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The integration of molecular evolution and protein biophysics

is an emerging theme that steadily gained importance during

the last 15 years, significantly advancing both fields. The

central integrative concept is the stability of the native state,

although non-native conformations are increasingly

recognized to play a major role, concerning, for example,

aggregation, folding kinetics, or functional dynamics. Besides

molecular requirements on fitness, the stability of native and

alternative conformations is modulated by a variety of factors,

including population size, selective pressure on the replicative

system, which determines mutation rates and biases, and

epistatic effects. We discuss some of the recent advances,

open questions, and integrating views in protein evolution, in

light of the many underlying trade-offs, correlations, and

dichotomies.
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Introduction
Proteins are designed by biological evolution to perform

specific activities governed by the laws of physics. Their

full understanding requires the integration of biophysical

constraints and evolutionary theory [1–3,4�,5,6], which we

review here. Biophysical constraints on protein evolution

are reviewed in the first section, while evolutionary con-

straints on biophysical properties are the subject of the

second section. In the third section, we treat evolutionary

correlations and their influence on molecular evolution

models.
www.sciencedirect.com 
Biophysical constraints on protein evolution
Function versus stability

A large body of evidence indicates that the stability of

globular proteins is a target of natural selection [4�],
because of the necessity to avoid aggregation prone con-

formations and because, except for natively unfolded

proteins [7], stability is a prerequisite of function, which

is the ultimate target of selection. The relationship be-

tween stability and function is not simple and trade-offs

exist [8]. For instance, the ability to bind other proteins

may interfere with stability against misfolding, and large

functional movements may imply a stability cost. Empir-

ically, residues at functional sites are rarely optimal for

stability, so that their mutation is often less destabilizing

[9], while mutations that create new functions tend to be

more destabilizing than average [8,10].

Protein stability correlates well with fitness, as nicely

demonstrated by a recent study of nearly 1000 mutations

in beta-lactamase TEM-1 [11], or illustrated by the

successful use of functional assays to identify stabilizing

mutations [12]. Since modeling function requires specific

assumptions, the simplest structure-aware genotype-to-

phenotype mapping models fitness f as the fraction of

protein correctly folded into the native functional state

[13,14], PN, which can be expressed as function of the free

energy of the native (GN), unfolded (GU), and misfolded

(GM) states:

f ¼ PN ¼
e�GN=kBT

e�GN=kBT þ e�GU=kBT þ e�GM=kBT
: (1)

Selection for stability: native and non-native aspects

The above simple model is sufficient to reveal a dichoto-

my between positive design, that is, the strengthening of

native interactions to improve stability against unfolding,

and negative design, that is, the weakening of non-native

interactions to destabilize misfolded conformations

[15,16]. General strategies for negative design include

limiting hydrophobicity and weakening interactions be-

tween residues close in the sequence [16,17�]. However,

these strategies reduce the stability of the native state

with respect to the unfolded state, which may produce a

trade-off between negative and positive design [16,17�],
as depicted in Figure 1.

Positive design was found to dominate in small proteins,

which have fewer contacts per residue and thus require

stronger native interactions to compensate the loss of

conformational entropy upon folding [18]. In contrast,
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Figure 1
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Balance between positive and negative design. Fitness (according to

Equation 1) is represented as a function of the stability of the native

(N) and misfolded states (M) relative to the unfolded state (U). An ideal

positive design substitution stabilizes N without affecting M, while an

ideal negative design substitution destabilizes M without affecting N

(green arrows). However, substitutions that (de)stabilize N, for instance

by increasing (decreasing) the hydrophobicity, generally have a similar

effect on M, which mitigates the beneficial effect on fitness (white

arrows). In consequence, the combination of both positive and

negative design is often necessary to ensure sufficient fitness

(transparent arrow).
negative design plays a stronger role in the evolution of

large proteins [17�], in agreement with their more com-

mon tendency to fold in multiple stages, and thus to

populate partially or wrongly folded states [19].

The stability of protein–protein interactions is also a

target of selection, subject both to positive and negative

design. Whereas the former promotes functional interac-

tions, the latter aims at avoiding non-functional misinter-

actions [20–22], which may be deleterious by

sequestrating the protein and inhibiting its functional

activity, by interfering with other pathways, or through

directly toxic effects such as the formation of aggregates

[23].

