T ′

2
− JJ0

2T ′ . (61)

Equations (60) and (61) imply that the amount of energy injected during the instan-

taneous quench J0
i1...ip

�→ Ji1...ip is

∆e = ef − ei = ∆epot =
J0(J0 − J)

2T ′ .

Therefore, ∆e > 0 if J0 > J  and ∆e < 0 if J0 < J .

3.3.2. The energy change after a quench in the mass. If we apply a quench in the mass, 
m0 �→ m, while leaving the random exchanges fixed, the energy balance is modified.

Imagine that we initialise the system in a paramagnetic or TAP state such that 
epot(0

−) = −J2/(2T ′). If we change the mass according to m0 → m, the potential energy 
does not change during the instantaneous quench. Instead, the kinetic energy does. 
Right before the quench the kinetic energy density is

ekin(0
−) =

m0

2
(ṡi(0

−))2 =
T ′

2
, (62)

while right after the quench the velocities have not changed but the mass of the particle 
has. Therefore,

ekin(0
+) =

m

2
(ṡi(0

+))2 =
m

2
(ṡi(0

−))2 =
m

m0

T ′

2
. (63)

The total energy after the quench is

ef =
m

m0

T ′

2
− J2

2T ′ (64)

and the energy input by the quench reads

∆e = ef − ei = ∆ekin =

(
m

m0

− 1

)
T ′

2
. (65)
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Adding together the energy variation due to the the potential and mass quenches, 
the total energy change becomes

∆etot =

(
m

m0

− 1

)
T ′

2
+

J2
0

2T ′

(
1− J

J0

)
. (66)

4. Asymptotic analysis

Depending on the pre and post quench parameters the system reaches dierent asymp-
totic dynamics. In some cases, the system reaches a stationary regime but, for param-
eters carefully tuned, a final state with non stationary ageing behaviour can also be 
attained.

Before entering into the deduction of the asymptotic equations, we present the gen-
eral reasoning that we use to find them.

We will first analyse in section 4.1 the cases in which a stationary regime is reached 
after the quench. This means that

 –	 We assume time-translational invariance (TTI) C(t1, t2) �→ Cst(τ), R(t1, t2) �→ Rst(τ) 
with τ = t1 − t2 and

 –	 the fluctuation-dissipation theorem Rst(τ) = −1/Tf dτCst(τ) for τ � 0.

 –	 We define the asymptotic limits of the correlation with the initial configuration 
limt1→∞ C(t1, 0) �→ q0,

 –	 and between two dynamic configurations limτ→∞ Cst(τ) = q.
 –	 We assume that the kinetic energy density approaches limt1→∞ ekin(t1) = Tf/2 

after the quench.

Clearly, all these assumptions can and have been verified numerically. The temper-
ature of the final state, Tf, has to be calculated and the parameters q0 and q as well.

We anticipate that the parameters q0 and q will find two interesting interpretations 
in the cases in which the system is initially in a non-trivial TAP state. The value q0 rep-
resents the overlap between a typical configuration of the TAP state of the pre-quench 
potential in which the system was prepared initially, and a typical configuration of the 
TAP state into which the original state has evolved in the post quench potential, if it still 
exists. Instead, q is the self-overlap within the TAP state of the post-quench potential. 
This description will become clear after presenting the analytical and numerical results.

We will then analyse, in section 4.2, the cases in which the system, starting from equi-
librium in a disordered paramagnetic state at high temperature is set, after the quench, 
on the threshold level and the stationarity assumption fails. This is in agreement with 
what was expected from the properties of the states on the threshold, that are flat, and 
on which ageing properties were obtained after quenches from random initial conditions in 
the dissipative setting [17, 31]. For these cases we need to modify the assumptions above 
and allow for a two-time scale dependence of the correlation and linear response func-
tions that take a form with a separation of time-scales, as in equations (26) and (27). This 
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Ansatz is introduced in the dynamic equations for C and R, equations (50)–(52), and the 
evolution in two two-time sectors is studied separately together with the requirement that 
the behaviour matches in the crossover region. The resulting equations are manipulated 
a bit, and equations for the parameters q, Tf and Te, are derived. We reckon that with 
this procedure we introduce three unknowns and we deduce five equations, one being the 
energy conservation. The other four equations are the equations for Cst, Cag, Rst and Rag, 
but these are not all independent, since the FDT with Tf for (Cst, Rst) and Te for (Cag, 
Rag) reduce their number to two. There are then three unknowns and three equations.

4.1. Stationary dynamics

In this section we derive the set of equations that determine q, q0 and Tf as a function 
of the properties of the initial state, T ′, m0 and J0, and the ones after the quench, m 
and J, assuming that a stationary state is reached.

The stationarity assumption implies

lim
t1→∞

z(t1) = zf , lim
t2→∞

C(t1, t2) = Cst(t1 − t2) , lim
t2→∞

R(t1, t2) = Rst(t1 − t2) ,

 (67)
where we took t1 � t2. The large τ ≡ t1 − t2 limit can then be further considered to 
define

q ≡ lim
τ→∞

Cst(τ) . (68)

This asymptotic limit has to be distinguished from the one of the correlation between 
the initial condition and the dynamic configuration

q0 ≡ lim
t1→∞

C(t1, 0
+) .

 (69)
The parameters q and q0 will take zero or non-vanishing values in dierent situations 
presented below. Accordingly, Cst(0) �= C(0, 0) since in the former equation the t2 → ∞ 
limit has been taken and in the latter equation t2 = 0+. In the following presentation 
we drop the superscript + from the initial time but the 0 of the absolute times should 
be understood as 0+.

If Rst and Cst satisfy FDT with respect to a temperature Tf, and we call τ = t1 − t2,

Rst(τ) = − 1

Tf

dτCst(τ) and χst(τ) ≡
∫ τ

0

dτ ′ Rst(τ
′) =

1

Tf

[1− Cst(τ)] ,

 (70)
where we used Cst(0) = 1. The second way of writing the FDT is the one that we will 
exploit in the numerical analysis to determine the final temperature Tf from the plot of 
χst against Cst constructed using the time-lag τ as a parameter.

In order to make the presentation of the analytic part easier we list here the steps 
followed in the derivation of the asymptotic equations under the stationary assumption:

 –	 We take the asymptotic limit of the equation for z(t1) and write zf ≡ limt1→∞ z(t1) 
as a function of the

  q0 and q parameters and Tf.
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 –	 We write the conservation of the energy.
 –	 We prove that the equation for Rst becomes the τ-derivative of the Cst equation.
 –	 We take the asymptotic limit of the equations for C(t1, 0) and Cst(τ).

The conservation of the total energy and the two last equations derived constitute 
a set that fixes Tf, q0 and q knowing T ′, J0, J, m0 and m. We do not prove analyti-
cally that the asymptotic solution is reached by the dynamics, this would need the 
full solution of the equations of motion and a matching problem that remains out of 
reach analytically. In contrast, we do verify a posteriori for which set of parameters 
(T ′, J0, J,m0,m) this occurs by solving numerically the full set of equations.

The steps followed in the case in which the system ages and stationarity is broken 
are rather similar but need some generalisation, see section 4.2.

4.1.1. The asymptotic Lagrange multiplier and the total energy. Starting from equa-
tion (59) and using FDT

z(t1) = 2ef +
J2p ( p+ 2)

2

∫ t1

0

dt′
1

Tf

(∂t′C(t1, t
′))C p−1(t1, t

′) +
JJ0( p+ 2)

2T ′ C p(t1, 0)

 (71)
the integral can be computed and an asymptotic expression for zf is obtained

zf = 2ef +
J2( p+ 2)

2Tf

(1− q p) +
JJ0( p+ 2)

2T ′ q p
0 . (72)

Proceeding similarly, the potential energy is given by

e f
pot = − J2

2Tf

(1− q p)− JJ0
2T ′ q

p
0 , (73)

that becomes the paramagnetic result e
f
pot = −J2/(2Tf ) for q0 = q = 0. Moreover, if 

J = J0 and Ts � T ′ = Tf (no potential energy quench), q0 = q and e
f
pot = −J2/(2Tf ), 

independently of q, as it should. Note that we need the contribution from the last term 
to get the correct no-quench limit. Besides, we assume that the asymptotic kinetic 
energy is determined by ‘equipartition’ at the final temperature

e f
kin =

Tf

2
. (74)

Then, the asymptotic total energy reads

ef = e f
kin + e f

pot =
Tf

2
− J2

2Tf

(1− q p)− JJ0
2T ′ q

p
0 . (75)

We argued that the energy right after a quench in the interactions and mass is 
ef = e(0+) = mT ′/(2m0)− JJ0/(2T

′). Compared to the asymptotic form derived in 
equation (75) the conservation of the total energy implies

mJ0
m0J

T ′

T0

− J0
T ′ =

Tf

J
− J

Tf

(1− q p)− J0
T ′ q

p
0 . (76)
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We see here two adimensional parameters T ′/J0 and Jm0/(J0m) that characterise the 
pre-quench conditions and the comparison between the pre and post quench parameters.

