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Anderson-Mott transition in a disordered Hubbard chain with correlated hopping
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We study the ground-state phase diagram of the Anderson-Hubbard model with correlated hopping at half-
filling in one dimension. The Hamiltonian has a local Coulomb repulsion U and a disorder potential with local
energies randomly distributed in the interval (−W, + W ) with equal probability, acting on the singly occupied
sites. The hopping process which modifies the number of doubly occupied sites is forbidden. The hopping
between nearest-neighbor singly occupied and empty sites or between singly occupied and doubly occupied
sites has the same amplitude t . We identify three different phases as functions of the disorder amplitude W and
Coulomb interaction strength U > 0. When U < 4t the system shows a metallic phase: (i) only when no disorder
is present W = 0 or an Anderson-localized phase, (ii) when disorder is introduced W �= 0. When U > 4t the
Anderson-localized phase survives as long as disorder effects dominate on the interaction effects, otherwise
a Mott-insulator phase (iii) arises. Phases (i) and (ii) are characterized by a finite density of doublons and a
vanishing charge gap among the ground state and the excited states. Phase (iii) is characterized by the vanishing
density of doublons and a finite gap for the charge excitations.
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I. INTRODUCTION

The idea of inducing electron localization with many-body
interactions in fermionic systems was introduced by Mott in
the framework of a crystalline array with strong Coulomb
interactions [1–3]. As in the case of the usual band insulators,
a gap opens in the spectrum of the many-particle system.
In this case the origin of this feature is the effect of the
interactions rather than the nature of the atomic structure.
The Hubbard model constitutes the tight-binding version of
this picture. The corresponding Hamiltonian has a hopping
term between nearest neighbors in a lattice combined with
a local Coulomb interaction [4–6]. The competition between
the kinetic energy and the strong correlations represented by
these two terms is precisely the origin of the metal-insulator
transition proposed by Mott. For this reason, the Hubbard
model was thought to be the natural candidate to realize the
Mott transition [2]. In bipartite lattices, however, the nesting
in the Fermi surface and the relevant umklapp processes at
half-filling lead to magnetic instabilities that mask the metallic
phase. The ground state is insulating for any value of the
Coulomb interaction and, unlike the original Mott picture, it is
dominated by strong antiferromagnetic correlations [7]. When
the antiferromagnetism is frustrated, several results support the
scenario of the metal-insulator Mott transition in this model.
This is the case of lattices with frustrating geometries [8],
infinite-range hopping, or lattices with an infinite coordination
number [9].

The Anderson transition defines a completely different
paradigm of metal-insulator transition. The model was in-
troduced [10] to describe the localization of noninteracting
single particles due to the introduction of disorder in a crystal
potential landscape. The Hamiltonian has a hopping term
between nearest-neighbor sites in a lattice with randomly
distributed local energies. Unlike the Hubbard model, the
insulating phase is gapless. In this phase the electrons get
trapped and localized in real space due to the potential
landscape [11–14], whereas the metallic phase is stabilized

for low strength of disorder in three-dimensional lattices. In
lower dimensionality, the ground state is always insulating
[15,16].

The combination of Coulomb interaction and local potential
disorder defines the disordered Hubbard model, and the
outcome of such an interplay is highly nontrivial [14,17–20].
The naive expectation that the combination of two ingredients
leading to insulating phases also results in an insulating
phase does not apply to this model. In fact, quantum Monte
Carlo results in two dimensions [21–23] and results obtained
with dynamical mean-field theory in lattices with infinite
connectivity [20,24,25] suggest the possibility of a metal-
insulator transition in the phase diagram of the Coulomb
interaction U vs the strength of disorder W at half-filling. The
concept of many-body localization has recently been coined
to characterize the effect of disorder in the presence of many-
body interactions and has been receiving a lot of attention
for some years now [26–33]. Theoretical studies include
perturbative calculations [34–36] and numerical simulations
[29,30,37–39]. These ideas also are motivating experimental
studies not only for solid-state systems, but also in other
correlated systems, such as cold atoms and optical lattices
[40,41]. In fact, the advances in quantum optics enabled
the experimental realization of optical potentials imitating
a crystal lattice (optical lattices) [42] with the advantage of
having tunable parameters [43–46]. For example, experimental
studies of a Hubbard model in three dimensions have been
performed using ultracold neutral atoms trapped in an optical
lattice [47,48]. The interplay of interaction and disorder is
crucial when studying cold atoms in these lattices too [48–51].