Mutational robustness: protein stability

Stability improves the robustness of proteins against

destabilizing mutations, enhancing their capacity to tol-

erate functional changes, which tend to be destabilizing

[8,10]. Indeed, in a sufficiently stable protein, even a

strongly destabilizing mutation may be unable to drag the

fraction of correctly folded proteins out of the viable

range, and would thus only have a mild effect on fitness

[13,14]. Theoretical studies show that selective pressure
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for increasing mutational robustness is only relevant for

large mutation rates [24]. In contrast, robustness is subject

to selection against errors in protein translation by the

error prone ribosome, in particular for highly expressed

proteins whose incorrect translation can have severe

consequences, which explains why they tend to evolve

slowly [25]. Conversely, disordered regions [7] are less

subject to selection for stability (although they must also

avoid aggregation) and they generally evolve faster than

ordered ones [26], consistent with the observation that

residues with fewer contacts tend to evolve faster [5].

Folding kinetics and conformational dynamics

The native state must not only be stable, it must be

reachable in a reasonable time. The main determinant of

the folding rate is the topology of the native state, in

particular its absolute contact order (ACO), that is, the

mean sequence distance between residues in contact [27].

It was proposed that strengthening short-range native

contacts accelerates folding [28]. Evidence for this strat-

egy was found for proteins with large ACO that would

otherwise fold very slowly [29], despite a trade-off with

negative design. Indeed, strong short-range contacts tend

to favor both fast folding and misfolding, in part because

their formation implies a minimal cost in terms of con-

formational entropy. Negative design also affects folding

kinetics, as non-native contacts can slow down (though

sometimes accelerate) folding [30] and they may trigger

pathological protein aggregation, through folding inter-

mediates or off-pathway kinetic traps [31]. In particular,

the fact that many short proteins fold with two-state

kinetics might be a consequence of selective pressure

to avoid intermediates [31].

Protein dynamics is a plausible target of selection, since it

is essential for function, but the evidence for it is not

conclusive. The intrinsic dynamics of proteins is com-

monly described by low-frequency normal modes

(LFNM), which represent independent collective move-

ments of large amplitude, determined by the topology of

the native state [32]. LFNM correlate with large confor-

mational changes such as those involved in allosteric

regulation [32]. Functional motions correlate with LFNM

more than expected based on the fact that they represent

the deformations of largest amplitude of the protein,

suggesting that selection plays a role [33]. The observa-

tion that LFNM are the most evolutionary conserved [34]

may be considered as further evidence for selection

targeting motions. However, a recent study suggests that

the conservation of LFNM may arise from their robust-

ness against mutations [35]. Native dynamics are also

related to evolutionary divergence, as LFNM were ob-

served to overlap significantly with the structural defor-

mations within a protein superfamily [36]. Although this

was considered as evidence for selection, other studies

support the alternative view that structural perturbations

are correlated with LFNM even for random mutations
www.sciencedirect.com



Evolutionary constraints on protein biophysics Bastolla, Dehouck and Echave 61
[37], and for variability among structures of the same

protein determined in different experimental conditions

[38]. More research is needed to disentangle the effects of

mutation and natural selection on LFNM conservation

and their role in structural divergence.

Evolutionary constraints on protein
biophysics
Evolutionary temperatures: population size and

mutation rate

There are deep analogies between the evolution of bio-

logical populations under mutation and selection and the

balance between entropy and energy in statistical physics.

These analogies become precise mappings in at least two

limits.

