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Simultaneous triangularization of switching linear
systems: arbitrary eigenvalue assignment and genericity

Hernan Haimovich

Abstract—A sufficient condition for the stability of arbitrary switching
linear systems (SLSs) without control inputs is that the individual
subsystems are stable and their evolution matrices are simultaneously
triangularizable (ST). This sufficient condition for stability is known to
be extremely restrictive and not robust, and therefore of very limited
applicability. The situation can be radically different when control inputs
are present. Indeed, previous results have established that, depending on
the number of states, inputs and subsystems, the existence of feedback
matrices for each subsystem so that the corresponding closed-loop
matrices are stable and ST can become a generic property, i.e. a property
valid for almost every set of system parameters. This note provides novel
contributions along two lines. First, we give sufficient conditions for the
genericity of the property of existence of feedback matrices so that the
subsystem closed-loop matrices are ST (not necessarily stable). Second, we
give conditions for the genericity of the property of existence of feedback
matrices that, in addition to achieving ST, enable arbitrary eigenvalue
selection for each subsystem’s closed-loop matrix. The latter conditions
are less stringent than existing ones, and the approach employed in their
derivation can be interpreted as an extension to SLSs of specific aspects of
the notion of eigenvalue controllability for (non-switching) linear systems.

Index Terms—Hybrid systems, arbitrary switching, stability, Lie alge-
bras, eigenvector assignment, controllability, transverse subspaces.

I. INTRODUCTION

Switched systems are dynamical systems that combine a finite
number of subsystems by means of a switching signal [1]. This note
focuses on switched systems where each subsystem is linear and
also on stability under “arbitrary switching”, where stability holds
for every possible switching signal [2]–[5]. We refer to the switched
systems under consideration as switching linear systems (SLSs).

A SLS may either be autonomous or have control inputs. A suffi-
cient condition for the uniform global exponential stability (where
‘uniform’ means ‘over all switching signals’) of an autonomous
SLS is that every individual subsystem is stable and their evolution
matrices are ST (i.e. generate a solvable Lie algebra). This Lie-
algebraic stability condition is simple to check numerically and holds
both for discrete-time SLSs [6], [7] and continuous-time SLSs [8],
[9]. These Lie-algebraic stability conditions, although mathematically
elegant and possibly computationally advantageous (cf. [10], [11]),
have had very limited applicability due to their restrictiveness and
lack of robustness.

The situation can be radically different for SLSs with control
inputs, where feedback may be employed to stabilise the SLS. Indeed,
previous results [12] established that the existence of feedback
matrices for each subsystem so that the closed-loop SLS satisfies
the aforementioned Lie-algebraic stability condition can become a
generic property, namely, a property that is valid for almost every set
of system parameters. According to the sufficient conditions given in
[12], genericity holds if each subsystem has a “substantial” number
of inputs, although possibly fewer inputs than states. The approach of
[12] consisted in analyzing the property of transversality of specific
subspaces. When the sufficient condition given in [12] holds, the
eigenvalues for the closed-loop matrix of each subsystem can also be
arbitrarily selected.

In this note, we address the existence of feedback matrices for
each subsystem of a SLS with the properties of (a) the closed-
loop subsystem matrices become ST and (b) the eigenvalues of each
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closed-loop subsystem matrix can be arbitrarily selected. First, we
give conditions under which feedback matrices exist so that (a) holds
(without necessarily ensuring stability) and then show that these
conditions are generic in the space of system parameters (i.e. hold for
almost every set of system matrices of the given dimensions). Second,
we provide conditions under which feedback matrices exist that
simultaneously ensure (a) and (b), and also analyze the genericity of
these conditions. The conditions derived are less stringent than those
given in [12]. The approach that we employ is substantially different
from that in [12] and provides a connection with the notion of
eigenvalue controllability for (non-switched) linear systems through
the generalization of a type of Popov-Belevitch-Hautus (PBH) test.

Notation. The index set {1, 2, . . . , N} is denoted N . The kernel
(null space) of a matrix or linear map A : X → Y is denoted
kerA and its image (range), imgA. Given a subspace B ⊂ Y , the
subspace {v ∈ X : Av ∈ B} is denoted (A)−1B. For x ∈ Cn×m,
its transpose is denoted x′, its conjugate transpose x∗ and its Moore-
Penrose generalized inverse x†. If S is a vector space, then d(S)
denotes the dimension of S, and S⊥ its orthogonal complement. If
I is a finite set, then #I denotes the number of elements in I . A
complex number λ ∈ C will be called stable if |λ| < 1 for discrete
time or if Re{λ} < 0 for continuous-time. A square matrix is stable if
all of its eigenvalues are stable. A property is said to hold generically
in some space of parameters if it holds at every point except at points
belonging to a proper algebraic variety (see [13, §0.16]).