The Hubbard model with correlated hopping supports a
limit with the basic ingredients for a Mott transition. The
corresponding Hamiltonian has a local Coulomb interaction U

identical to the one of the usual Hubbard model, but the kinetic
term is generalized to have different amplitudes (ta,tab,tb)
depending on the occupation of the two neighboring sites 〈ij 〉
that intervene in the hopping process with a total number of
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FIG. 1. Schematic of the possible hopping events considered in
this paper. The hopping takes place between a singly occupied site
and an empty site with amplitude ta = t or between a single occupied
site and a doubly occupied site with amplitude tb = t . The hopping
between two singly occupied sites with different spin components to
generate a doubly occupied site, and an empty site or vice versa is
forbidden tab = 0.

one to three particles, respectively. The corresponding kinetic
term reads

H (ta,tab,tb) =
L∑

〈ij〉,σ
c
†
i,σ cj,σ {ta(1 − ni,−σ )(1 − nj,−σ )

+ tab[ni,−σ (1 − nj,−σ ) + (1 − ni,−σ )nj,−σ ]

+ tbni,−σ nj,−σ } + H.c. (1)

The operators c
†
i,σ (ci,σ ) create (annihilate) a S = 1/2 fermion

with spin component σ =↑ , ↓ at the chain site i, and ni,σ =
c
†
i,σ ci,σ is the corresponding number operator. The hopping

process that permutes a singly occupied site and an empty site
has amplitude ta . The one permuting a single occupied site
and a doubly occupied site has amplitude tb. The hopping
between two singly occupied sites with opposite spins to
generate an empty site and a doubly occupied site or vice
versa has amplitude tab (see the sketch of Fig. 1). These terms
emerge naturally in the derivation of an effective low-energy
model starting from the three-band Hubbard Hamiltonian that
describes the Cu-O planes of the superconducting cuprates
[52–54]. In some limit, it is equivalent to the so-called
extended Hubbard model with a bond-charge interaction
which has been investigated in the context of low-dimensional
organic superconductors [55–57] as well as in the context
of nonconventional superconducting mechanisms, such as
hole superconductivity [58,59], η-pairing superconductivity
[60,61], mesoscopic transport [62], and quantum information

[63,64]. More recently, this model also was investigated in
optical lattices and cold atoms [65–70] and was found to
provide the effective theory of the Hubbard Hamiltonian in
driven lattices [71,72].

The correlated hopping Hubbard Hamiltonian can be solved
exactly in one dimension (1D) in two limits. One corresponds
to the usual Hubbard model where ta = tb = tab, which can
be solved by Bethe ansatz [73]. The other solvable case is
|ta| = |tb| = t and tab = 0 [74,75]. At half-filling, when the
Coulomb interaction U overcomes a critical value Uc, the
ground state corresponds to an insulator with an energy gap
increasing linearly with U . It is interesting to note that for tab =
0 the antiferromagnetic correlations are inhibited completely.
Hence, the insulating phase has the characteristic of an ideal
Mott insulator in the sense that it does not have any magnetic
order. Below the critical value Uc, the system is gapless and
has the characteristics of a normal metal.

The aim of this paper is to investigate the phase diagram of
the correlated Hubbard model in the exactly solvable limit
of Ref. [74] at half-filling with an additional term in the
Hamiltonian that represents a disordered potential for the
singly occupied sites. The model is introduced in Sec. II. In
Sec. III we present the methodology to investigate the ground
state of this Hamiltonian. Results are presented in Sec. IV, and
Sec. V is devoted to a summary and conclusions.

II. MODEL

We study a disordered Hubbard model with correlated
hopping. The corresponding Hamiltonian is

H = HK + HU, (2)

where

HK = H (t,0,t) +
L∑
i,σ

εini,σ (1 − ni,−σ ),

(3)

HU = U

L∑
i

ni,↑ni,↓.