The equation for zf in equation (72) can now be rewritten as

zf = Tf +
J2p

2Tf

(1− q p) +
JJ0p

2T ′ q
p
0 (77)

after replacing the energy ef by its dependence on Tf. It takes now a form that is very 
similar to the one of the relaxation dynamics [17].

4.1.2. The asymptotic analysis of the correlation equation. The equation for C can be 
treated in two regimes of times. In one case we take τ = t1 − t2 fixed and t1 and t2 tend-
ing to infinity. The equation for C then reads

[mdτ2 + zf ]Cst(τ) =
J2p

2Tf

∫ t2→∞

0

dt′
∂

∂t′
(
C p−1

st (t1, t
′)Cst(t2, t

′)
)

+
J2p

2Tf

∫ τ

0

dτ ′
(
∂τ ′C

p−1
st (τ − τ ′)

)
Cst(τ

′) +
JJ0p

2T ′ C
p−1(t1, 0)C(t2, 0) .

 (78)
When deriving this equation we assumed that the contribution to the integrals of any 
possible transient between the time 0 and a time ttr after which the FDT establishes 
can be neglected. The lower limit 0 in the integral over t′ is then to be interpreted as 
the initial time ttr of this asymptotic regime, although we simply write 0 in these equa-
tions. In the second integral 0 is the minimal time-delay at which the functions Cst and 
Rst are measured.

We can treat in the same way the equation for R and then compare the two. As 
already mentioned in the list that summarizes the steps to follow, if we assume the 
fluctuation dissipation relation, it is possible to prove that the equation for Rst(τ) 
reduces to the time-delay derivative of the equation for Cst(τ) times 1/Tf . This is a 
quite straightforward calculation that we choose not to show here.

In the limit t1 � t2 → ∞ we can replace C(t1, 0) and C(t2, 0) by q0. We further take 
the limit τ → ∞ and drop the second time derivative assuming that the dynamics 
become slow at long time delays. The first integral is computed as it is written now. 
The second one is made more symmetric before approximating it, in such a way that 
the two extremes (0 and τ) contribute in the same way. One has

zfq =
J2p

2Tf

(q p−1 − q p)

+
J2p

2Tf

lim
τ→∞

∫ τ

0

dτ ′
[
1

2
(dτ ′C

p−1(τ − τ ′))C(τ ′) +
1

2
dτ ′(C

p−1(τ − τ ′)C(τ ′))− 1

2
C p−1(τ − τ ′)dτ ′C(τ ′)

]

+
JJ0p

2T ′ q p
0

=
J2p

2Tf

(q p−1 − q p) +
J2p

2Tf

1

2

[
q(1− q p−1) +

1

2
(q − q p−1)− 1

2
q p−1(q − 1)

]
+

JJ0p

2T ′ q p
0 .

 (79)
Finally,

zfq =
J2p

2Tf

(q p−1 − q p) +
J2p

2Tf

q(1− q p−1) +
JJ0p

2T ′ q p
0 . (80)
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This equation admits the solution q0 = q = 0 but it can also have, for certain values of 
the parameters, solutions with q �= 0 and q0 �= 0 being equal or dierent.

The other interesting limit is the one in which we set t2 to be strictly 0 and we tend 
t1 to infinity. The equation for C becomes

[mdt21 + zf ]C(t1, 0) =
J2p( p− 1)

2

∫ t1

0

dt′ R(t1, t
′)C p−2(t1, t

′)C(t′, 0) +
JJ0p

2T ′ C
p−1(t1, 0)C(0, 0) .

 (81)
In the limit t1 → ∞ we can replace C(t1, 0) by q0 and use C(0, 0) = 1. We further drop 
the second time derivative, and use stationarity and FDT, to find

zfq0 =
J2p

2Tf

q0(1− q p−1) +
JJ0p

2T ′ q p−1
0 . (82)

This equation admits the solution q0 = 0 but it can also have, for certain values of the 
parameters, solutions with q0 �= 0. As a check of consistency, we remark that for J = J0 
and T ′ = Tf the two remaining equations, equations (80) and (82), are compatible for 
q = q0.

We can now write down two other equations that relate q0, q and Tf:[
Tf +

J2p

2Tf

(1− q p) +
JJ0p

2T ′ q
p
0

]
q0 =

J2p

2Tf

(1− q p−1) q0 +
JJ0p

2T ′ q p−1
0 , (83)

[
Tf +

J2p

2Tf

(1− q p) +
JJ0p

2T ′ q
p
0

]
q =

J2p

2Tf

q p−1(1− q) +
J2p

2Tf

q(1− q p−1) +
JJ0p

2T ′ q p
0 .

 (84)
4.1.3. The equations fixing the parameters q, q0 and Tf. After some rearrangements, 
the three equations (76), (83) and (84) simplify to

J0m

Jm0

T ′

J0
− Tf

J
= − J

Tf

(1− q p) +
J0
T ′ (1− q p

0 ) , (85)

q0
Tf

J
= −p

2

J

Tf

q0q
p−1(1− q) +

p

2

J0
T ′ q

p−1
0 (1− q20) , (86)

q
Tf

J
=

p

2

J

Tf

q p−1(1− q)2 +
p

2

J0
T ′ q

p
0 (1− q) . (87)

One can use equations (85)–(87) to determine q0, q, Tf in situations in which a steady 
state is reached.

More simplifications are possible if one extracts q p(1− q)/q from the second equa-
tion and inserts it in the third one to obtain

Tf

J

T ′

J0
=

p

2
q p−2
0 (1− q) (88)

a linear equation in q.
We can now check that for J = J0 and m = m0, the equation that expresses energy 

conservation is consistent with T ′ = Tf and q = q0. Moreover, taking q0 = q, equa-
tions (87) and (88) become the same one,
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p

2
q p−2(1− q) =

(
Tf

J

)2

, (89)

that is the equation for q in the TAP solutions that are mixed to yield the non-trivial 
paramagnet at T 0

s < T ′ < T 0
d , see equation (23). The dynamics remain confined in the 

initial TAP state where the system was prepared.

4.1.4. Quench dynamics, target paramagnetic state. Let us look for solutions with 
q0 = q = 0 that correspond to a final paramagnetic state. Equations (86) and (87) are 
identical to zero and equation (85) implies

J0m

Jm0

T ′

J0
− J0

T ′ =
Tf

J
− J

Tf
 (90)

that fixes Tf

T
(1,2)
f = J

J0
2T ′


J0m

Jm0

(
T ′

J0

)2

− 1±

√√√√
[
J0m

Jm0

(
T ′

J0

)2

− 1

]2

+

(
2T ′

J0

)2


 . (91)

As the temperature cannot be negative, the plus sign is the relevant one here. This rela-
tion can be used to check whether the system has really attained thermal equilibrium by 

looking at the parametric plot of the integrated linear response, χ(t1, t2) =
∫ t2
t1

dt′ R(t1, t
′), 

as a function of the correlation function, C(t1, t2), and comparing minus the inverse slope 
with Tf. For a stationary system, the expected linear form is given in equation (70).

The temperature in the asymptotic paramagnetic state, in units of J, is a func-
tion of T ′/J0 and Jm0/(J0m). One can easily show from the analytic form above that 
Tf = J(J0m/(Jm0)) (T

′/J0) at m0J/(mJ0) → 0. In the limit Jm0/(J0m) → ∞ the temper-
ature approaches Tf → J/(2T ′)(−J0 +

√
J2
0 + 4T ′2). If, moreover, T ′/J0 also diverges, 

it becomes Tf → J . Some special finite values are Tf = JT ′/J0 for m0J/(mJ0) = 1, and 
Tf = T ′ if m0 = m and J0 = J .

The curve Tf/J as a function of the full control parameter (Jm0/(J0m)) is shown 
with dotted blue lines in the two panels in figure 2 that represent quenches from equi-
librium at T ′ = 0.7J0 and T ′ = 0.6J0. The open circles correspond to dynamical runs 
that realise the paramagnetic asymptotic solution. We will discuss the region of param-
eters in which this is the asymptotic state in sections 5 and 6.

The relation between the final total energy and the final temperature is very simple 
in the paramagnetic state

Tf = ef +
√

e2f + J2 , (92)

and it coincides with the result of inverting equation (60), that is to say, the equilib-
rium paramagnetic energy as a function of temperature.