II. PROBLEM FORMULATION

Consider the discrete- or continuous-time SLS

x+ = Aσ(t)x(t) +Bσ(t)u(σ(t), t), (1)

where x+ denotes x(t+ 1) or ẋ(t) and the switching function σ(·)
takes values in N . We address the general complex case x ∈ Cn,
u(i, t) ∈ Cm̃i , Ai ∈ Cn×n and Bi ∈ Cn×m̃i for all i ∈ N . Consider
state-feedback control of the form u(σ(t), t) = Kσ(t)x(t), giving rise
to the closed-loop system

x+ = ACL
σ(t)x(t), where ACL

i = Ai +BiKi, for i ∈ N. (2)

Since we focus on stability under abitrary switching, we do not
need to specify the switching function σ, and we identify the SLS
(1) with the set Z = {(Ai, Bi) : i ∈ N}. We will refer to Z
as the SLS and to n as its (state) dimension. We will address the
existence of feedback matrices for the SLS (1) that make the closed-
loop subsystem matrices ACL

i in (2) ST (i.e. generate a solvable Lie
algebra). We thus will employ the following definition.

Definition 1: An SLS Z = {(Ai, Bi) : i ∈ N} is said to be
STF (Simultaneously Triangularizable by Feedback):

if Ki exist such that ACL
i as in (2) are ST.

STSF (ST with Stability by Feedback):
if Ki exist such that ACL

i are ST and individually stable.
STFAE (STF with Arbitrary Eigenvalues):

if Ki exist such that ACL
i are ST and their eigenvalues can be

individually arbitrarily selected.
SDF (Simultaneously Diagonalizable by Feedback):

if Ki, T exist such that T−1ACL
i T are diagonal.

Note that Z STFAE ⇒ Z STSF1 ⇒ Z STF ⇐ Z SDF.
In this note, we will derive sufficient conditions for the STF and

STFAE properties, and for them to hold for almost every set of
system parameters. We also provide a simple necessary and sufficient
condition for SDF.

1In the previous publications [12], [14]–[16], the STSF property was named
SLASF (Solvable Lie Algebra with Stability by Feedback).
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III. PREVIOUS RESULTS

A. Iterative simultaneous triangularization by feedback

Control design that causes the closed-loop subsystem matrices
to be ST can be performed by (i) seeking feedback matrices that
assign a common eigenvector, (ii) obtaining a reduced-dimension
SLS, and (iii) repeating (i) and (ii) for the reduced-dimension SLS,
and iterating. This observation is the basis for the iterative algorithms
of [12], [14], [16] which, in addition, require stable eigenvalues. This
is summarized in the following lemma.

Lemma 1: Let Ai ∈ Cn×n, Bi ∈ Cn×m̃i , for i ∈ N . Suppose
that there exist Fi ∈ Cm̃i×n, λi ∈ C, and ṽ ∈ Cn, such that

(Ai +BiFi)ṽ = λiṽ, for all i ∈ N, with ṽ 6= 0. (3)

Let v = ṽ/‖ṽ‖ and select U ∈ Cn×n−1 so that W := [v U ] satisfies
W ∗W = I. Define Ari := U∗(Ai + BiFi)U , Bri := U∗Bi, Z :=
{(Ai, Bi) : i ∈ N}, Zr := {(Ari , Bri ) : i ∈ N}. Then,
a) Z is STF if and only if Zr is STF.
b) If λi are stable, then Z is STSF if and only if Zr is STSF.
Lemma 1 shows that once a common feedback-assignable eigenvector
ṽ is found, the question of whether the given n-dimensional SLS Z
is STF or STSF can be reduced to analyzing whether the n − 1-
dimensional SLS Zr is so. The determination of whether a given
SLS Z is STF or STSF can thus be tackled by seeking a common
feedback-assignable eigenvector (with corresponding stable eigenval-
ues), obtaining the reduced-dimension SLS Zr , and repeating the
procedure on the reduced-dimension SLS Zr . This can be done until
dimension 1 is reached, in which case the obtained 1-dimensional
system would trivially satisfy the triangularizability (solvable Lie
algebra) condition. It can also be shown that if this iterative procedure
is successful, then feedback matrices exist not only with the above
properties but also ensuring that the closed-loop eigenvalues are
precisely those appearing in (3) at every iteration. This procedure
is the basis for the iterative triangularization by feedback algorithm
in [12], [15], [16].

B. Common Eigenvector Assignment by Feedback

This section recalls the structural condition introduced in [16]
which, when satisfied, ensures that a feedback-assignable common
eigenvector exists and provides a method for its computation.

Define mi := rank(Bi) = d(imgBi), and factor Bi = biri,
where ri : Cm̃i → Cmi has full row rank and bi : Cmi → Cn has
full column rank. Note that imgBi = img bi. Let

Λ := [λ1, λ2, . . . , λN ]′, and define (4)

Q(Λ) := [R(Λ),−B], where (5)

R(Λ) :=

 λ1I −A1

...
λNI −AN

 , and B := blkdiag
[
b1, . . . , bN

]
,

where blkdiag denotes block diagonal concatenation.
Lemma 2 (Structural condition [16]): Let

p := n+

N∑
i=1

mi −Nn. (6)

Then,
(a) A vector that can be assigned by feedback as a common eigen-

vector with corresponding eigenvalues λi for i ∈ N exists if and
only if d(kerQ(Λ)) > 0.