The Hamiltonian HK represents the kinetic term characterized
by hopping processes between nearest-neighbor sites 〈ij 〉 of
the lattice. It corresponds to Eq. (1) with tab = 0 and identical
amplitudes for ta and tb as indicated in the sketch of Fig. 1.
This is precisely the exactly solvable limit where the hopping
process changing the number of occupied sites and introducing
antiferromagnetic correlations is forbidden [74,75]. In addition
to the correlated hopping, there is a disorder potential charac-
terized by local random energies −W < εi < W (third term)
which acts on the singly occupied sites. The homogeneous case
corresponds to the limit W = 0, which is the exactly solvable
case. The Hamiltonian HU describes the Coulomb repulsion
with U > 0, which acts only on doubly occupied sites.

As in the case studied in Refs. [74,75] we can verify
that the number of doubly occupied sites Nd = ∑

i ni,↑ni,↓
is conserved [H,Nd ] = 0. Hence, the particles can exist in the
lattice in the form of single fermions or doublons. The latter
are defined by pairs of particles with different spins occupying
the same site. The number of each of these species is conserved
separately. The total number of particles also is conserved and
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can be expressed as N = Nf + 2Nd , where Nf is the number
of the unpaired particles. The role of U is equivalent to a
chemical potential for the doublons.

In the limit of W = 0 and |ta| = |tb| = t , studied in
Refs. [74,75], the ground state at half-filling (N = L) displays
a Mott transition at the critical value of Uc = 4t . For U > Uc

the ground state corresponds to a zero energy state where all
the sites of the lattice are occupied by a single particle. This
state is characterized by Nd = 0, and the kinetic energy is
zero (〈HK〉 = 0) and is 2L degenerate due to all the possible
spin orientations. As it does not have any special magnetic
order it fits to the picture of the Mott insulator. In this phase,
there is a gap between the ground state and the lowest-energy
excited state in the charge sector, which depends linearly
on U . For U < Uc the energy gap closes, the ground state
is in a degenerate metallic phase with states containing
superconducting order in the manyfold, and it is characterized
by 〈HK〉 �= 0 and Nd �= 0.

We will show in the next section that the present model
for U = 0 can be mapped to the usual spinless Anderson
model [10]. Therefore, the ground state of H is clearly an
Anderson gapless localized state for arbitrarily low strength
of the disorder W �= 0. Since the number of doublons does
not contribute to the kinetic energy, it is also clear that for
those parameters where the ground state has Nd �= 0, the
system may be in an Anderson-like localized phase with a
finite number of doublons. This is expected to happen also
when the effect of disorder is introduced while U < Uc. The
question that arises is about the nature of the Mott phase as
disorder is introduced for U > Uc. The investigation of this
phase is the main goal of the present paper.

III. METHOD

In order to find the spectrum of H we follow a similar
procedure to the one introduced in Refs. [74,75]. We focus
on open boundary conditions and start by mapping the
Hamiltonian HK to a spinless Anderson Hamiltonian with
Nf particles in L sites. To this end it is convenient to express
the different states of a given lattice site in terms of the fol-
lowing representation: |0〉 → e

†
i |0〉 ≡ |◦〉, c†σ |0〉 → f

†
i,σ |0〉 ≡

|σ 〉, c
†
↑c

†
↓|0〉 → b

†
i |0〉 ≡ |•〉. Here fiσ is fermionic whereas ei

and di are bosonic operators that obey the following constraint:

e
†
i ei + d

†
i di +

∑
σ

f
†
iσ fiσ = 1, (4)

which implies that a given site may have only one type of
boson (◦ or •) or fermion with only one type of spin component
(↑ or ↓). We substitute this representation in HK and focus
on |ta| = |tb| = t [76]. The resulting Hamiltonian reads

HK = t
∑
〈ij〉,σ

[f †
jσ fiσ (e†i ej + d

†
i dj ) + H.c.] +

∑
iσ

εif
†
iσ fiσ .