4.1.5. Dynamics within metastable states. When the temperature of the initial con-
dition is such that T 0

s < T ′ < T 0
d , the system is prepared in a TAP state. In this sec-

tion we will show that whenever the asymptotic equations (85)–(87) have solutions 
with q, q0 �= 0, the dynamics of the system are confined to the same TAP state that, 
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after the change in the coupling strength operated at the quench, is only translated in 
the potential energy landscape and possibly rescaled in size, thanks to the fact that in 
the spherical p-spin model there is no birth, death or merging of states at intermediate 
temperatures.

The first remark is that, as already mentioned, the interaction quench changes the 

depth of the potential energy minima. If one minimum has energy e0pot initially, its 
energy after the quench is given by

epot =
J

J0
e0pot . (93)

Given that T 0
s < T ′ < T 0

d , the initial state is described by equation (23) that we here 
rewrite making the dependence of the parameter q on the initial temperature, T ′, and 
strength of the random potential, J0,

J2
0p

2T ′2 q[J0, T
′] p−2(1− q[J0, T

′]) = 1 , (94)

explicit. Indeed, q[J0, T
′] is the equilibrium value of the self overlap at the initial 

temper ature T ′. This equation can be written in a slightly dierent way that will be 
useful later

q[J0, T
′]−

[
J2
0p

2
(1− q[J0, T

′])

]− 1
p−2

(T ′)
2

p−2 = 0 . (95)

We call e0T ′ the bare potential energy of the TAP state that dominates the partition 
function at the initial temperature T ′. In such case, from equation (19), qT ′ also fullfills

( p− 1)(1− q[J0, T
′])q[J0, T

′]( p−2)/2 =
T ′

J2
0

[
−e0T ′ −

√
(e0T ′)2 − e0c

]
, (96)

where e0c = −J0
√

2( p− 1)/p. According to equation (93), after the quench, the energy 
of this TAP state is given by eT ′ = (J/J0) e

0
T ′.

Let us call q[J, Tf ] the self overlap in the final TAP state at temperature Tf. Also 
from equation (19), and since the energy of the TAP state is rescaled, it is clear that 
q[J, Tf ] satisfies

( p− 1)(1− q[J, Tf ])q[J, Tf ]
( p−2)/2 =

Tf

J2

[
−eT ′ −

√
e2T ′ − ec

]
, (97)

where ec = −J
√

2( p− 1)/p. Recalling that eT ′ = (J/J0) e
0
T ′, we can write

( p− 1)(1− q[J, Tf ])q[J, Tf ]
( p−2)/2 =

Tf

JJ0

[
−e0T ′ −

√
(e0T ′)2 − e0c

]
. (98)

Then, from equations (94), (96) and (98) we obtain a relation between q[J0, T
′] and 

q[J, Tf ]

q[J0, T
′] = 1− J2p

2T 2
f

(1− q[J, Tf ])
2q[J, Tf ]

p−2 . (99)
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Using now the results for the asymptotic analysis of the dynamical equation, more 
precisely, equations (87) and (88), the equation for q = limτ→∞ C(τ) can be written as

1 =
J2p

2T 2
f

q p−2(1− q)2 +

[
JJ0p

2T ′Tf

]− 2
p−2

q−1(1− q)−
2

p−2 . (100)

Defining

U ≡ 1− J2p

2T 2
f

q p−2(1− q)2 , (101)

we can write equation (100) as

U −
[
J2
0p

2
(1− U)

]− 1
p−2

(T ′)
2

p−2 = 0 . (102)

Comparing this last equation with equation (95) we conclude that

U = q[J0, T
′] , (103)

which, using equation (99), implies

q = q[J, Tf ] . (104)
This shows that the system remains trapped in the same metastable state during all 
the evolution. Of course, if the quench takes the system to parameters (final temper-
ature Tf) such that this state does no longer exist, the system escapes it into the proper 
paramagnetic state.

In figure 2(b) we draw, with blue dotted lines, the Jm0/(J0m) dependence of Tf for 
the asymptotic TAP states and the open squares show the numerical solution of the full 
equations for two choices of Jm0/(J0m) that realise this asymptotic state.

4.2. Non stationary dynamics and ageing

Let us now explain how the ageing equations are studied. In the aging regime we expect 
the correlation with the initial configuration to decay to zero

lim
t1→∞

C(t1, 0) = 0 . (105)

The dynamic equations (50)–(52) therefore lose the terms that depend on the initial 
conditions. The only formal dierence with the equations for the dissipative case [17, 
23] is that the friction term (first time derivative) is now replaced by the inertial term 
(second-time derivative) and that the temperature is not fixed a priori.

4.2.1. The parameters q, Tf, and Teff. Following the explanation in [17], explained 
in more detail in [41], the study of the C and R yields the equation that fixes plateau 
parameter q to be the one on the threshold, equation (33). In the stationary regime 
the temperature is given by the parameter Tf in the FDT linking Cst and Rst, that is 
not fixed yet. Moreover, the combination of the C and R equations in the stationary 
and aging regime yields the equation that fixes the eective temperature in the aging 
regime, Te, and this equation is, again, the same as in the dissipative case, equa-
tion (34). We have
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T 2
f

J2
=

p( p− 1)

2
q p−2(1− q)2 , (106)

Tf

Teff

=
( p− 2)(1− q)

q
. (107)

It is not necessary to fix the value of the Lagrange multiplier to derive these two equa-
tions. We still need to find, though, which is the value of Tf selected by the closed 
system.

The selection of Tf is done by the energy conservation. The asymptotic energy is the 
sum of the kinetic contribution, Tf/2, and the potential one that reads

e f
pot = −J2

2

[
1

Tf

(1− q p) +
1

Teff

q p

]
. (108)

Therefore

J0m

Jm0

T ′

J0
− J0

T ′ =
Tf

J
−
[
J

Tf

(1− q p) +
J

Teff

q p

]
. (109)

We now have three equations for the three unknowns q, Tf and Te. These equations can 
be simplified and recast in a more convenient manner by replacing the q-dependence 
of Tf/Teff from equation (107) in equation (109), that is now a quadratic equation on 
Tf/J . Solving for Tf/J and replacing the result in equation (106), after a straightfor-
ward calculation, we obtain
(
J0m

Jm0

T ′

J0
− J0

T ′

)2

=
2 q2−p

p( p− 1)(1− q)2

[
p( p− 1)

2
q p−2(1− q)2 − (1− q p)− ( p− 2)(1− q)q p−1

]2
.

 (110)
Equation (110) determines q given the initial temperature T ′, the pre and post quench 
variance of the random interactions parametrized by J0 and J and the pre and post quench 
masses m0 and m. These parameters appear in the combinations T ′/J0 and Jm0/(J0m). 
Once q is found, equations (106) and (107) yield Tf/J and Teff/J , respectively.

The solutions to equation (110) can be understood graphically. The rhs is a function 
of q with positive curvature and a single minimum at q = ( p− 2)/p, the overlap at the 
spinodal, in the interval q ∈ [0, 1]. The equation has two solutions, the one with larger 
value being the relevant one. When the control parameter m0J/(mJ0) is decreased, the 
equation ceases to have solution at

(
m0J

mJ0

)

min

=
T ′

J0

1

J0
T ′ +

√
rhs equation (110)

(
p−2
p

) ,
 (111)

when the lhs touches the minimum of the rhs This value is ≈ 1.295 for T ′/J0 = 0.7 and 
≈ 0.77 for T ′/J0 = 0.6, and p = 3 (see the ending points of the ageing Tf/J and Teff/J  
curves in figure 2, and the discussion of the phase diagram in section 6).

In the ageing solutions, as long as Tf (the temperature of the fast degrees of freedom) 
is lower than Td, the eective temperature is larger than Tf. When Tf goes beyond Td, 
its relation with the eective temperature is inverted, and it becomes larger than Te:
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Teff > Tf for Td > Tf

Teff < Tf for Td < Tf . (112)

The curves of Tf and Te, as functions of Jm0/(J0m) are shown in figure 2 with solid 
grey and dotted grey lines, respectively. The open triangles indicate the actual solution 
of the full equations found numerically. The temperature inversion, Tf > Teff predicted 
by the asymptotic ageing equations for Tf > Td is not realised asymptotically by the 
full equations but, as we will show in section 5.2.3, it appears in a transient regime.

4.3. Summary of asymptotic solutions

As a summary of the dierent asymptotic solutions, we show in figure 2 the 
m0J/(mJ0)-dependence of the dynamic critical temperature, Td from equation (37), the 
final temperature Tf of the PM (q = q0 = 0) and TAP (q, q0 �= 0) branches of the solu-
tions to equations (85)–(87) (stationary Ansatze), and the final temperature, Tf, and 
eective temperature, Te, derived from the solution to the set of equations (106)–(110) 
(ageing Ansatze). We note that the ageing temperatures Tf and Te coincide with Td at 
a single value of the control parameter Jm0/(J0m). We also show with dierent points 
the results from the full solution of the evolution equations, indicating which is the 
asymptotic solution realised by the dynamics in each range of parameters.