(b) If Q(Λ)w = 0 with w 6= 0 partitioned as

w := [ṽ′, u′1, . . . , u
′
N ]′, (7)

then ṽ 6= 0, and (Ai +BiFi)ṽ = λiṽ (8)

for every Fi satisfying riFiṽ = ui and every i ∈ N . For each
i ∈ N one such Fi is Fi = (ri)

†uiṽ
†.

(c) d(kerQ(Λ)) ≥ p for every Λ ∈ CN [recall (4)]. Consequently,
if p > 0, then a feedback-assignable common eigenvector exists
for every choice of corresponding eigenvalues.

Lemma 2 gives a structural condition, namely p > 0, for a
feedback-assignable common eigenvector ṽ to exist for each choice
of corresponding eigenvalues λi. This condition is structural because
the quantities involved in the computation of p are only matrix
ranks and dimensions. Note that p is the difference between the
number of columns and the number of rows of Q(Λ) in (5). If the
structural condition p > 0 is satisfied, a feedback-assignable common
eigenvector ṽ and its corresponding feedback matrices Fi can be
computed as follows:

1) Select the corresponding (stable) closed-loop eigenvalues λi for
each subsystem i ∈ N and build Λ as in (4);

2) Find a vector w 6= 0 with components partitioned as in (7) so
that Q(Λ)w = 0 (namely, so that w ∈ kerQ(Λ));

3) Construct ṽ, and u1, . . . , uN from the components of w in (7).
4) Fi = (ri)

†uiṽ
† for every i ∈ N .

C. The Structural Condition

If the structural condition p > 0, given by Lemma 2, holds for
the given SLS Z , then a feedback-assignable common eigenvector
and the corresponding feedback matrices can be computed for ev-
ery choice of corresponding closed-loop eigenvalues. We may then
proceed along the lines of Lemma 1 and simplify the problem to
the reduced-dimension system Zr . It would thus be useful to know
whether the structural condition holds for Zr . From Lemma 1, it
follows that the relationship between mi = rankBi and mr

i :=
rankBri depends on the common feedback-assignable eigenvector ṽ
as follows:

mr
i =

{
mi if ṽ /∈ Bi,
mi − 1 if ṽ ∈ Bi,

with Bi := imgBi. (9)

Let nr := n− 1 denote the dimension of Zr , and let pr denote the
quantity p in (6) when computed for the reduced-dimension SLS Zr:

pr = nr +

N∑
i=1

mr
i −Nnr.

Employing (9), we can straightforwardly arrive at

pr ≥ p− 1, (10)

with equality if and only if

ṽ ∈ B, with B :=
⋂
i∈N

Bi. (11)

From (10), we see that the situation where the structural condition
holds for Z but not for Zr , i.e. p > 0 and pr 6> 0, can only happen
if p = 1 and (11) simultaneously hold.

D. Sufficient condition for genericity of STSF

Theorem 3 of [12] gives a sufficient condition for the genericity
of the STSF property, i.e. the existence of feedback matrices that
render the closed-loop SLS (2) stable by ensuring that the matrices
ACL
i generate a solvable Lie algebra. This sufficient condition is the

following.
Theorem 1 (Adapted from Theorem 3 of [12]): If the state dimen-

sion n, the number of subsystems N , and the number of control inputs
m̃i ≤ n for each i ∈ N , are such that

n+
∑
i∈N

max{0, 2m̃i − n} −Nn ≥ 0, (12)
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then the STSF property holds for almost every set of system param-
eters Ai ∈ Cn×n and Bi ∈ Cn×m̃i for all i ∈ N .
In [12], the matrices Bi are assumed to have full column rank, and
hence no distinction needs to be made between m̃i and mi because
a matrix Bi ∈ Cn×m̃i with m̃i ≤ n generically satisfies mi =
rankBi = m̃i.

When the SLS dimensions are nontrivial, i.e. when 1 ≤ m̃i ≤
n − 1, n ≥ 2, and N ≥ 2, we showed in [12] that for (12) to hold
it is necessary that 2m̃i > n and hence (12) becomes

n+

N∑
i=1

(2m̃i − n)−Nn = 2

(
n+

N∑
i=1

m̃i −Nn

)
− n ≥ 0

and using (6) and the fact that m̃i = mi generically when m̃i ≤ n,

2p ≥ n. (13)

Genericity of the STSF property is ensured in [12] by deriving
conditions under which the satisfaction of the structural condition
p > 0 for the SLS Z also implies satisfaction of the structural
condition pr > 0 for the reduced-dimension SLS Zr (according
to Lemma 1).

In Section IV, we first will provide a sufficient condition for the
STF property and its genericity to hold, and then will relax the
sufficient condition (13) by analyzing properties of the matrix Q(Λ)
in (5) and the relationship with eigenvalue controllability for linear
time-invariant systems.

E. Transversality of subspaces

The genericity results of [12] are based on the property of
transversality of subspaces. In this note, we also will employ the
latter property but will apply it to a different set of subspaces.