(5)

This model has two SU(2) local symmetries. The usual
spin-1/2 symmetry with generators,

Sz
i = (f †

i↑fi↑ − f
†
i↓fi↓)/2, S+

i = f
†
i↑fi↓, S−

i = f
†
i↓fi↑,

(6)

and the η-pairing symmetry with generators,

ηz
i =

(
1 −

∑
σ

f
†
iσ fiσ − 2d

†
i di

)/
2, η+

i = e
†
i di,

η−
i = d

†
i ei . (7)

Here we notice that states ◦ and • of the η-pairing symmetry
are akin to ↑ and ↓ of the usual spin symmetry. Interestingly,
we can verify

[HK,S+
i ] = [HK,S−

i ] = [HK,η+
i ] = [HK,η−

i ] = 0. (8)

Therefore, we can work in the subspace corresponding to the
highest weight representation of these SU(2) algebras. This is
equivalent to working in the subspace where all the fermions
have ↑ spin and all the bosons are ◦. We can diagonalize
the Hamiltonian in this subspace and then, due to (8), we
know that each eigenstate |ψm〉 will be degenerate with states
resulting from the application of all the lowering operators
S−

i |ψm〉 and η−
i |ψm〉.

For a fixed number of particles N and a given number
of doublons Nd , these eigenstates have a degeneracy 2Nf ×
C(N − Nf ,Nd ) with C(N − Nf ,Nd ) being the combinatory
number. This is due to the different spin orientations of the
unpaired particles and the different possibilities for allocating
the doublons in the N − Nf lattice sites which are not occupied
by the unpaired fermions. The eigenenergies of H for U = 0
only depend on Nf . More precisely, these eigenenergies for
U = 0 are those of Nf spinless fermions in a lattice with L

sites and a disorder potential profile εi . For U �= 0 we notice
that the Coulomb interaction acts like a chemical potential for
the doublons. Then, we must add to the eigenenergies of HK

the quantity UNd .
The states of the basis with highest weight can be mapped

to the states of Nf spinless fermions. Therefore, the problem
of diagonalizing the Hamiltonian HK can be mapped to
diagonalizing the Anderson Hamiltonian in L sites with Nf

spinless particles, which can be represented by a tridiagonal
matrix with diagonal elements εi, i = 1, . . . ,L and band
elements t . The single-particle eigenenergies of this problem
are the eigenvalues of that matrix ej , j = 1, . . . ,L, and the
Nf -particle energies are

E
(Nf )
m =

Nf∑
j=1

em(j ), (9)

with m = 1, . . . ,C(L,Nf ). These correspond to fill in Nf of
the L single-particle states, labeled with m(j ), j = 1, . . . ,Nf

with only one particle, in consistency with the Pauli principle.
The eigenenergies of the N -particle states with Nf single
fermions and Nd doublons are obtained easily for any value of
U from

E(N)
m = E

(Nf )
m + UNd, N = Nf + 2Nd. (10)

Hence, all the eigenenergies for the system with N particles
can be obtained by considering all the eigenenergies (10) with
all combinations of numbers of free particles and doublons
ranging from Nf = 0, Nd = N/2 to Nf = N, Nd = 0, satis-
fying the constraint of adding to a total number of particles N

as indicated in (10).
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In order to investigate the phase diagram of this model at
half-filling (N = L) we follow the procedure described above
in chains with different size L’s for several values of U and
2000 realizations of the local energies εi , which are randomly
distributed with equal probability within the interval (−W,W ).
We focus on the charge gap between the ground state and the
first charge excitation,

� = E1 − E0, (11)

where E0 and E1 are the ground-state energy and the first
excited state, respectively, of the N particles in the L-site
chain. Typically, the two associated eigenstates differ in one
doublon. We also analyze the average over the density of
doubly occupied sites,

d = Nd/L. (12)

To evaluate the phase diagram, we perform finite-size scaling
with sizes L � 1200 and extrapolate the results to the
thermodynamic limit.