In panel figure 2(a), the initial state is paramagnetic T ′ = 0.7J0 > T 0
d , and the 

dynamics choose the PM solution (red dotted line and open triangles) for energy injec-
tion or for small energy extraction, while for suciently large energy extraction the 
asymptotic dynamics show ageing, characterised by two temperatures (grey lines).

In panel figure 2(b), T ′ = 0.6J0 < T 0
d  and the initial configurations are drawn within 

a TAP state. The dynamics choose the PM solution (red dotted) for large energy 

Figure 2. Characteristic temperatures in units of J after quenches from (a) an 
initial paramagnetic state with T ′ = 0.7 J0 > T 0

d  and (b) an initial TAP state with 
T ′ = 0.6 J0 < T 0

d . The lines represent the asymptotic solutions as indicated in the 
keys. The data points are the results of the numerical solution of the full set of 
equations. For each set of pre and post quench parameters one and only asymptotic 
state is realised. (a) T ′ = 0.7 J0 > T 0

d . (b) T ′ = 0.6 J0 < T 0
d .
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injection, while the system remains in a TAP state (blue lines and open triangles) for 
small energy injection or for energy extraction. The ageing solution (grey lines) are not 
realised by the dynamics.

The exact boundaries between the dierent kinds of solutions selected by the full 
equations will be derived analytically in section 6. In general, transients appear in the 
parameter regions where the system changes its asymptotic behavior.

5. Numerical results

In the numerical solution of the full set of equations we fix J0 = m0 = m = 1. This 
means that the initial energy landscape is fixed. In particular, we know the values of the 
initial critical temperatures T 0

d = 0.612 and T 0
s = 0.586. We shall then vary the initial 

temperature T ′ and the coupling J of the Hamiltonian that drives the time evolution.
For later reference and recalling the discussion in section 3, the critical temper atures 

corresponding to the equilibrium landscape with the final coupling J can be calculated 
by noticing that the critical temperatures are proportional to the coupling. Then

Ts

T 0
s

=
J

J0
⇒ Ts =

J

J0
T 0
s and Td =

J

J0
T 0
d . (113)

After some general considerations about the numerical algorithm we analyse some 
specific processes to illustrate the analytical results of the previous section and put 
them to the test. We will consider energy injection and energy extraction processes 
sketched in figures 10 and 11, respectively. The full numerical solution to the equa-
tions allows to prove which among the asymptotic solutions are realised, when several 
co-exist.

5.1. Equilibrium dynamics

We first checked that for J = J0 and m = m0, that is to say ∆e = 0, the system has a 
stationary evolution for all equilibrium initial conditions.

We studied the no energy change case with two purposes. One is to check consis-
tency of our numerical algorithm. The other is to investigate the eect of the discretisa-
tion step δ on the results obtained from the numerical integration of the equations. We 
found that the algorithm does conserve energy and that a step δ = 0.0025 was sucient 
to assure numerical convergence of our results.

We used two typical cases as initial states, a paramagnetic configuration and a 
metastable TAP state. Figures 3 and 4 show three plots, with the dynamics of the 
correlation function (a), the fluctuation dissipation parametric plot (b) and the two 
contrib utions to the energy and the total energy (c), starting from equilibrium at 
T ′ = 0.8 and T ′ = 0.6, respectively. In both cases the system is paramagnetic initially, 
though at T ′ = 0.8 it is a proper paramagnet while at T ′ = 0.6 it is a paramagnet-
looking state made of a mixture of non-trivial metastable states, see section 2.

Let us first focus on figure 3. From figure 3(a) we observe that the correlation with 
the initial condition, C(t1, 0) (thin red line) and the ones between two dierent times 
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C(t1, t2) (grey lines) lines are identical, apart from a small deviation at short time-
delays, around the first oscillation. The two-time correlation function is invariant under 
time-translations, that is to say, it is a function of t1 − t2 only. All the correlation func-
tions relax to zero, q0 = q = 0. The Lagrange multiplier (not shown) and the potential 
and kinetic energies quickly approach their final values and these agree with the ones 
predicted analytically, as seen in figure 3(c). The fluctuation-dissipation relation is 
satisfied with the temperature of the initial condition, that is the same as the one of 
the final state, see figure 3(b). All these results are compatible with equilibrium in the 
paramagnetic phase.

In figure 4 we show results for T ′ = 0.6. The Lagrange multiplier (not shown) and 
energy densities approach constants (see figure 4(c)), and stationarity is satisfied as 
well as the FDT with the initial temperature, as can be seen from figure 4(b). The 
main dierence with the case T ′ = 0.8 is that the correlation functions, both with 
the initial condition and with the configuration at a waiting-time t2, relax to a non-
vanishing value (see figure 4(a)). Within numerical accuracy we observe q0 = q � 0.6 
and this value as well as the asymptotic potential and kinetic energies are consistent 
with the ones stemming from the analysis in section 4.1.2. One can use equation (89), 
that coincides with equation (23) and fixes the q values of the non-trivial TAP states 
that correspond to equilibrium in the interval [T 0

s , T
0
d ] [27], and check that the solu-

tion for Tf = 0.6 is q = 0.6, the value obtained with the numerical solution of the 
full dynamic equations. As regards the energy values, the kinetic energy should be 

e f
kin = Tf/2 = 0.3 that is obtained numerically. The potential energy is expected to be 

Figure 3. Constant energy dynamics, ∆e = 0 (J = J0 and m = m0). T ′ = 0.8 > T 0
d  

in the paramagnetic phase. (a) Dynamics of the correlation function for various 
choices of the waiting time given in the key. The stationary relaxation to zero is 
clear. (b) Linear-response versus correlation parametric plot for two values of the 
waiting time t2 indicated in the plot. The dashed line shows the FDT with the initial 
temperature. (c) Energy time-dependence. The data correspond to ekin (above), ef 
(middle), and epot (below). The numerically evaluated values of the potential and 
kinetic energies and temperature agree with the ones derived analytically within 
numerical accuracy.
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e f
pot = −J2/(2Tf ) = −0.83 which is also correct numerically. These values are added to 

ef = Tf/2− J2/(2Tf ) = −0.53, as they should.

5.2. Energy injection

In this section we explore the dynamics after energy injection (J < J0 and m = m0) and 
we compare our results with those obtained analytically in the previous section.

The injection of energy over an initial state with temperature T ′ > T 0
d  trivially 

evolves into a paramagnetic state at a temperature Tf > T ′. The temperature can 
be calculated from the conservation of energy and the fact that for the PM phase 

e f
pot = −J2/(2Tf ). It is given by equation (91). We have checked that the numerical 

solution complies with these claims (not shown here). Therefore, we shall focus on the 
more interesting cases with initial temperatures such that T 0

s < T ′ < T 0
d . Figure 10 

summarises the results of the concrete numerical quenches with energy injection that 
we display.

5.2.1. T 0
s < T ′ < T 0

d
: from TAP to PM. In figure 5 we show results for T 0

s < T ′ = 0.6 < T 0
d , 

m = m0 and J = 0.25. The system is initialised in a TAP state that corresponds to 
equilibrium between T 0

s  and T 0
d , see section 2.2.2. This quench injects a large amount of 

energy in the system ∆e = 0.625. The post-quench critical temperatures are Td = 0.153 
and Ts = 0.146. The self correlations shown in figure 5(a) rapidly decay to zero for all 
reference times, either when they correspond to an initial t2 = 0+ or to a waiting-time 
t2 > 0. Therefore q0 = q = 0. These facts indicate that the system behaves as in the 
paramagnetic state after the quench. The final temper ature Tf = 0.358 predicted by 

Figure 4. Constant energy dynamics in the temperature region T 0
s < T ′ = 0.6 < T 0

d . 
As J = J0 and m = m0 there is no quench and ∆e = 0. (a) Stationary dynamics of 
the two-time correlation function. The asymptotic limit is q �= 0 since T ′ < T 0

d . (b) 
Linear-response versus correlation parametric plot. The dashed line shows the FDT 
with the initial temperature. (c) Energy time-dependence. The data correspond to 
ekin (above), ef (middle), and epot (below). All the numerically evaluated values of 

the parameters q, Tf = T ′, e f
pot, and e f

kin agree (within numerical accuracy) with the 

ones derived analytically. See the text for more details.
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the asymptotic analysis, equation (91), is in very good agreement with the numerical 
result extracted from the parametric χ(C) plot in figure 5(b). Considering the results 
from section 4.1.5 for quenches starting from a TAP state it is important to know the 
temperature Tmax

TAP at which the initial TAP state ceases to exist, i.e. the position of 
the spinodal line in the post quench energy landscape (see figure 1). For T ′ = 0.6 and 
J = 0.25, Tmax

TAP = 0.186 339. Note that Tf > Tmax
TAP which is consistent with the system 

reaching a paramagnetic state with q = q0 = 0, although it was initialised in a non-

ergodic initial state, since for that final temperature the TAP state no longer exists. 

