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approaches have been established [19-22]. 
Short crack growth models are valid when 
applied to the respective regime from 
which they were derived. A number of re-
searchers has proposed models trying to 
find a growth law appropriate for all cracks, 
from short to long cracks [23, 24].

It is now well understood that the com-
plex behavior of short cracks is related to 
the threshold for short fatigue crack prop-
agation, which is a function of crack 
length.

Different models have been proposed for 
short cracks to estimate the variation of 
the propagation threshold as a function of 
crack length [3, 5, 6, 10]. For long cracks, 
this threshold tends to a constant value. 
For example, Chapetti [11] proposed that 
the threshold for fatigue crack propagation 
can be estimated as a function of crack 
length by using only the plain fatigue 
limit, ΔσeR, the threshold for a long crack, 
ΔKthR, and a dimension characteristic of 
the microstructure (e. g., grain size). The 
model estimates the material threshold for 
crack propagation from a depth given by 
the position d of the strongest microstruc-
tural barrier:

ΔKth = ΔKdR + ΔKthR − ΔKdR( ) 1− exp −k a − d( )( )⎡
⎣⎢

⎤
⎦⎥

ΔKth = ΔKdR + ΔKthR − ΔKdR( ) 1− exp −k a − d( )( )⎡
⎣⎢

⎤
⎦⎥   a ≥ d	 (4)

crack length) propagation rate can be de-
scribed accurately by the Paris law [13], 
which relates the stress intensity factor 
range to subcritical crack growth under a 
fatigue stress regime. As such, the Paris 
law is the most popular fatigue crack 
growth model used in materials science 
and fracture mechanics. The basic formula 
reads:

	 (1)
da
dN

= C ΔK( )m

Where only two material parameters are 
required: C and m, which are be deduced 
by fitting experimental data. Several modi-
fications of the Paris law have been pro-
posed by different researchers [13]. The 
most popular variations are:

da
dN

= C ΔK–ΔKthR( )m 	 (2)

da
dN

= C* ΔKm*ΔKthR
m*( ) 	 (3)

 

which were proposed by Zheng and Hirt 
[14] (Equation (2)) and by Klesnil and 
Lukáš [15] (Equation (3)).

In addition, many efforts have been 
made to study short fatigue crack growth 
[16-18], and various kinds of models and 

The issue of fatigue strength estimation for 
materials or components that contain natu-
ral defects, inclusions or inhomogeneities 
is of great importance from both the scien-
tific and the industrial point of view. Fa-
tigue damage is one of the major life-limit-
ing factors in most structural components 
subjected to variable loading during ser-
vice. Hence, the containment of this dam-
age is essential for intelligent design and 
selection of materials to minimize the total 
life-cycle costs. 

For a component, the natural tendency 
in the implementation of a ‘‘damage toler-
ant’’ approach to fatigue life predictions to 
relate the remaining life to predictions of 
the crack propagation rate for cracks of a 
size, generally in the order of 1 mm, that 
can be observed by nondestructive inspec-
tion (NDI). In high-cycle fatigue (HCF), a 
relatively large fraction of component life 
is required to initiate an observable size 
crack. Generally, it is observed that a com-
ponent in service spends about 80 % of its 
life-time in the region of short crack growth 
(crack length <1 mm) [1-12]. Consequently, 
further research to understand, identify, 
detect and estimate HCF damage in the 
early stages of total fatigue life becomes vi-
tally important.

The long crack (a crack with a plastic 
zone size that is only a small fraction of the 

This paper deals with the prediction of high-cycle fatigue behavior for 
four different materials (7075-T6 alloy, Ti-6Al-4 V alloy, JIS S10C steel 
and 0.4 wt.-% C steel) using Chapetti’s approach to estimate the fatigue 
crack propagation curve. In the first part of the paper, a single integral 
equation for studying the entire propagation process is determined us-
ing the recent results of Santus and Taylor, which consider a double re-
gime of propagation (short and long cracks) characterized by the model 
of El Haddad. The second part of the paper includes a comparison of the 
crack propagation behavior model proposed by Navarro and de los Rios 
with the one mentioned in the first half of this work. The results allow 
us to conclude that the approach presented in this paper is a good and 
valid estimation of high-cycle fatigue crack propagation using a single 
equation to describe the entire fatigue crack regime.