IV. RESULTS

As discussed in Sec. II we do no expect any metallic phase
at half-filling N = L in the present model when W �= 0. For
U = 0 and finite W this model is equivalent to the Anderson
model, which is always in a localized phase in 1D. In the
limit where W = 0, the system is in a metallic phase for U <

4t , characterized by a finite density of doublons d �= 0 and a
vanishing value of the charge gap � = 0. Instead, for U > 4t

the ground state is in the Mott-insulator phase with d = 0
and a finite energy gap �. The ground-state energy for U =
W = 0 is in the subspace with Nf = N/2 and Nd = N/4. As
U increases keeping W = 0, d decreases and vanishes at the
critical value of U = 4t where the Mott transition takes place,
whereas in the thermodynamic limit where L → ∞, � = 0.
In the Mott-insulator phase, for U > 4t, � becomes finite.

In what follows, we analyze the behavior of the density of
doublons d and � in the presence of disorder. The average over
2000 disorder realizations of these two quantities is shown in
Fig. 2 for a finite-size lattice. For W = 0 we can distinguish
the characteristics of the Mott transition above described. The
(small) finite value of � for U < 4t is due to finite-size effects
and it extrapolates to zero as the lattice size L → ∞. For
W �= 0 within the range of U < 4t we see the same qualitative
behavior for d and �. We identify the phase within this region
of parameters with Anderson localization as an extension of
the limiting case where U = 0 and W �= 0. A dramatic change
in the behavior of the two quantities shown in Fig. 2 is, instead,
observed as a function of W starting from the Mott-insulator
phase at U > 4t . We see that the averaged density of doublons
d increases from zero whereas � decreases as W increases. In
Fig. 3 we show the behavior of � and d as functions of W for
fixed values of the Coulomb interaction U . We focus on the
regime with U > 4t . We study chains of different sizes and
extrapolate to the thermodynamic limit. These results indicate
the existence of a critical value Wc such that for W < Wc the
density of doublons is vanishingly low and extrapolates to zero
as 1/L → 0, whereas for W > Wc the density of doublons
becomes finite and increases as a function of W . This change
in the behavior of the density of doublons as a function of W

0
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W/t = 0
W/t = 2
W/t = 4
W/t = 6
W/t = 8

0 5 10 15 20
U/t

0

1

2

Δ/
t

W/t = 0
W/t = 2
W/t = 4
W/t = 6
W/t = 8

FIG. 2. (Top) Density of doublons d and (bottom) gap between
the ground state and the first excited state, � as functions of the
Coulomb interaction U for different values of disorder potential W =
0,2,4,6,8. The two quantities are averaged over 2000 realizations
of disorder in a lattice with L = N = 1200. All the energies are
expressed in units of the hopping parameter t .

is accompanied by a change in the behavior of � as a function
of W . In fact, for W < Wc we find that � extrapolates to a
finite value in the thermodynamic limit, whereas � → 0 for
W > Wc. These features are consistent with a transition from
a Mott-insulator phase to an Anderson-localized phase at Wc.

The inferred phase diagram is shown in Fig. 4. The line
separating the Mott-insulator from the Anderson-localized
phases is evaluated calculated from the criteria of vanishing
� and vanishing d in the thermodynamic limit. Polynomial
extrapolations of � and d as functions of 1/L have been carried
out with sizes up to L = 1200. The two estimates agree within
the numerical precision. The same procedure can be followed
to get the exact solution away from half-filling. In this case,

0

2

4

6

Δ/
t

0 2 4 6 8
W/t

0

0.05

0.1

0.15

d

0 2 4 6 8
W/t

0 2 4 6 8 10
W/t

U = 6t U = 8t U = 10t

FIG. 3. Top panels: Energy gap value as a function of the
parameter W for (left) U = 6t ; (center) U = 8t ; and (right) U = 10t .
Bottom panels: Disorder-averaged density of doublons d = Nd/L for
the same values of U . All these data correspond to extrapolations to
the thermodynamic limit from chain sizes L � 1200 and averaging
over 2000 realizations of disorder.
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0 5 10 15
U/t