From the energetic dynamics figure 5(c) we observe e
f
kin = Tf/2 and e

f
pot = −J2/(2Tf ), 

both results consistent with equilibration in a paramagnetic final state. At very short 

times, t1 → 0+, the energies are the ones right after the quench, ekin(0
+) = T ′/2 and 

epot(0
+) = −JJ0/(2T

′). It is only after a short transient, ttr � 1, that the energy densi-
ties converge to their final values.

5.2.2. T 0
s < T ′ < T 0

d
: from TAP to TAP. In figure 6 we show results for 

T 0
s < T ′ = 0.6 < T 0

d  and J = 0.75. This quench injects a smaller amount of energy 
into the system ∆e = 0.208. The post-quench critical temperatures are Td = 0.459 and 
Ts = 0.439. Dierently from the previous case, the correlations with the initial time 
t2 = 0+ and with a waiting time t2 > 0 decay to non-vanishing values, q0 and q, respec-
tively. The asymptotic analysis condensed in the full set of equations (85)–(87) predicts 
q = 0.500 and q0 = 0.548 that are in very good agreement with the values obtained with 
the numerical solution of the dynamic equations shown in figure 6(a).

In panel figure 6(b) we display the χ(C) parametric plot for a long waiting time 
t2 = 11.25, that finds good agreement with the FDT at the final temperature Tf = 0.514 
predicted by the asymptotic analysis. As a complement we also plot the parametric 
construction for a very short waiting time, t2 = 0.0025, to demonstrate that, for C(t1, t2) 
very close to one, the slope is determined by the initial temperature T ′ instead of Tf. It 
is only after a transient that the FDT with the final temperature Tf establishes.

The results in the previous paragraph are consistent with the fact that the energies 

reach their asymptotic values only after a (short) transient. From the energetic dynam-

ics we observe that e
f
kin = Tf/2 after ttr � 1 and, e

f
pot, measured after the same tran-

sient, is also in very good agreement with the predictions of the asymptotic analysis, 
once the non-vanishing values of q and q0 are taken into account.

The temperature at which the TAP state in which the system was initialised, 
modified by the quench, disappears is Tmax

TAP = 0.559, that is slightly above the final 
temperature Tf = 0.514. Consequently, the analysis in section 4.1.5 applies to this case 
and, after the quench, the system follows the TAP state in which it was set in initially.

5.2.3. T 0
s < T ′ < T 0

d
: from TAP to spinodal, transient dynamics. So far we have 

been interested in describing the asymptotic state of the system after the quench. 
We have shown that these asymptotic states can be described in terms of algebraic 
equations involving a few variables. Such asymptotic equations were derived inserting 
appropriate Ansatze in the full evolution equations. However, a systematic invest-
igation of the full dynamical equations shows that there are parameter regimes in which 
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the system shows long lived transient dynamics before reaching the asymptotic state. 
This transient eects cannot be captured by the asymptotic analysis of the evolution 
equations.

We find transient dynamics near the interphases that separate the dierent asymp-
totic regimes. More precisely, near the interphase dividing the dynamics within TAP 
states from the dynamics that leaves the TAP state into the PM state, that is to say, 
close to the spinodal.

In figure 7 we show an example in which, starting from equilibrium below T 0
d , we 

inject energy and we observe a very long transient regime in which the system has 
non-stationary dynamics, with the correlations decaying faster for longer waiting times 
but not yet reaching the steady state, see figure 7(a). The non-stationary relaxation 
is accompanied by a waiting-time dependence of the parametric χ(C) plot. For short 
waiting times the parametric plot shows a piecewise form characteristic of ageing sys-
tems figure 7(b). However, in this case, Tf (t2) > Teff(t2). In fact, a linear fit (shown with 
dotted lines in the figure) yields Tf (t2) = 0.423 and Teff(t2) = 0.349. This behaviour 
persists for a finite period of time before slowly approaching the asymptotic Tf in the 
whole range of variation of C (not shown).

The asymptotic state should be paramagnetic for these parameters. Therefore, the 
expected Tf is given by equation (91), and takes the value Tf = 0.41. The predicted 

potential energy from the asymptotic analysis is e
f
pot = −0.355, that is in very good 

Figure 5. Numerical evolution for a quench from an initial state with temperature 
in the non-trivial interval, T 0

s < T ′ = 0.6 < T 0
d  and J0 = 1, m0. The final 

parameters are J = 0.25 and m = 1. The energy injection is large, ∆e = 0.625. 
(a) Dynamics of the correlation function. The curves approach q = 0 and q0 = 0 
as predicted by equations (85)–(87), indicating a paramagnetic equilibrium state. 
(b) The parametric plot. The black dashed line shows the FDT relation with 
Tf = 0.358 as predicted by equation (91). The system reaches equilibrium at this 
new temperature. The solid lines correspond to the numerical results for two 

values of t2. (c) Energy time-dependence. From top to bottom: kinetic energy (with 

stationary value e f
kin = 0.179), total energy (constant in time with value ef = 0.092) 

and potential energy (with stationary value e f
pot = −0.087). Note that e

f
kin = Tf/2 

and e f
pot = −J2/(2Tf ).
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agreement with the numerical steady state value attained already at t1 � 2 within 
numerical accuracy. The kinetic energy also reaches a plateau after the same short 
transient (see the panel figure 7(c)). We note that these two ‘one-time’ observables 
saturate much sooner that the correlation and linear response ‘two-time’ quantities 
converge to their final form.

The final temperature Tf = 0.41 predicted by the asymptotic analysis is slightly above 
Tmax
TAP = 0.402, which justifies the PM nature of the asymptotic behaviour. However, the 

long-lived transient masks the PM behaviour at not suciently long times.
This behaviour shares points in common with observations already made in studies 

in dierent fields. In the context of quantum quenches, to have non-trivial dynamics 
of the correlation functions while quantities such as the kinetic energy has already 
thermalised is close to the concept of prethermalisation [42]. In the context of glassy 
physics, an asymptotic stationary decay in two steps, a faster one towards a plateau 
and a slower one towards zero is the kind of relaxation found in super-cooled liquids, 
the hallmark of the random first order phase transition scenario. Here we see that the 
correlation decays towards a value that is close to qmax

TAP = ( p− 2)/p = 1/3, and it oscil-
lates a few times around this value to later decay to zero, signalling the discontinuous 
way in which the TAP states disappear. Finally, the inversion in the temperature hier-
archy, Teff(t2) < Tf (t2), found at short waiting times t2 is a transient feature that shows 
the memory of the initial state with lower potential energy. In the dissipative problem, 

Figure 6. Initial temperature in the non-trivial interval, T 0
s < T ′ = 0.6 < T 0

d , 
m = m0 and J = 0.75. The energy injection is small, ∆e = 0.208, and the system 
remains trapped in a TAP state. (a) Dynamics of the correlation function. The 
horizontal lines correspond to the asymptotic values q = 0.500 and q0 = 0.548, 
predicted by equations (85)–(87). (b) The parametric plot. The black dotted line 
shows the FDT relation with T ′ = 0.6 and it is compared to the numerical results 
at a very early time after the quench, t2 � 0.0025. The other numerical line was 
obtained with t2 = 11.25 a suciently long waiting time such that the asymptotic 
Tf = 0.514 predicted by equations (85)–(87) is right below the data. (c) Energy time-

dependence. From top to bottom: kinetic energy (with stationary value e f
kin = 0.257 

and in good agreement with e f
kin = Tf/2), total energy (constant in time with value 

ef = 0.092) and potential energy (with stationary value e f
pot = −0.582 in agreement 

with equation (73) and dierently from −J2/(2Tf )).
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Teff > T  for quenches from the disordered to the low temperature phase (T < Td) and 
Teff < T  for the dynamics in the low temperature phase for systems initiated in equilib-
rium at still lower temperatures than the one at which the dynamics takes place. This 
hierarchy is interpreted arguing that the eective temperature keeps memory of the 
initial state being more disordered or more ordered than the target one. This behaviour 
has been found in numerical simulations of the out of equilibrium dynamics of the 2d 
xy model [43], an elastic line in a random potential [44] and atomic glass models [45], 
for instance. In the quenches we consider in this paper we only see the inversion in a 
pre-asymptotic regime.