Marcela Angela Balbi, Rosario,  
Argentina 

A model for high-cycle fatigue 
crack propagation

Article Information

Correspondence Address
Dr. Marcela Angela Balbi
University of Rosario
2000 Rosario, Argentina
E-mail: balbi@ifir-conicet.gov.ar

Keywords
Fatigue crack propagation, short cracks,  
high-cycle fatigue, long cracks,  
crack growth equation 

M
at

er
ia

ls
 T

es
tin

g 
do

w
nl

oa
de

d 
fr

om
 w

w
w

.h
an

se
r-

el
ib

ra
ry

.c
om

 b
y 

H
an

se
r 

- 
L

ib
ra

ry
 o

n 
Ja

nu
ar

y 
10

, 2
01

7
Fo

r 
pe

rs
on

al
 u

se
 o

nl
y.



36 FATIGUE TESTING 

59 (2017) 1

In terms of the threshold stress, it is ob-
tained:

see Equation 5	 (5)

with ΔKthR and ΔσeR (and thus ΔKdR): func-
tions of the stress ratio R and k is a mate-
rial constant. The microstructural thresh-
old for crack propagation, ΔKdR, is defined 
as follows [11]:

ΔKdR = YΔσeR πd( ) 1
2 	 (6)

with Y: geometrical correction factor 
(Y = 0.65, if the microstructurally small 
crack is semicircular [1-3]). 

A total extrinsic threshold for crack 
propagation, ΔKCR, is defined by the differ-
ence between the crack propagation 
threshold for long cracks, ΔKthR, and the 
microstructural threshold, ΔKdR, which is a 
function of the crack length. The parameter 
k is derived as follows [11]:

k = 1
4d

ΔKdR

ΔKthR − ΔKdR( ) =
1
4d

ΔKdR

ΔKCR

	 (7)

The Kitagawa-Takahashi (KT) diagram, in 
its commonly used form, allows prediction 
of the allowable stress range for infinite 
life, for cracks of a given length. The KT 
diagram and the modification proposed by 
Miller [4] are shown in Figure 1.

The aim of this paper is to demonstrate 
that the approach proposed by Chapetti 
provides a valid estimation of high-cycle 
fatigue crack propagation behavior using 
only a single equation applied over the en-
tire fatigue crack regime.

Fatigue crack propagation 
assessment: Choosing a 
simple fatigue crack propa-
gation law

The effective driving force applied to the 
crack can be calculated as the difference 
between the total applied driving force, ΔK 
(which depends on the applied stress dis-
tribution corresponding to a given geomet-
rical and loading configuration) and the 
threshold for crack propagation, ΔKth, as 
expressed by Equation (4). For the applied 
driving force, ΔK, the following general ex-
pression can be used [12]:

ΔK = YΔσn(πa)1/2	 (8)

with Δσn: nominal applied stress range. 
The analysis of fatigue crack growth re-

quires a functional relationship of general 
validity to be established between the rate 
of fatigue crack growth, da/dN, the range 
of the applied stress intensity factor, ΔK, 
and the threshold for the whole crack 
length range, ΔKth. The following relation-
ships meet these requirements:

	 (9)da
dN

= C(ΔK − ΔKth)m

	 (10)da
dN

= C*(ΔKm* − ΔKth
m*)

with C, C*, m and m*: environmentally sen-
sitive material constants obtained from 
long crack fatigue behavior (see Equations 
(2) and (3)). At first glance, Equations (2) 
and (3) seem to be the same as Equations 
(9) and (10), but in the former the parame-
ter ΔKthR, the fatigue crack propagation 
threshold for long cracks, appears, while in 
Equations (9) and (10), ΔKth appears which 
is the material threshold for crack propaga-
tion proposed by Chapetti. 