0

2

4

6

W
/t

Anderson-localized phase

Mott Insulator phase

Metallic phase

FIG. 4. Phase diagram of the disordered Hubbard model with
correlated hopping at half-filling N = L in 1D. The phases are as
follows: (i) metallic phase for W = 0 and U < 4t , (ii) Anderson-
localized phase for W �= 0 and U < 4t as well as for W > Wc and
U > 4t , and (iii) a Mott-insulator phase for W < Wc and U > 4t .
Phases (i) and (ii) are characterized by d �= 0 and � = 0. Phase
(iii) is characterized by d = 0 and � �= 0. The line separating the
Mott-insulator from the Anderson-localized phases corresponds to
� = 0 and d = 0 in the thermodynamic limit. The size of the symbols
is proportional to the uncertainty on the numerical data.

the system is in the metallic phase for W = 0 for any value of
U whereas it localizes for an arbitrarily low strength of W .

Before closing this section, we briefly comment on the
similarities and differences between the phase diagram of the
disordered Hubbard model with correlated hopping in 1D
studied in the present paper and the phase diagram of the
disordered Hubbard model at half-filling in higher dimensions
described by dynamical mean-field theory (DMFT). In the
latter case, a phase diagram with the same phases identified in
Fig. 4 has been derived [24,25,77]. In fact, the main underlying
characteristic shared by the model we study here and the
DMFT description of the Hubbard model is the absence of
antiferromagnetic correlations. In our case, this is an intrinsic
property of the model, whereas in the mean-field solutions
this is encoded in the approximation of the momentum-
independent self-energy. In the present 1D case, the metallic
phase is confined to W = 0, whereas in the higher-dimensional
DMFT cases, it also extends to a region with finite W . It is
also interesting to stress that the Mott phase can be identified
by the change in the behavior of the double occupancy. The
double occupancy as a good order parameter to characterize
the transition from a metallic to the Mott-insulating phase,
akin to the magnetization in the Ising model, was introduced in
Ref. [18]. This idea also was followed in Landau theory for the
DMFT-Mott transition in Ref. [19] where the Mott-insulating

phase is characterized by a few numbers of doubly occupied
sites, whereas the metallic one is identified as a liquid rich in
doubly occupied sites. This is precisely the case for the model
studied here. In our case, the fact that the Mott-insulating
phase is defined by an exactly vanishing number of doublons
is due to the fact that the number of doubly occupied sites is a
conserved quantity in the correlated-hopping Hamiltonian.

V. CONCLUSIONS

We have analyzed the phase diagram of the correlated
Hubbard model with disorder at half-filling in 1D. The
different phases are summarized in Fig. 4. Without disorder
the model has a metallic and a Mott-insulator phase. Our
results indicate that the metallic phase becomes unstable and
localizes as in the Anderson model for an arbitrarily low
disorder strength. This phase is characterized by a vanishing
gap in the charge excitations and a finite density of doublons
in the ground state. Instead, the Mott-insulator phase, which
is characterized by a vanishing density of doublons in the
ground state and a finite charge gap, becomes stable up to
a critical strength of disorder where a phase transition to
an Anderson-localized state takes place. The possibility for
clearly identifying these two insulating phases makes this
model appealing for further theoretical studies and to be
realized in optical lattices and cold atoms. Several interesting
issues remain to be investigated further in the future, in
particular, the possible emergence of a metallic phase for
finite disorder strength in systems of higher dimensionality
and the role of antiferromagnetic and charge-density wave
correlations, which could be introduced by means of an extra
correlated hopping process and nearest-neighbor Coulomb
interactions, generalizing the model of Refs. [78,79] with the
addition of disorder.

Although the experimental realization of the disordered
correlated hopping model in the limit we studied here is not
obvious in solid-state real materials, its implementation in opti-
cal lattices is within the scope of current experiments [80–82].
Different mechanisms for the experimental implementation of
disorder in these systems have been reported [49,83,84]. In
particular, in Ref. [84], the disorder has been introduced by
means of localized impurity atoms. In the case that the latter
are spin polarized, they would magnetically couple only to the
singly occupied sites of the lattice under investigation, which
would correspond to a realization of the type of disorder we
are considering in the present paper.
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