In the limit of low mutation rate, populations are geneti-

cally homogeneous and evolution can be modeled as the

trajectory of the wildtype sequence in the space of amino-

acid sequences as represented through the classical Mor-

an’s or Fisher–Wright’s model of population genetics. At

most one mutant is present at any time, and it gets either

eliminated or fixed in the population, with a probability

that depends on the relative fitness fmut/fwt and on the

effective population size N. At long times, this stochastic

process reaches a stationary state, in which the probability

of a genotype x with fitness f(x) is given by

p / p(x)e�n(�logf(x)), where p(x) is the probability of oc-

currence of x under mutation alone (i.e. without selective

pressure), and n is a linear function of the effective

population size N depending on which evolutionary pro-

cess is represented [39]. At equilibrium, the evolutionary

system reaches thus a Boltzmann-like distribution with 1/

n playing the role of evolutionary temperature, and � logf
the role of energy [39]. Just as mean energy increases with

temperature in physical systems, mean fitness increases

with population size; large populations attain high fitness,

while small populations are more tolerant to the explora-

tion of low-fitness regions.

The substitution rate is predicted to be independent of

population size under neutral mutations, and is expected

to decrease with N when the fitness effect of mutations

cannot be neglected. However, a recent study suggested

that, for very low mutation rate, the substitution rate is

almost independent of N even under non-neutral muta-

tions [40]. This independence results from the compen-

sation of two effects: for larger N, deleterious mutations

are more difficult to fix, but the fitness impact of muta-

tions is reduced due to the increased stability of the

evolved proteins.

At high mutation rates, the evolutionary process cannot

be described by following a single genotype. In the limit

of large populations, the quasi-species theory [41] pro-

vides another analogy with statistical mechanics, in which

the mutation rate plays the role of temperature. For
www.sciencedirect.com 
higher mutation rate, sequences with optimal genotype

represent a decreasing fraction of the population, until

adaptation becomes impossible above a critical mutation

rate, the error threshold, which is analogous to a phase

transition [42]. In models that consider the interplay

between small populations and high mutation rate, new

phenomena occur due to the interactions between multi-

ple mutations in the same clone and between multiple

mutated clones in the population. For instance, slightly

deleterious mutations that co-occur with advantageous

ones are frequently fixed. This may explain why higher

substitution rate is observed between more recently

diverged species [43,44].

The role of population size is crucial in bottleneck events,

during which the population size is drastically reduced,

such as for instance in the case of obligatory endosym-

bionts, when a small number of bacteria are maternally

transmitted [45], or under strong positive selection in

tumor progression [46��]. The expected reduction of

protein stability under bottlenecks was supported by

computational studies of orthologous bacterial proteins

[47], and it contributes to explain the accumulation of

deleterious passenger mutations in cancer cells [46��].

A possible example of the relevance of population size in

structural biology concerns the formation of oligomeric

complexes of proteins. Oligomerization is frequent in the

proteome of higher eukaryotes, which are thought to have

much smaller population sizes than bacteria [48]. It was

proposed that quaternary interactions in multicellular

eukaryotes may have primarily arisen as a response to a

stability deficit of the monomers, rather than as an adap-

tive trait [49�]. Indeed, the lower pressure on stability in

small populations tends to generate poorly optimized

protein-water interfaces, which can facilitate protein-pro-

tein binding. Low stability may also participate to the

emergence of more flexible or even disordered regions,

which are often found in proteins involved in the forma-

tion of large complexes such as the Centrosome [50�,51].

This macromolecular complexity would later be subject

to adaptation through the evolution of cooperativity and

allosteric regulation, which are likely facilitated by con-

formational diversity [52,53]. However, it cannot be ex-

cluded that positive selection for forming the complex is

sometimes a driver of the trend towards increased flexi-

bility.

Mutation rates and mutation bias

Although mutation and selection are sometimes con-

ceived as independent forces, empirical data show that

the properties of the mutation process can readily evolve

through mutations in replicative proteins, and are thus

also under selective pressure. For instance, in a landmark

long-term experiment following the evolution of E. coli in

a constant environment, a hypermutator phenotype with

increased mutation rate arose while the population was
Current Opinion in Structural Biology 2017, 42:59–66
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Figure 2
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Effect of mutation bias on protein stability. Simulations of the protein

evolution model Equation 1 in the low mutation rate limits have been

run with different mutation bias and different population size. One can

see that there is an optimal mutation bias at which the folding free

energy DG is minimized.
adapting [54]. Conversely, a population with hypermu-

tator phenotype was invaded by another with reduced

mutation rate, when the potential for further adaptation

declined [55]. Consistently, it has been observed that

bacteria tend to enhance the mutation rate in response to

stress, a response with possible adaptive significance [56].