5.2.4. T 0
s < T ′ < T 0

d
: from TAP to threshold? A natural question to pose is whether 

it is possible to take the system out of a TAP state and put it on the threshold level 
by injecting an adequate amount of energy. The asymptotic equations derived in sec-
tion 4.2 under the assumption that this is possible allow for a non-trivial solution in a 
selected range of parameters. However, for the same set of parameters the stationary 
state equations that describe the dynamics within TAP states also admit non-trivial 
solutions. See figure 2 (b) where the TAP branch co-exists with the double ageing one. 
The complete numerical solution of the exact dynamic equations should then decide 
which of the two asymptotic states is actually realised. We have checked this issue for, 
for example, T ′ = 0.6, J0 = 1, J = 0.85 and m = m0 = 1, parameters such that the age-
ing asymptotic solution has q �= 0, q0 = 0, Tf = 0.542 and Teff = 0.448 while the station-
ary state solutions are q = 0.55, q0 = 0.574 and Tf = 0.548 > Td. The numerical analysis 

Figure 7. Initial temperature in the non-trivial interval, T 0
s < T ′ = 0.6 < T 0

d , 
m = m0 and J = 0.54. The energy injection is ∆e = 0.380. (a) Dynamics of the 
correlation function. TTI is broken for these waiting times t2. As the reference 
time increases, the correlation function relaxes more quickly, indicating that this 
behaviour is a transient. (b) Parametric plot. With solid gray line as the numerical 
results for t2 = 11.25. With black dashed lines as the fits to the numerical data at 
short and long time dierences yielding Tf �= Teff . (c) Energy time-dependence. 

From top to bottom: kinetic energy (with stationary value e f
kin = 0.206), total energy 

(constant in time with value ef = −0.15) and potential energy (with stationary 

value e f
pot = −0.356).
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of the full equations converges to the second option, showing that it is not possible to 
take the system out of a TAP state and put it on the threshold.

5.3. Energy extraction

When extracting energy with the quench (J > J0 and m = m0), we will distinguish the 
cases in which the initial temperature is below or above the dynamic critical temper-
ature T 0

d . We recall that in the former case the initial configuration is drawn from a 
non-trivial TAP state while in the latter it is simply paramagnetic. By extracting a 
small amount of energy from a highly energetic PM state the system remains in the 
PM state; these cases are not particularly interesting and we do not show any example 
of such. Instead, we focus on more interesting cases that are summarised in figure 11.

5.3.1. T 0
s < T ′ < T 0

d
: from TAP to TAP. In figure 8 we show results for 

T 0
s < T ′ = 0.6 < T 0

d  and J = 1.5. This quench extracts a large amount of energy from 
the system ∆e = −0.416. For such value of J the critical temperatures are Td = 0.918 
and Ts = 0.440. The final temperature Tf = 0.766 and the parameters q = 0.680 and 
q0 = 0.639 predicted by the asymptotic analysis are in very good agreement with the 
results from the numerical solution of the complete equations. In this case Ts < Tf < Td. 

From the energetic evolution we observe that e
f
kin = Tf/2. In parallel, the potential 

energy e
f
pot is also in very good agreement with the predictions of the asymptotic analy-

sis using the non-vanishing values of q and q0.
This case is an example in which the initial TAP state is followed by the dynamics. 

The description in section 4.1.5 applies and explains the results.

5.3.2. T ′ > T 0
d : from PM to threshold, ageing dynamics. We will now demonstrate that 

for quenches from the paramagnetic state, T ′ > Td, with sucient extraction of energy 
the system approaches the threshold level, similarly to what has been been observed in 
the past for the relaxation dynamics of the model coupled to a thermal bath. Due to the 
flatness of this region of phase space we observe ageing phenomena with the appearance 
of an eective temperature, and the subsequent non-validity of the fluctuation dissipa-
tion theorem, even with conserved energy dynamics.

In figure 9 we show results for energy extraction starting from a paramagnetic state, 
T ′ > T 0

d , and using J = 4, a value for which Td = 2.324 and Ts = 2.449.
It is clear from panel figure 9(a) that the correlation function does not reach a sta-

tionary regime; hence, time-translational invariance is broken. Moreover, the system 
ages since the curves for longer waiting times decay in a slower manner than the ones 
for shorter waiting times. The correlation shows oscillations at small values of the time-
delay and these progressively disappear at long values of the same time-delay. The 
decay of any of the curves for dierent waiting times, but especially the ones for long 
waiting time, occurs in two steps.

The parametric plot χ(C) in figure 9(b) does not show a waiting-time dependence, 
as proven by the fact that the curves for two values of t2 fall on top of each other. The 
resulting master curve also has a two step structure, with two slopes, which are in very 
good agreement with the results from the asymptotic equations equations (106), (107) 
and (109) for Tf and Te. The breaking point in the piece-wise straight line is at C � 0.6, 
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Figure 9. Starting from T ′ = 0.7 > T 0
d  and m0 we choose m = m0 and J = 4. The 

energy extraction is ∆e = −2.175. (a) Dynamics of the correlation function. TTI 
is broken and ageing is evident. The dashed horizontal line corresponds to the 
value of q predicted by the asymptotic equations, equations (106), (107) and (109). 
(b) Parametric plot. Black dashed and dotted lines are the predictions from the 
asymptotic equations with Tf = 2.036 and Teff = 3.461. We also show numerical 
results for two dierent waiting times that are indistinguishable on the plot. (c) 
Energy time-dependence. From top to bottom: kinetic energy (with stationary 

value e f
kin = 0.995), total energy (constant in time with value ef = −2.505) and 

potential energy (with stationary value e f
pot = −3.501).

Figure 8. Starting from T 0
s < T ′ = 0.6 < T 0

d , m = m0 and we use J = 1.5. The 
energy extraction is ∆e = −0.416. (a) Dynamics of the correlation function. The 
horizontal dotted lines correspond to the asymptotic values q = 0.680 and q0 = 0.639, 
predicted by equations (85)–(87). (b) Parametric χ(C) plot. The solid lines are the 
numerical results, in perfect agreement with the analytic prediction for the FDT 
with Tf = 0.766, shown with a black dashed line. (c) Energy time-dependence. 

From top to bottom: kinetic energy (with stationary value e f
kin = 0.383 = Tf/2), 

total energy (constant in time with value e f = −0.950) and potential energy (with 

stationary value e f
pot = −1.333).
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which agrees with the value of q predicted by the asymptotic equations, q = 0.629, and 
the value of the change in behaviour of the two-time correlation, see panel figure 9(a).

Panel figure 9(c) shows the evolution of the two contributions to the energy density. 
We verify that the asymptotic kinetic energy density in figure 9(c) is consistent with 

Tf/2. Moreover, the stationary potential energy density found numerically is also in 

very good agreement with the prediction from equation (108), e f
pot = eth = −3.525.

For intermediate energy extraction the system explores regions near the threshold 
level but still in the PM part of the landscape. As a consequence, there appear transient 
regimes in the dynamics at short times with non-stationary correlations that resemble 
the ageing ones, and a χ versus curve that can be characterised with two temper-
atures. However, for longer waiting times the dynamics converge to the asymptotic 
PM solution.

5.4. Summary

The results of the energy injection process are summarised in the table included in 
figure 10. The simplest way to understand what is going on is to compare the final 
temperature Tf to the characteristic temperatures after the quench. In the three cases 
shown, Tf > Td. However, the comparison between Tf and Tmax

TAP that corresponds to 
the spinodal line (see figure 1) explains the dierent behaviour in the three quenches. 
For J = 0.25, Tf > Tmax

TAP and the only possibility is to have a paramagnetic behaviour, 
as seen in figure 5. For J = 0.54, Tf � Tmax

TAP for the TAP state in which the system was 
initialised and, therefore, the system needs a long time to relax to the PM solution, see 
figure 7. Finally, for J = 0.75 the TAP state still exists after the quench and the system 
just follows it, as explained in section 4.1.5, see figure 6.

We recap the two observations made for the energy extraction process in figure 11. 
The distinction is due to the initial state, being above or below Td. In the latter case 
the system can only follow the TAP state in which it was prepared. In the former the 
parameters can be tuned to set it on the threshold.

Figure 10. Schematic representation of the initial and final states of the quenches 
with energy injection studied numerically in figures 5 and 6. The numbered labels 
refer to the entries in the table, in which we show quantitative information for 
each illustrative case.
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Figure 11. Schematic representation of the initial and final states of the quenches 
with energy extraction studied numerically in figures 8 and 9. The numbered 
labels make reference to the entries of the table, in which we show quantitative 
information for each illustrative case.

6. The phase diagram

The purpose of this section is to determine a dynamical phase diagram. We choose as 
the vertical axis the temperature at which the initial condition was equilibrated nor-
malised by the parameter J0. The horizontal axis is the control parameter of the quench 
that, as we will show, turns out to be Jm0/(J0m). We will show the regions in which 
the final state is either paramagnetic, a TAP state or a non equilibrium ageing state. As 
in the rest of this paper we show results for initial states equilibrated at temperatures 
T 0
s < T ′ only, so the origin of this axis is at T 0

s . In the rest of the section we explain the 
criteria used to obtain the critical lines in figure 12.