Definition 2 (Transverse): Two subspaces S, T of an ambient
space X are said to be transverse when the dimension of their
intersection is minimal, given the dimensions of S and T , i.e. when

d(S ∩ T ) = max{0, d(S) + d(T )− d(X )}. (14)

Equivalently, S and T are transverse when the dimension of their sum
is maximal. A set S = {S1, . . . ,SN} of subspaces of an ambient
space X is transverse when both the intersection of the subspaces
in every subset of S has minimal dimension and the sum of the
subspaces in every subset of S has maximal dimension2 (see [12]).

Transversality of a set of subspaces according to Definition 2 is
a generic property and hence almost every set containing a finite
number of subspaces taken “randomly” among all subspaces of X
will be transverse. We require the following properties related to
transversality (see [12] for proofs).

Lemma 3: Let S = {S1, . . . ,SN} be a set of subspaces of the
ambient space X , and define

q := d(X ) +
∑
i∈N

d(Si)−Nd(X ).

Then,

(a) d(Si ∩ Sj) = d(Si) + d(Sj)− d(Si + Sj) for all i, j ∈ N .
(b) If S is transverse, then d

(⋂
i∈N Si

)
= max {0, q}.

(c) If S is transverse and q ≥ 0, then d(Si + Sj) = d(X ) for all
i, j ∈ N with i 6= j.

(d) Let J = I ∪ {j}, with J ⊂ N and #J = #I + 1. Suppose that
q ≥ 0 and that {Si : i ∈ I} is transverse. Then, {Si : i ∈ J} is
transverse if and only if

⋂
i∈I Si + Sj = X .

2Repeated elements in S have to be considered so that, e.g., S = {S1,S2}
with S1 = S2 is not transverse but S = {S1} is.

Note that p in (6) corresponds to q in Lemma 3 with X = Cn and
applied to the set S = {B1, . . . ,BN}. This is because Bi ⊂ Cn
according to (9) and mi = d(Bi) by definition.

IV. MAIN RESULTS

The main results of this note are provided in Sections IV-A, IV-B
and IV-C. Section IV-A gives sufficient conditions for a SLS to be
STF, i.e. simultaneously triangularizable by feedback, and for the STF
property to be generic. Section IV-B gives a necessary and sufficient
condition for simultaneous diagonalizability by feedback, which is
a special case of STF. Section IV-C relaxes the sufficient condition
(12) by means of an approach related to the notion of eigenvalue
controllability for LTI systems. In Section IV-D, we discuss the results
derived and the link with eigenvalue controllability.

Next, we provide intermediate results (Lemmas 4, 5, and 6) that
will be required by the theorems in Sections IV-A and IV-C. The
proof of these intermediate results is given in Section V. In the sequel,
a superscript r on a quantity indicates that the corresponding quantity
is to be computed for the reduced-dimension Zr (as per Lemma 1)
instead of for Z; e.g. since Bi = imgBi, then Bri := imgBri .

Lemma 4: Let {B1,B2, . . . ,BN} be transverse and p ≥ 0 [with
Bi as in (9) and p as in (6)]. Then, {Br1,Br2, . . . ,BrN} is transverse.

Lemma 5: Let {B1,B2, . . . ,BN} be transverse and p = 0. Then,
there exists Λ ∈ CN for which rankQ(Λ) < Nn.

Lemma 6: Suppose that p > 0 and rankQ(Λ) = Nn for all
Λ ∈ CN . Then, rankQr(Λ) = N(n − 1) for all Λ ∈ CN , where
Qr denotes the matrix (5) computed for the reduced-dimension SLS
Zr of Lemma 1.
Lemma 4 shows that if the quantity p in (6) is nonnegative, then
the property of transversality of the input spaces Bi is preserved for
the reduced-dimension SLS Zr obtained as per Lemma 1. Lemma 5
identifies a condition under which the matrix Q(Λ) in (5), which has
Nn rows, cannot have full row rank. Lemma 6 shows that if the
structural condition p > 0 is satisfied and if the matrix Q(Λ) has
full row rank at every Λ ∈ CN , then this latter condition will be
preserved for the reduced-dimension SLS.

A. Simultaneous triangularization by feedback

Our first main result is the following.
Theorem 2: Let p ≥ 0 and suppose that {B1,B2, . . . ,BN} is

transverse. Then, Z is STF.
Proof: If p > 0, a feedback-assignable common eigenvector ṽ

can be found according to Lemma 2 and as explained in Section III-B.
Then, we may proceed along the lines of Lemma 1 and obtain the
reduced-dimension SLS Zr . According to (10), then pr ≥ 0.

If p = 0, Q(Λ) is a Nn × Nn square matrix. By Lemma 5
there exists Λ ∈ CN such that rankQ(Λ) < Nn, and hence
d(kerQ(Λ)) > 0. Lemma 2 then shows that a feedback-assignable
common eigenvector ṽ exists for Z , and we may proceed as per
Lemma 1. Note that if p = 0, then pr = p−1 is not possible because
by Lemma 3b) we have

⋂
i∈N Bi = 0 and hence (11) cannot hold.