The mutation bias, that is, the preferential generation of

certain types of nucleotide mutations through the repli-

cative machinery, has been observed to vary in experi-

mental evolution of the foot-and-mouth disease virus in

presence of the mutagenic agent ribavirin [57]. The

evolution of endosymbiotic and parasitic bacteria from

a free-living lifestyle to an obligate intracellular lifestyle

with small effective population was also accompanied

most of the time by a change in mutation bias favoring

AT over GC, mediated through the extensive loss of

error-correcting genes [58]. Like the mutation rate, the

mutation bias is modulated by the replication machinery

of the cell, and is not selectively neutral. Indeed, because

of the structure of the genetic code, genomes rich in AT

(poor in CG) result in more hydrophobic proteins. Even

under strong selective pressure, a mutational bias towards

AT tends to produce proteins that are more hydrophobic

and more prone to misfolding, suggesting that the muta-

tion bias is an important determinant of the balance

between positive and negative design [47,59]. Interest-

ingly, simulations of protein evolution suggest that, for

any given population size, there is an optimal mutation

bias that maximizes long-term fitness and protein stability

[60]. The dependence of simulated protein stability on

the mutation bias is shown in Figure 2. The optimal

mutation bias is towards AT, consistent with the bias

observed in intracellular bacteria. On the other hand,

disordered proteins are enriched in polar and charged

amino acids, preferentially coded by the nucleotides C

and G, which suggests that mutational biases may partic-

ipate to their prevalence in the proteome of complex

organisms.

Mutational robustness: chaperones

Chaperones are proteins that enhance robustness by

facilitating the folding of other proteins [61]. They have

been suggested to act as capacitors of phenotypic evolu-

tion, buffering the phenotypic effects of mutations, and

allowing the accumulation of latent variations that give

rise to morphological changes when some environmental

stress reduces their buffering power [62]. The robustness

provided by the overexpression of chaperones has been

exploited to accelerate the experimental evolution of new

enzymatic functions, demonstrating another important

link between robustness and evolvability [63]. According-

ly, a positive correlation was demonstrated between chap-

erone binding and evolutionary rate, in various groups of

proteins [64,65�,66]. It is noteworthy that this robustness is

under genetic control, as chaperone expression can

be increased to face conditions that are unfavorable for
Current Opinion in Structural Biology 2017, 42:59–66 
protein stability, such as reduced effective population size

through endosymbiotic lifestyle [67] or through experi-

mental population bottlenecks [68]. However, the expres-

sion of chaperones is metabolically costly, and it rapidly

reverts in experimental evolution [69].

Evolutionary correlations
Stability depends on residue-residue interactions and

fitness depends non-linearly on stability. As a result

evolutionary epistatic interactions may arise.

Magnitude of epistasis

Epistasis occurs when the joint effect of multiple muta-

tions leads to either higher (positive epistasis) or lower

(negative epistasis) fitness than expected from their in-

dividual effects. Recent high-throughput experiments

have confirmed previous observations that, for random

mutations, epistatic interactions are relatively rare but can

happen even between positions that are distant in the

native state [12,70,71]. Negative epistasis often results

from the combination of two destabilizing mutations.

Even if their effect on stability is additive, epistasis

can originate in the non-linear dependence of fitness

on stability, Equation 1: a destabilizing mutation occur-

ring in a stable wildtype may still maintain the fitness in a

viable range, but its combination with a similar mutation

might not [8,10,14]. Cases of positive epistasis appear to

be rare (in good part because most mutations are delete-

rious), but of potential evolutionary importance: most

deleterious mutations were found to be beneficial in at

least one different mutational background [71]. In partic-

ular, compensatory mutations (destabilizing followed by
www.sciencedirect.com
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stabilizing with positive epistasis) can be confounded

with positive selection, as shown in the recent simulation

by Dasmeh et al. [72].