The fatigue crack propagation life for a 
given crack length range and a given mate-
rial can be obtained by integrating Equa-
tion (9) or (10) and using Equation (4) to 
derive the material threshold, ΔKth, and a 
proper expression for the applied driving 
force, ΔK. These latter parameters are ob-
tained by analyzing the loading and geo-
metrical configurations.

Experimental data from the references 
were used to determine the effects of ap-
plying the developed methodology of anal-
ysis and to select between Equations (9) 
and (10). It is proposed that these rela-
tions model crack-growth rate propaga-
tion behavior over the entire range of fa-
tigue cracks, from short to long lengths. 
First, long crack data have been analyzed 
to obtain the constants C, C*, m and m*, 
which link Equations (2) and (3) with 
Equations (9) and (10). After that, short 
crack data was analyzed by using Equa-
tions (9) and (10), and thus, it was deter-
mined which equation is the most advan-
tageous for predicting fatigue crack prop-
agation behavior.

Three materials have been analyzed: 
the aluminum alloy 7075-T6 (R = -1), the 
titanium alloy Ti-6Al-4 V (R = 0.1) and the 
structural low carbon steel JIS S10C 
(R = -1). The data corresponding to the 
aluminum and titanium alloys refer to the 
work of Santus and Taylor [25] and those 
of the steel are obtained from Tokaji et al. 
[26]. The relations between da/dN and ΔK, 
and ΔKthR, the propagation threshold for 
long cracks for this steel were obtained 
from a relation R = 0.05, the values of the 
constants C and m (corresponding to 
Equations (2) and (3)) and the threshold 
ΔKthR for the particular material were ob-
tained from reference [27] for R = -1. The 
principal properties of the material are 
listed in Table 1.

Long cracks. Figures 2a to 2c show the 
da/dN vs. ΔK plot of the materials in this 
study. In these figures, the so-called long 
crack growth behavior can be observed. 
For each material, by means of the experi-
mental information that could be obtained 
corresponding to long cracks, the con-
stants C, C*, m and m*, related to the Equa-
tions (2) and (3), were determined.

Table 2 summarizes the results. The 
curves correspond to the above aproxima-
tions for the propagation of a long crack.

As can be seen in Figure 2, Equations 
(2) and (3) agree very well with the ex-
perimental data corresponding to long 
cracks. They predict the same crack prop-
agation rate at low and high values of ΔK, 
but, in the intermediate region, Equation 
2 approximates the experimental data bet-
ter than Equation 3. This is the relation 

Material σys  
(MPa)

σuts 
(MPa)

ΔσeR 
(MPa) R Ref.

7075 T-6 512 572 335 -1 [25]

Ti-6Al-4V 915 965 460 0.1 [25]

JIS S10C 286 433 440 -1 [26]

Table 1: Mechanical properties of the  
materials used in this study

Δσ th =
ΔKdR + ΔKthR − ΔKdR( ) 1− exp −k a − d( )( )⎡

⎣⎢
⎤
⎦⎥

Y πa( ) 1
2

Equation 5   a ≥ d

Figure 1: Threshold curve for fatigue crack prop-
agation [11]
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which is chosen for modeling long crack 
propagation.

Short crack propagation. For short crack 
modeling, Equations (9) and (10) were se-
lected to predict the crack growth rate prop-
agation behavior of fatigue cracks, which 
are linked with Equations (2) and (3) by the 
constants C, C*, m and m*. These constants 
have been used to make the approximations 
of da/dN vs. ΔK, but to apply them for the 
whole range of cracks, Equations (9), (10) 
and (4) are used. Table 3 summarizes re-
sults from this approach.

Figure 3 shows a da/dN vs. ΔK plot with 
experimental data corresponding to long 
and short crack propagation. In the graphs, 

it can be seen that a short crack propagates 
faster than a long crack at a given ΔK, and 
propagates in a region below ΔKthR (thresh-
old for long cracks).

It is worth noting that both equations are 
valid to predict crack growth behavior, but 
Equation (9) agrees most closely with the 
experimental data.In addition, it is most 
similar to the equation of Paris and simpler 
to solve mathematically. Thus, Equation (9) 
has been chosen to implement in the model 
proposed in this paper, whose constants C 
and m are obtained from Equation (2). 