Consequently from (10)–(11), pr ≥ p = 0.
In either case (p > 0 or p = 0), Lemma 4 establishes that
{Br1,Br2, . . . ,BrN} is transverse. We have thus shown that the con-
ditions p ≥ 0 and {B1,B2, . . . ,BN} transverse imply the existence
of a feedback-assignable common eigenvector ṽ, and that the corre-
sponding reduced-dimension SLS Zr satisfies the same conditions,
namely pr ≥ 0 and {Br1,Br2, . . . ,BrN} transverse. We may thus
iterate the computation of a feedback-assignable common eigenvector
and dimension reduction until dimension 1 is reached, showing that
the given SLS Z is STF by Lemma 1a).
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Theorem 2 gives a sufficient condition for the existence of feedback
matrices that cause the closed-loop SLS to be ST. Since transversality
is a generic property, we immediately have the following result on
the genericity of simultaneous triangularization by feedback. Define:

p̃ := n+
∑
i∈N

min{m̃i, n} −Nn. (15)

Theorem 3: If the state dimension n, the number of subsystems
N , and the number of control inputs m̃i for each subsystem i ∈ N ,
are such that p̃ in (15) satisfies p̃ ≥ 0, then the property that Z is STF
is generic in the space of parameters of Ai ∈ Cn×n, Bi ∈ Cn×m̃i ,
i ∈ N .

Proof: Generically, we have {B1,B2, . . . ,BN} transverse, mi =
rankBi = min{m̃i, n}, and hence p̃ = p. The proof then follows
straightforwardly by application of Theorem 2.

B. Simultaneous diagonalization by feedback

Proposition 1 below gives a necessary and sufficient condition for
the simultaneous diagonalizability by feedback of the given SLS.

Proposition 1: There exist Ki ∈ Cm̃i×n and an invertible T ∈
Cn×n such that T−1ACL

i T = diag((Λ1)i, . . . , (Λ
n)i) for all i ∈ N ,

with ACL
i as in (2), if and only if there exist n vectors wj such that

Q(Λj)wj = 0 for j = 1, 2, . . . , n, and such that the vectors formed
by the first n components of wj are linearly independent (l.i.).

Proof: (⇒) Let ṽj denote the j-th column of T , (Λj)i the i-th
component of Λj , and define uji = riKiṽ

j , where Bi = biri as
explained in Section III-B. It follows that BiKiṽ

j = biu
j
i and hence

[(Λj)iI − Ai]ṽ
j − biu

j
i = 0 for all j = 1, 2, . . . , n and i ∈ N .

This is equivalent to Q(Λj)wj = 0 with wj = col[ṽj , uj1, . . . , u
j
N ],

according to (5). The ṽj are l.i. because T is invertible.
(⇐) Partition the components of each wj as wj =

col[ṽj , uj1, . . . , u
j
N ]. Then, ṽj are l.i. For each i ∈ N , let Ki ∈

Cm̃i×n be the unique solution to the system of equations Kiṽ
j =

r†iu
j
i for j = 1, 2, . . . , n. Note that Ki satisfies riKiṽj = uji for

every j = 1, 2, . . . , n. By Lemma 2 b), we have ACL
i ṽ

j = (Λj)iṽ
j

for each j = 1, 2, . . . , n and i ∈ N . Put T = [ṽ1, ṽ2, . . . , ṽn].
Proposition 1 may become especially useful when the structural
condition p > 0 holds, since in this case Lemma 2 ensures that
for every Λ ∈ CN , the equation Q(Λ)w = 0 will have a nonzero
solution w.

C. Simultaneous triangularization with eigenvalue assignment

The following result gives a novel sufficient condition for the
STFAE property, i.e. the existence of feedback matrices that make the
closed-loop SLS be ST and allow arbitrary placement of the closed-
loop eigenvalues for each subsystem.

Theorem 4: The SLS Z is STFAE if
i) {B1,B2, . . . ,BN} is transverse, and

ii) rankQ(Λ) = Nn for all Λ ∈ CN .
Proof: Since Q(Λ) has Nn rows, n +

∑
i∈N mi columns,

and rankQ(Λ) = Nn, then Q(Λ) must have at least as many
columns as rows and hence p ≥ 0. Taking i) and Lemma 5 into
account, then p = 0 contradicts ii), and hence p > 0. From
Lemma 4 then {Br1,Br2, . . . ,BrN} is transverse and from Lemma 6
then rankQr(Λ) = N(n− 1) for all Λ ∈ CN . We have thus shown
that if conditions i)–ii) hold for the SLS Z , then the same conditions
hold for the reduced-dimension SLS Zr of Lemma 1. Consequently,
we can iterate on the reduced-dimension SLS Zr and so on, until a
SLS of dimension 1 is reached, showing that Z is STF. In addition,
the fact that p > 0 at every iteration allows for the arbitrary selection
of the closed-loop eigenvalues, and hence Z is STFAE.

The next result deals with the genericity of the STFAE property.
Theorem 5: If the state dimension n, the number of subsystems

N , and the number of control inputs m̃i for each subsystem i ∈ N ,
are such that

m̃i ≥ 1 and p̃ ≥ ND, (16)

where ND denotes the number of subsystems for which m̃i ≤ n−1,
then the STFAE property holds generically in the space of system
parameters Ai ∈ Cn×n, Bi ∈ Cn×m̃i , i ∈ N .
The proof of Theorem 5 requires the following result, whose proof
is given in Section V.