6.1. The PM-ageing boundary line

Initial states with T ′ > T 0
d  are paramagnetic. We have seen in section 5.3 that extract-

ing a small amount of energy, leaves the state in the paramagnetic region. Instead, by 
extracting a larger amount of energy it is possible to put the system on the threshold 
and, accordingly, the system displays ageing dynamics and is characterised by Teff > Tf . 
If we claim that this second option ceases to be possible when Teff = Tf , we can then 
use equation (107) to derive the value of q on the transition line.

1 = ( p− 2)(1− qcr)/qcr ⇒ qcr =
p− 2

p− 1
, (114)

that is qth(Td). If we now replace this qcr in equation (106) and we use the constant a( p), 
see equation (25),

T 2
f cr

= J2a2( p) = T 2
d , (115)

independently of T ′ and J0, see figure 2. Still, what we are looking for is the curve 
T ′(J0, J) on which Tf takes this value. We obtain it from equation (109) evaluated at 
Tf = Teff = Td and q = qcr
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T ′

J0
=

1

2

1

a( p)

Jm0

J0m

[
a2( p)− 1 +

√
(a2( p)− 1)2 + 4 a2( p)

J0m

Jm0

]
. (116)

A Taylor expansion around Jm0/(J0m) = 1 yields, to first order,

T ′

J0
= a( p) +

(
Jm0

J0m
− 1

)
a( p)

1 + a2( p) (117)

and, in the particular case Jm0/(J0m) = 1,

T ′ = a( p)J0 = T 0
d . (118)

In the limit Jm0/(mJ0) → ∞, using a2( p) < 1, equation (116) implies

T ′

J0
→ T ∗

J0
≡ a( p)

1− a2( p)
, (119)

a finite value for all p; in particular, T ′/J0 → 2
√
6/5 for p = 3. This seemingly unex-

pected result can be rationalised as follows. For increasing T ′, the initial kinetic energy 
(at t1 = 0+) grows as T ′, while the initial potential energy vanishes as −J0J/(2T

′) and 
the energy extraction, in the case in which, for concreteness, we apply a quench in 
the potential, as J0(J0 − J)/(2T ′). In the final ageing state the two temperatures Tf 
and Te are finite for finite J, as one can simply verify from the asymptotic equations. 
Accordingly, for finite J there is a maximal value of T ′ beyond which the initial kinetic 
energy cannot be extracted by the chosen J to put the system on the threshold. The 
paramagnetic solution does not have this problem since its Tf is not bounded in the 
same way for quenches with T ′/J0 > T ∗/J0. The system then remains in the PM state. 

Figure 12. The phase diagram (Jm0/(J0m), T ′/J0) with T ′ the temperature of 
the initial condition J0 and J the parameters that characterise the width of the 
disorder distribution before and after the quench, and m0 and m the mass of the 
particle before and after the quench. Jm0/(J0m) > 1 represents energy extraction 
and Jm0/(J0m) < 1 energy injection. In (a) we show the region around T ′ = T 0

d  (low 
temperatures), while in (b) we show the region T ′ > T 0

d . The analytic expressions 
for the boundary lines are obtained in this section.

https://doi.org/10.1088/1742-5468/aa7dfb


Non equilibrium dynamics of isolated disordered systems: the classical Hamiltonian p-spin model

42https://doi.org/10.1088/1742-5468/aa7dfb

J. S
tat. M

ech. (2017) 083301

Contrary to this limitation, in the thermal quenches of the over-damped dissipative 
model, the system can get rid of its extra energy by releasing it to the environment and 
quenches from arbitrary high temperature initial conditions can approach the threshold 
and show ageing. Another interesting feature is that the final Tf cannot take arbitrary 
low values.

6.2. The TAP-PM boundary line

Suppose now that we start in a TAP initial state. As we have seen, if we inject a small 
amount of energy, the system finishes in the same TAP state of the post-quench poten-
tial. Nevertheless, if we inject a larger amount of energy, the system can end up in a 
paramagnetic final state. The TAP-PM boundary line should be determined by the 
impossibility to follow the TAP initial state at the target J. Therefore, the transition 
occurs on the spinodal, where the TAP states simply cease to exist (see the blue line 
and open squares in figure 2(b)).

The critical line (Jm0/(J0m), T ′/J0) can then be derived by exploiting the results in 
section 4.1.5. First, equation (99) relates the initial q[J0, T

′] to the final one q[J, Tf ]. We 
can use the, by now usual, analysis of the bell-shaped rhs to deduce that a solution with 
q[J, Tf ] �= 0 exists as long as q � qmax = ( p− 2)/p. Evaluating then the rhs at this value

1− q[J0, T
′] =

2J2

pT 2
f

(
p− 2

p

) p−2

, (120)

with q[J0, T
′] given by equation (94) that we recall here written in a more convenient 

way

p

2
(q[J0, T

′]) p−2(1− q[J0, T
′]) =

T ′2

J2
0

. (121)

We now need an equation to fix Tf. This should be derived from the asymptotic 
dynamics part, exploiting the fact that q[J, Tf ] = qmax = ( p− 2)/p. Take equation (85) 
as a starting point. The only unknown (apart from Tf) is q p

0 . We can use the energy 
balance equation (87) to extract q p

0  and get from (85)
J0m

Jm0

T ′

J0
− J0

T ′ =
Tf

J
− J

Tf

− 2

p

qmax

1− qmax

Tf

J
+

J

Tf

q p−1
max . (122)

This expression simplifies a little bit replacing qmax = ( p− 2)/p and qmax/ 
(1− qmax) = ( p− 2)/2,

J0m

Jm0

T ′

J0
− J0

T ′ =
2

p

Tf

J
− J

Tf

[
1−

(
p− 2

p

) p−1
]

, (123)

again a quadratic equation for Tf/J . Now we have to replace the solution for Tf/J in 
equation (120), use this linear equation on q[J0, T

′] to get its dependence on the param-
eters and replace it in equation (121). This is an implicit equation that yields the curve 
(J0m/(Jm0), T

′/J0) that marks the end of the TAP region of the phase diagram for 
Ts < T ′ < T 0

d .

https://doi.org/10.1088/1742-5468/2017/00/000000


Non equilibrium dynamics of isolated disordered systems: the classical Hamiltonian p-spin model

43https://doi.org/10.1088/1742-5468/aa7dfb

J. S
tat. M

ech. (2017) 083301

We can see whether this boundary touches the value T ′ = T 0
d  at the quench param-

eter Jm0/(J0m) = 1 or elsewhere by setting T ′ = T 0
d = a( p)J0, with initial q value 

q[J0, T
′] = ( p− 2)/( p− 1). Equation (120) can be used to determine Tf:

T 2
f

J2
= 2

p− 1

p

(
p− 2

p

) p−2

= 4

(
p− 1

p

) p

a2( p) (124)

that replaced in equation (123) yields the critical value of Jm0/(J0m):

(
Jm0

J0m

)

cr

= a2( p)

{
1 +

4

p

(
p− 1

p

) p/2

a2( p)− 1

2

(
p

p− 1

) p/2
[
1−

(
p− 2

p

) p−1
]}−1

.

 (125)
In the case p = 3 one has a2(3) = 3/8 and

(
Jm0

J0m

)

cr

≈ 0.82 , (126)

that is smaller than one, as shown in figure 12. This value of 
(

Jm0

J0m

)
cr
 provides the mini-

mum energy injection needed to reach temperatures above the limit of existence of the 
metastable states close to the threshold level, see figure 1.

7. Conclusions

We studied the dynamical evolution of a classical disordered model subject to a quench. 
By endowing the system with an intrinsic dynamics, we were able to investigate the 
evolution of the isolated model, thus analysing issues of thermalisation and equilibra-
tion in a classical setting.

We showed that, depending on the parameters used in the instantaneous quench, 
an interacting classical disordered model can either reach equilibrium or remain out of 
equilibrium in two dierent manners: it can be confined in a metastable state evolv-
ing with stationary dynamics characterised by a single temperature related to the final 
energy, or it can evolve in the so-called threshold level with non-stationary dynamics 
characterised by two temperatures, similarly to what happens in the dissipative model. 
Figure 12 summarises the dierent phases and transition lines in the phase diagram 
parametrized by the most important parameters of the initial condition (T ′/J0) and the 
adimensional control parameter of the quench, Jm0/(J0m). We therefore showed that 
dynamic phase transitions in close interacting systems are also realised classically.