For the materials 7075 T-6 and Ti-6Al-4V, 
it is possible to see a curve in Figures 3a nd 
3b corresponding to an approximation us-

ing the model proposed by Santus and Tay-
lor [25]. The model predicts propagation of 
short cracks given by the equation:

	 (11)da
dN

= CS ΔK − ΔKth,a( )mS

where the constants CS and mS are ob-
tained from short crack data and ΔKth,a = 

ΔKthR

a
a + aD

⎛

⎝
⎜

⎞

⎠
⎟

1/2

  

corresponds to the thresh-old proposed by 
El Haddad [10].

Although the model proposed by Santus 
and Taylor [25] applies to the propagation 

Material ΔKthR
(MPa × m1/2)

C 
(mm × cycle-1 × MPa-1 × m-1/2) m C*

(mm × cycle-1 × MPa-1 × m-1/2) m*

7075 T-6 3.5 9.094E-10 1.975 2.594E-10 2.271

Ti-6Al-4V 4.0 3.014E-10 2.369 2.156E-11 3.072

JIS S10C 13 4.11E-09 3.710 8.983E-13 5.368

Table 2: Results for  
the constants in the 
Equations (2) and (3)

Table 3: Experimental  
information and estima-
tion of the materials 
studied

Material ΔKthR
(MPa × m1/2)

ΔσeR  
(MPa)

d 
(mm)

Δσn  
(MPa)

ΔKdR 
(MPa × m1/2)

k
(mm-1)

7075 T-6 3.5 335 0.018 610 1.642 12.279

Ti-6Al-4V 4.0 460 0.020 460 2.37 18.176

JIS S10C 13 440 0.024 480 2.483 2.348

Figure 2: Plot of da/dN vs. ΔK showing experimental and the estimated data from long crack propagation behavior, a) 7075 T-6 [25],  
b) Ti-6Al-4 V [26], c) steel S10C [26] 

Figure 3: Plot of da/dN vs. ΔK showing experimental data from short and long crack propagation and the model proposed for the crack propagation behavior, 
a) 7075 T-6 [25], b) Ti-6Al-4 V [25], c) steel S10C [26] 

a) b) c)

a) b) c)
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of short cracks, to obtain their estimation, 
they need to know experimental data for 
the exact crack lengths which they wanth 
to model. The model is also valid for only a 
short range of crack lengths. The model 
proposed here only needs long crack ex-
perimental data and some characteristical 
material properties. It can predict crack 
growth propagation behavior for the entire 
range of crack lengths.

Example, applications 
and discussion

It was demonstrated that the approach pro-
posed in this paper agrees well with crack 
growth propagation behavior over the en-
tire range of length scales. Here, it will be 
demonstrated that it is possible to calculate 
the number of cycles that a crack will 
spend to grow to a determined length by 
this approach.

Navarro and de los Rios proposed a 
model to estimate two limit curves (upper 
and lower bounds) for the crack growth 
rate starting from short to long cracks [24], 
and the possibility of calculating the fa-
tigue lifetime.

In this part of the paper, the proposed 
approach using Equation (9) will be com-
pared with the model proposed by Navarro 
and de los Rios [24] for crack propagation 
applied to the 0.4 wt.% C steel.

Table 4 summarizes the mechanical 
properties of the 0.4 wt.% C steel and, in 
Table 5, estimations of parameter values 
are given for the approach proposed in this 
paper. 

In the model proposed by Navarro and de 
los Rios [24], the crack growth rate is as-
sumed to be proportional to the plastic dis-
placement at the tip of the crack that is the 
number of active dislocations within the 
plastic zone. This may be expressed as:

	 (12)
da
dN

= fΦ

with f: fraction of dislocations on the slip band 
which participates in the process of crack ex-

tension. This number depends on the level of 
applied stress. The plastic displacement Φ at 
the tip of the crack is determined for condi-
tions where the applied stress σ is much 
higher than the friction stress:

Φ = 2κ
G

1− n2( )1/2

n
σa	

(13)

with G: shear modulus, and κ = 1 or 1-υ 
(where υ is Poisson’s ratio) depending on 
whether screw or edge dislocations are be-
ing considered. 