Proposition 2: Consider the following expressions:

rankQ(Λ) = Nn for all Λ ∈ CN , (17)

rankQ(Λ) < Nn for some Λ ∈ CN . (18)

In the space of parameters Ai ∈ Cn×n, Bi ∈ Cn×m̃i , i ∈ N ,
i) If (16) holds, then (17) holds generically.

ii) If (16) does not hold, then (18) holds generically.
Proof of Theorem 5: Generically, we have {B1,B2, . . . ,BN}

transverse, mi = rankBi = min{m̃i, n}, and hence p̃ = p. The
proof then follows straightforwardly by application of Proposition 2 i)
and Theorem 4.

D. Discussion

Theorem 2 gives a novel sufficient condition for the STF property
(recall Definition 1). Theorem 2 of [12] gives a sufficient condition for
the STSF property, which implies STF. The latter condition is much
more restrictive than that of Theorem 2 above, as we next explain. The
condition in [12, Theorem 2] is the following: the set of subspaces
S = {Bi∩A−1

i Bi : i ∈ N} is transverse, the quantity q of Lemma 3
applied to the set S satisfies q ≥ 0, and (Ai, Bi) is controllable for
all i ∈ N . Note that the quantity p in (6) equals q of Lemma 3 when
applied to the set {Bi : i ∈ N}. Since d(Bi ∩ A−1

i Bi) ≤ d(Bi),
where the inequality is usually strict, we see that demanding q ≥ 0
for the set S requires many subsystems to have more inputs than if
only p ≥ 0 is needed. The price we pay for the relaxation of the
conditions is that only STF (without stability) is ensured.

If p > 0 holds for a given SLS, then a feedback-assignable
common eigenvector exists for every choice Λ of corresponding
eigenvalues for each subsystem, as follows from Lemma 2. Although
not explicitly stated in [12], the conditions of [12, Theorem 2]
actually ensure the STFAE property, because p > 0 is ensured to
hold for Z , then for the reduced-dimension Zr , and then iteratively
so until dimension 1 is reached. However, the sufficient conditions for
genericity in [12, Theorem 3] which were analyzed in Section III-D
are more stringent than those of Theorem 5. This follows by com-
paring (13), which holds in a nontrivial case (i.e. n ≥ 2, N ≥ 2,
1 ≤ m̃i ≤ n − 1 for all i ∈ N ), with (16). Generically, we have
p̃ = p and hence when m̃i ≤ n − 1, we have that ND = N and
it can be easily shown that (13) implies (16) but some systems may
satisfy (16) and not (13). For example, a generic SLS with n = 5,
N = 2, m̃1 = 4, and m̃2 = 3, for which p = p̃ = 2, has 2p 6≥ n
whereas p̃ ≥ ND = N = 2.

If N = 1 (i.e. no switching), assumption ii) in Theorem 4 is
equivalent to rank [λ1I−A1, B1] = n for all λ1 ∈ C because in this
case Q(Λ) = Q(λ1) = [λ1I − A1,−b1], where imgB1 = img b1.
This is nothing but the requirement that the pair (A1, B1) be
controllable, according to a PBH test for controllability. In addition,
the set {B1} is trivially transverse, and hence the assumptions of
Theorem 4 coincide with controllability of (A1, B1) when N = 1
(necessary and sufficient condition for arbitrary eigenvalue assigment
by feedback). Also, if N = 1 then p̃ = min{m̃1, n} and hence
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the sufficient condition (16) is equivalent to m̃1 ≥ 1. The latter
is a necessary and sufficient condition for the genericity of the
controllability property, because controllability is known to be generic
but the system should have at least 1 input for controllability to be
possible. Consequently, the assumptions of Theorems 4 and 5 are
necessary and sufficient when N = 1.

The condition rankQ(Λ) = Nn for all Λ ∈ CN can thus
be interpreted as a generalization of eigenvalue controllability to
switched linear systems. Recall that an eigenvalue λ of the matrix A
is (A,B)-controllable (or just controllable) if rank [λI−A,B] = n
[17], [18], and that every eigenvalue of A is controllable if and
only if (A,B) is controllable. To check whether rankQ(Λ) = Nn
for all Λ ∈ CN holds for a given system, one may regard Q
as a polynomial matrix and perform elementary row and column
operations in order to reduce it to the form [I 0]. This is possible if
and only if rankQ(Λ) = Nn for all Λ ∈ CN .

V. PROOF OF INTERMEDIATE RESULTS

A. Proof of Lemma 4

From Lemma 1, we have Bri = U∗Bi and hence Bri = imgBri =
U∗ imgBi = U∗Bi. We have Bri +Brj = U∗Bi+U∗Bj = U∗(Bi+
Bj). By Lemma 3c), we have d(Bi + Bj) = n for all i, j ∈ N
with i 6= j. Therefore, d(Bri + Brj ) = n − 1 because U satisfies
U∗U = In−1. Consequently, the sum of the subspaces in every subset
of {Br1,Br2, . . . ,BrN}, where Bri ⊂ Cn−1, has maximal dimension.