In the context of quantum quenches, an out of equilibrium dynamic transition was 
found in the Hubbard model [46–49], the Bose-Hubbard model [50] and the O(N) model 
[51–54]. It is characterised by the fact that long time averages display a singular behav-
iour and the order parameter vanishes when post-quench coupling parameter, say Uf, 

approaches a critical value Ud
f  with critical dynamics [53]. On one and another side of 

the critical parameter the asymptotic values of these time-averages take qualitatively 
dierent behaviours, as in a conventional phase transition. The dynamic phase trans-
ition can be a feature of the pre-thermalisation regime, as in [52], or a fully asymptotic 
property as in the O(N) model in the large N limit [54].
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Compared to these problems, in this paper we showed that dynamic phase trans-
itions in quenched close interacting systems are also realised classically. The dynamical 
phase diagram in figure 12 summarises the dierent phases and transition lines.

Let us now explain, in some detail, why we claim that the non-integrable model that 
we analysed shows equilibrium and out of equilibrium asymptotic dynamics. In the 
case of a closed system, the process of thermalisation consists in the loss of memory of 
the details of the initial condition, and the approach to a state that can be completely 
characterised by the values of the conserved quantities. Equilibrium statistical mechan-
ics indicates that such a state should be described by the microcanonical, canonical 
or grand-canonical ensembles in the thermodynamic limit, depending on the degree of 
isolation from the environment. Then, at least for generic non-integrable models, we 
can say that a closed system has thermalised if

 •	 the dynamics has reached a stationary state,
 •	 this state is described by one of the ensembles of statistical mechanics.

Assuming thermalisation, the temperature of the canonical distribution describing 
the asymptotic state of a system with constant particle number is univocally defined 
by its energy. More specifically, if H is the Hamiltonian of the system and ρ0 is the 
initial macrostate, the energy of the system is given by E = 〈H〉0, where the subscript 
indicates that we are taking the statistical average with respect to ρ0. The final canoni-
cal state is then ρth = e−βH/Z , with β determined by E = 〈H〉th, where the subscript 
indicates the thermal average.

In the model that we studied, we found that, depending on the quench parameters, 
the asymptotic dynamics occur on the threshold, within a TAP metastable state or in 
the paramagnetic state. We now explain why the first two cases are out of equilibrium 
while the latter is in equilibrium, according to the two conditions listed above.

In the parameter regimes in which the ageing solution is realised, it is quite clear 
that the system does not thermalise, simply because it never reaches a stationary state.

We now argue that whenever the dynamics of the system is confined in a TAP state, 
i.e. q, q0 �= 0, although the asymptotic state is stationary and even satisfies FDT with 
respect to its asymptotic temperature Tf, the system does not thermalise in the sense 
discussed above. Let us consider two dierent initial conditions specified by the values 

of J0 and T ′, (1) = {J (1)
0 , T ′(1) = 0.6 J

(1)
0 } and (2) = {J (2)

0 = 1.05 J
(1)
0 , T ′(1) = 0.62 J

(1)
0 }, 

where we use J
(1)
0  as the energy unit. In both cases T 0

s < T ′ < T 0
d , which means that 

the system is prepared in a TAP state. We will take the evolution Hamiltonian H 

to be specified by J = 0.75 J
(1)
0  in both cases. Now, using equation (61) it is easy 

to verify that both systems have the same energy density, ef = −0.325 J
(1)
0 . If the 

only conserved quantity is energy, that is the Hamiltonian H itself, and both sys-
tems thermalise, the asymptotic states reached should be identical. However, the 
asymptotic states predicted by equations (85)–(87), that we have checked against 

the full dynamics, are dierent {q(1) = 0.5, q
(1)
0 = 0.548, T

(1)
f = 0.513 J

(1)
0 } and 

{q(1) = 0.529, q
(1)
0 = 0.578, T

(1)
f = 0.519 J

(1)
0 }. In particular, the final temperatures are 

dierent. We can interpret this fact using the results in section 4.1.5. Both systems 
are initialised in a TAP state and, since we inject only a small amount of energy, the 
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subsequent dynamics takes place inside the same TAP state that is only translated in 
energy and rescaled in size by the quench. In other words, both systems are unable to 
forget the details of the initial condition, in particular which is the initial TAP state. 
Both systems reach thermal equilibrium inside the TAP state, however this bounded 
equilibrium is not compatible with thermal equilibrium in the whole phase space. In 

fact, for both quenches the final temperature T
(1,2)
f  is larger than the dynamical temper-

ature Td = 0.459 J
(1)
0  and both systems show q �= 0. However, the equilibrium state 

described by the Gibbs measure e−βfH/Z is paramagnetic for any Tf > Td, with q = 0. 
This confirms that the asymptotic states reached by both systems are not thermal.

Finally, quenches ending up in a paramagnetic asymptotic state with q = q0 = 0 show 

thermalisation. Let us consider two dierent initial conditions (1) = {J (1)
0 , T ′(1) = 0.6 J

(1)
0 } 

and (2) = {J (2)
0 = 1.05 J

(1)
0 , T ′(1) = 0.615 J

(1)
0 }. Again, both initial conditions are pre-

pared in a TAP state. Now we will consider a situation in which we inject a larger 

amount of energy by choosing J = 0.4 J
(1)
0 . In this case, both systems have the same 

energy density ef = −0.033 J
(1)
0 . The asymptotic state in both cases is paramagnetic 

and the final temperatures are also equal T
(1)
f = T

(2)
f = 0.368 J

(1)
0 . Since the final temper-

ature is larger than the dynamical temperature Td = 0.244 J
(1)
0 , the asymptotic state is 

compatible with the paramagnetic equilibrium state e−βfH/Z .
We end with a discussion of the temperatures selected by the asymptotic state, be 

it a steady or an ageing one. The steady state can be a simple paramagnet or a meta-
stable TAP state. In both of these cases, the model fixes its temperature, that is a func-
tion of the energy after the quench, and the fluctuation dissipation theorem is satisfied 
with respect to it. In the ageing asymptotic state, instead, the dynamics occur in two, 
well separated, time regimes controlled by the relation between the time-delay and the 
reference or waiting time. The fluctuation-dissipation relation is satisfied with respect 
to these two temperatures for the time-delay taking values in the two regimes. The 
crossover between the two regimes takes place when the correlation function passes by 
the plateau value q. The ageing regime has exactly the same features as for the dissipa-
tive system.

It was recently shown that in quenches of isolated quantum integrable systems the 
fluctuation dissipation relation, as a function of frequency, allows one to measure, in 
the steady state, the generalised Gibbs ensemble eective temperatures, one for each 
conserved quantity [55, 56]. In the model we studied in this paper there is only one 
conserved quantity, the total energy, but, in the ageing asymptotic state, the system 
acquires two temperatures, depending on the range of frequencies at which it is exam-
ined. Whether there is a link between the temperatures (Tf and Te) measured in the 
out of equilibrium non-integrable systems and the ones of the GGE of integrable mod-
els, is a question that deserves further analysis.

The TAP states are separated by barriers diverging with the system size, that is to 
say, with N in this case. In the dissipative problem the escape time from the TAP states 
is expected to grow exponentially, à la Arrhenius, with the surrounding (free-energy) 
barrier over the thermal energy kBT  and, therefore, exponentially with N. In the 
infinite size limit, the TAP states are fully confining even under thermal fluctuations. 
Numerical evidence for the finite (though very long) lifetime of the trapping states for 
finite N was given in, e.g. [38–40].
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As shown by our results, in the isolated problem, the asymptotic quench dynamics 
of the infinite size system can also be confined to these states with special choices of the 
initial conditions (that are correlated with the random potential). The calculation that 
we presented in this paper are valid only in the infinite size limit. In the isolated case, 
though, we expect that the remnants of the TAP states in the finite N systems should 
be confining until some crossover energy input is exceeded; how this is achieved should 
depend on the parameters.

Under these conditions, a system initially prepared in a configuration belonging to 
a finite N pseudo-TAP state will initially explore the region of the phase space corre-
sponding to the transformed finite N pseudo-TAP state, before relaxing to the final 
paramagnetic state in a longer timescale. The crossover time should scale with N, 
becoming infinite for N → ∞, in concordance with our results. This two step relax-
ation would be reminiscent of the situation in nearly integrable isolated quantum many 
body systems, which initially relax to a metastable state (called prethermalised state 
in the recent literature [57–59]) before reaching equilibrium in a longer time-scale [59]. 
Prethermalised states in nearly integrable systems are in correspondence with the non-
thermal stationary states of the associated integrable model [57, 58]. In this case, the 
crossover time-scale scales with the distance to integrability, and diverges for the inte-
grable model, for which the non-thermal stationary state, often described by GGE den-
sity matrices, are the truly final stationary states. The picture of a two step relaxation 
should also apply to disordered finite-range non-mean-field models with metastable 
states separated by large but finite energy barriers. Finally, we would like to point out 
that the existence of non-thermal quasistationary states whose lifetime scales with the 
system size is a well known fact in the dynamics of non-disordered systems with long, 
but finite, range interactions [60].

In a separate publication we will discuss how the methods and results of this paper 
extend to the quantum problem.
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