Even if epistasis is rare for random mutations, the oppo-

site holds for mutations fixed under purifying selection

[73]. Most fixed mutations have a nearly neutral effect on

fitness at their time of fixation, however many would have

been deleterious in other sequence backgrounds: they are

contingent on the previous fixation of permissive mutations

[73]. Afterwards, further substitutions adapt the protein to

the fixed mutations, making their reversion increasingly

deleterious: they become entrenched by epistasis [73,74��].

Time-variation of amino acid preferences versus

approximate sites-independence

The prevalence and magnitude of epistasis are critical for

the development of the probabilistic models of molecular

evolution used for phylogenetic inference. The very exis-

tence of epistasis contradicts the assumption made by

most molecular evolution models that protein sites evolve

independently. The incorporation of pairwise interactions

among sites has been proposed in some models [75,76],

but at the expense of preventing the analytic computation

of the likelihood function. In an effort to improve phylo-

genetic inferences under the independent-sites assump-

tion, several approaches have been proposed to effectively

account for selection on stability without having to deal

with correlations. These approaches adopt site-specific

substitution processes, but differ in the way they parame-

terize them: (1) from the structural characteristic of each

site in the native state [77]; (2) from sequence data [78,79],

(3) from structurally constrained evolutionary simulations

[80], (4) from mean-field approximations of evolutionary

models [81], or (5) from high-throughput mutagenesis

experiments [82]. These models do not account for the

possibility that epistasis may induce a strong time depen-

dence of the amino acid preferences at any given site

[74��,83]. Indeed, the entranchment of a deleterious mu-

tation over time would make the new amino acid, and

similar ones, more acceptable at that position. However,

the importance of this effect remains a subject of debate,

and several works suggest that propensities diverge slowly

and are mainly conserved among homologous proteins

[84��,85��,86], consistent with the idea that most deleteri-

ous fixations reverse before entrenchment takes place

[84��]. A recent step forward in the resolution of this

dichotomy was provided by the demonstration that rever-

sion rates decrease strongly with time for sites involved in

epistatic interactions. Reversions are thus likely after a

deleterious fixation, but if they do not happen immedi-

ately, they may become entrenched [87��].

Correlated substitutions

Epistatic interactions are responsible of the correlations

observed between columns of multiple sequence align-

ments (MSA). Since most epistatic interactions are
www.sciencedirect.com 
expected to take place between sites that are in contact

in the native state, the detection of evolutionary correla-

tions was proposed long ago as a method for predicting

native contacts and even protein-protein interactions, but

it was not until recently that technical advances, reviewed

in [88�], improved the detection of these correlations,

raising a strong interest. When thousands of homologous

sequences are available, these methods allow accurate

predictions of protein structures without templates [89].

An interesting development consisted in extending these

methods to predict not just one native structure, but a

conformational ensemble representative of the functional

dynamics of the protein [90–92]. However, correlations

can also be found between pairs of residues distant in the

native state, consistent with the observation of long-range

epistatic interactions [71], and with the interpretation that

correlated mutations identify functional, but not neces-

sarily structural, modules of the protein [93]. Another

possible interpretation of correlations between positions

far apart in the native state is that they can arise from non-

native conformational ensembles relevant for the stability

or the folding kinetics of the protein. Consistently, evolu-

tionary correlations between structurally remote pairs have

been shown to improve folding rate predictions [94�].

The notion that amino acid correlations across sites are

attributable to substitutions that are correlated in time has

been challenged in a recent study that found that recon-

structed substitutions at correlated sites tend to occur in

different branches of the phylogenetic tree [95]. This

result is consistent with the stability model Equation 1,

which implies that amino acids that interact advanta-

geously tend to co-occur in neighboring positions even

if they are not the result of substitutions that are very

close in time.

Conclusions and outlook
The integration of the biophysical (folding stability and

kinetics, conformational ensembles, functional motions,

interactions) and the evolutionary (population genetics,

molecular evolution) characterization of proteins is pro-

ducing a dramatic change in the way these once separated

disciplines are conceived. At the crossroads, methodolog-

ical developments for ancestral sequence reconstruction

and biophysical characterization are providing new ave-

nues for the experimental study of evolution [96], while

the dialog between new computational models and

experiments is improving our understanding of proteins

in structure and sequence space, producing exciting

advances.
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