We continue by induction on the number of subspaces in a subset.
Let I ⊂ N , let C = {Bri : i ∈ I}, and let c = #C = #I . If c = 2,
then C is transverse by Lemma 3a). Next, let c < N and suppose
that C is transverse. Let j ∈ N and j /∈ I , and let J = I∪{j}. Since
{Bi : i ∈ N} is transverse by assumption, then {Bi : i ∈ J} also is
transverse. Since p ≥ 0, then pJ := n+

∑
i∈J mi − n#J ≥ 0. By

Lemma 3d), then
⋂
i∈I Bi + Bj = Cn. We have

⋂
i∈I

Bri + Brj =
⋂
i∈I

(U∗Bi) + U∗Bj ⊃ U∗
(⋂
i∈I

Bi + Bj

)
,

and hence
⋂
i∈I B

r
i + Brj = Cn−1. By Lemma 3d), then C ∪ {Brj}

is transverse.

B. Proof of Lemma 5

From (11) and Lemma 3b), we have

d(B) = max{0, p} = 0, and thus B⊥ =
∑
i∈N

B⊥i = Cn. (19)

Since d(Bi) = mi, then d(B⊥i ) = n − mi. For each i ∈ N , let
B⊥i = Span{di1, di2, . . . , din−mi

}. Since p = 0, then
∑
i∈N (n −

mi) = Nn−
∑
i∈N mi = n. Define

Di := [di1, d
i
2, . . . , d

i
n−mi

] ∈ Cn×n−mi ,

D := [D1, D2, . . . , DN ] ∈ Cn×n,
D := blkdiag(D1, D2, . . . , DN ) ∈ CNn×n,
A := [(A1)′, (A2)′, . . . , (AN )′] ∈ Cn×Nn.

By (19), it follows that the n columns of D are linearly independent,
and hence D is invertible. Let λ ∈ C and α ∈ Cn satisfy

(λI−D−1AD)α = 0, α 6= 0.

Partition the vector α so that

α = col[α1, α2, . . . , αN ], with αi ∈ Cn−mi , and define

ci := Diαi, β := col[c1, c2, . . . , cN ] ∈ CNn.

Since the columns of each Di are linearly independent, and since
α 6= 0, it follows that the vector β is nonzero. Let Λ ∈ CN be the
vector all of whose components equal λ. We have

β′Q(Λ) =

[∑
i∈N

c′i(λI−Ai), c′1b1 , . . . , c′NbN

]
.

Since ci ∈ B⊥i , then c′ibi = 0 for every i ∈ N . In addition,[∑
i∈N

c′i(λI−Ai)

]′
=
∑
i∈N

(λI− (Ai)
′)Diαi

= D(λI−D−1AD)α = 0.

Consequently, we have β′Q(Λ) = 0 for a nonzero vector β.

C. Proof of Lemma 6

Since p > 0, then Lemma 2 ensures that for every Λ ∈ CN as
in (4), there exist ṽ and Fi satisfying (Ai + BiFi)ṽ = ACL

i ṽ =
λiṽ for all i ∈ N . Let v = ṽ/‖ṽ‖, and W = [v U ] ∈
Cn×n be a unitary matrix with v as first column, i.e. so that
W ∗W = In. Define W̄ := blkdiag(W, . . . ,W ) ∈ CNn×Nn,
X := blkdiag(W, Im1 , . . . , ImN ), and

F̄ :=

[
In 0

F̃ Im

]
,

F̃ := col[r1F1, . . . , rNFN ],
m :=

∑
i∈N mi,

where ri appear in the factorization Bi = biri as explained in
Section III-B. For each Λr ∈ CN , consider the matrix

Q̃(Λr) := W̄ ∗Q(Λr)F̄X.

The rank of Q̃(Λr) coincides with that of Q(Λr) because W̄ , X , and
F̄ are all invertible. Direct computation from the definitions shows
that the matrix Q̃(Λr) satisfies

Q̃(Λr) =
[
N̄(Λr) −blkdiag(W ∗b1, . . . ,W

∗bN )
]
,

N̄(Λr) := col[N1(λr1), . . . , NN (λrN )],

Ni(λ
r) :=

[
λr − λi ?

0 U∗(λrIn−1 −ACL
i )U

]
.

The Nn rows of Q̃ are linearly independent, and hence the N(n−1)
rows that remain after removing the first row of each Ni must
also be linearly independent. The remaining matrix has the form[
0 Rr(Λr) −blkdiag(U∗b1, . . . , U

∗bN )
]
, with R as in (5).

Comparing this matrix with Qr(Λr) it follows that their ranks are
equal, and hence rankQr(Λr) = N(n− 1) for all Λr ∈ CN .

D. Proof of Proposition 2

The proof requires the following preliminary result.
Lemma 7: Consider a matrix of the form

M(Λ) = col[a1(λ1), . . . , a`(λ`)], (20)

where ai(λi) ∈ Cqi×n and the entries aijk of ai satisfy aijk(λi) =
cijkλi + dijk for all i ∈ {1, . . . , `}, j ∈ {1, . . . , qi} and k ∈
{1, . . . , n}. Let q̄ =

∑`
i=1 qi and consider the expressions:

rankM(Λ) = q̄ for all Λ ∈ C`, (21)

rankM(Λ) < q̄ for some Λ ∈ C`. (22)

Then, in the space of coefficients cijk, d
i
jk ∈ C for all i, j, k,

i) If n ≥ `+ q̄, then (21) holds generically.
ii) If n ≤ `+ q̄ − 1, then (22) holds generically.

Proof: Consider β ∈ Cq̄ and the product β′M(Λ) ∈ C1×n.
Analyzing whether M(Λ) does not have full row rank is equivalent
to analyzing whether the system of equations β′M(Λ) = 0 has a
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solution for some nonzero β. Consider a nonzero β ∈ Cq̄ . Without
loss of generality, suppose that the last component of β equals 1.
Consider the equation β′M(Λ) = 0. This is a set of n equations
whose unknowns consist of the remaining q̄ − 1 entries of β and
the ` components of Λ. The entries of β′M(Λ) are multivariable
polynomials in the components of β and in λi for i = 1, . . . , `.
The monomials that form each of the components of β′M(Λ) are
of degree at most 1 in each of the variables separately, and the only
monomials of (total) degree higher than 1 are of the form βjλi.

i) We have more equations than unknowns and hence, generically,
β′M(Λ) = 0 has no solution.

ii) We have at most the same number of equations as of unknowns.
Therefore, the existence of at least one solution for β′M(Λ) = 0 is
generic.

Proof of Proposition 2: Multiply the last
∑
i∈N mi columns

of Q(Λ) [recall (5)] by −1, and then reorder columns, yielding the
matrix

[
B R(Λ)

]
. Partition each bi and Li(λi) := λiI−Ai as

bi =

[
bup
i

bdn
i

]
, Li(λi) =

[
λiI−Ai

]
=

[
Lup
i (λi)

Ldn
i (λi)

]
(23)

where bup
i ∈ Cmi×mi and Lup

i (λi) ∈ Cmi×n. Without loss of
generality, suppose that bup

i is invertible. Reorder rows to reach[
Bup Lup

Bdn Ldn

]
, with

Bk = blkdiag(bk1 , . . . , b
k
N )

Lk = col[Lk1 , . . . , L
k
N ]

and k ∈ {up,dn}. The dependence of Lup
i and Ldn

i on λi
has been omitted for ease of representation. Elementary column
operations equivalent to multiplication on the right by the matrix
blkdiag((bup

1 )−1, . . . , (bup
N )−1, I), yield[

blkdiag(Im1 , . . . , ImN ) Lup

blkdiag
(
bdn
1 (bup

1 )−1, . . . , bdn
N (bup

N )−1
)

Ldn

]
and by elementary row and column operations, we reach[

I 0

0 L̃

]
, with L̃ =

L
dn
1 − bdn

1 (bup
1 )−1Lup

1

...

Ldn
N − bdn

N (bup
N )−1Lup

N

 .
Note that for every i ∈ N for which mi = n, we have that both bdn

i

and Ldn
i are empty. Removing these and renumbering the remaining

subsystems, we have

L̃ =

 Ldn
1 − bdn

1 (bup
1 )−1Lup

1

...

Ldn
ND
− bdn

ND
(bup
ND

)−1Lup
ND

 .
We next analyze the form of the elements in the bottom-right
submatrix L̃, which has

∑
i∈N (n−mi) rows and n columns. Define

ai(λi) := Ldn
i (λi)− bdn

i (bup
i )−1Lup

i (λi). (24)

The quantity ai is an n − mi × n matrix with entries aijk =
cijkλi + dijk. Generically in the space of entries of Bi, we have
mi = min{m̃i, n}, hence p̃ = p = n −

∑N
i=1(n − mi) =

n−
∑ND
i=1(n−mi), and (16) becomes equivalent to

n ≥ ND +

ND∑
i=1

(n−mi)

Applying Lemma 7 i) to L̃(Λ), then rank L̃(Λ) =
∑N
i=1(n−mi) =

Nn −
∑
i∈N mi, and hence rankQ(Λ) = Nn, for all Λ ∈ CN

holds generically in the space of coefficients cijk, dijk. Since these
coefficients are rational functions of the entries of Ai, bi, and since
bi is generically equal to the first min{m̃i, n} columns of Bi, the
result is established.

VI. CONCLUSIONS

This note dealt with SLSs, i.e. switched linear systems under
arbitrary switching and having control inputs. We have addressed the
problem of existence of feedback matrices that render the closed-
loop SLS simultaneously triangularizable and are able to achieve
arbitrary placement of closed-loop eigenvalues. First, we derived
novel sufficient conditions that ensure the existence of feedback
matrices that render the closed-loop SLS simultaneously triangular-
izable, and that ensure the genericity of this property. Second, we
derived sufficient conditions for the existence of feedback matrices
that are able to, in addition to enabling simultaneous triangularization,
place the closed-loop eigenvalues of every subsystem arbitrarily. We
have also given conditions under which this latter property is valid
for almost every set of system parameters. In this last case, the given
sufficient conditions are less stringent, i.e. have wider applicability,
than previously existing conditions and can be interpreted as an
extension to SLSs of a PBH test for controllability.
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