The dimensionless parameter n = a/c 
(where a is half the surface crack length 
and c is a length segment which incorpo-
rates both the crack length and the plastic 
zone) defines the location of the crack tip 
with respect to the grain boundary on 
which the leading dislocation is blocked. 
For a constant applied stress, the stress 
concentration ahead of the plastic zone de-
pends solely on the parameter n. As the 
crack grows, but with the plastic zone still 
being blocked by the grain boundary, the 
parameter n increases toward a critical 
value n = nC. At this point, the stress con-
centration reaches a level sufficiently high 
to activate dislocation sources, and conse-
quently, the plastic zone extends across the 
next grain. When this occurs, the stress 
concentration ahead of the newly extended 
plastic zone decreases. This is an effect of 
the new lower value of n (nS), which is re-
lated to the larger plastic zone. 

For each surface crack length 2a (in the 
longer crack region) the value of the param-
eter K― = (πa)1/2 was obtained. Parameter nC 
was then determined by Equation (14):

	 (14)nC = cos
π
2

σ
σcomp

1−
Kth

K
nC( )1/2⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

where σcomp is an appropriate comparison 
stress greater than the applied stress σ. 
Here, it is σcomp = σUTS and Kth =  
 
σFL

πD
2

⎛

⎝⎜
⎞

⎠⎟

1/2

, where σFL is the fatigue limit 
 
and D is the grain diameter.

This equation is solved readily in three 
or four iterations, taking the initial value of 
nC equal to 1. The value of nS is calculated 
from the following Equation (15):

	 (15)
nS =

nC

1+2nC
σ
σFL

⎛

⎝
⎜

⎞

⎠
⎟

2
Kth

K

⎛

⎝
⎜

⎞

⎠
⎟

2

The calculation of φ can now be made us-
ing Equation (13). Finally, for each set of 
pairs (Φ,da/dN), a power law expression 
was determined: 

f = 2.539.10-14 Δσ4.335	 (16)

With the value of f obtained from Equation 
(16), the upper and lower limit curves de-
rived by using the values of nS and nC, re-
spectively, where determined and have 
been plotted in Figure 4, together with the 
curve obtained using the proposed model. 

Figure 5 shows the data corresponding 
to one of the short cracks, where the crack 
growth rate presents an oscillating pattern 
of accelerating and decelerating growth. 
This behavior is related to grain and phase 
boundaries which act like obstacles to 
short crack propagation.

If we want to calculate the number of cy-
cles that a crack will need to grow to a de-
termined length, we will have to integrate 
the curves shown in Figure 5, from an ini-
tial crack length a0 (a0 ≥ d) to a final length 
af. In Figure 6, that integration is shown. 
Because of the validity of the proposed ap-
proach, the integrations can begin at a 
length of a0 = d and finish with a crack 
length of 1 mm, where, typically, the crack 
is considered to be long and propagating 
according to Paris’s law. As can be ob-
served, the approach is valid over the com-
plete range of crack lengths and its predic-
tion is between the two curves proposed by 
Navarro and de los Rios.

Table 6 summarizes the data needed for 
each model or approach. As can be seen, 
both models need only mechanical param-
eters of the steel. The difference is the sim-
plicity of the approach proposed here, only 

Material σys (MPa) σuts (MPa) ΔσeR (MPa) R Ref.

0.4 wt.% C steel 392 683 486 -1 [14]

Table 4: Mechanical 
properties of the steel 

used in this study

Material ΔKthR
(MPa × m1/2)

ΔσeR  
(MPa)

d 
(mm)

Δσn  
(MPa)

C
(mm × cycle-1 × 
MPa-1 × m-1/2)

m ΔKthR
(MPa × m1/2)

k
(mm-1)

0.4 wt.%  
C steel 6.0 486 0.097 815.9 4.961E-07 2.028 5.515 29.278

Table 5: Estimations of 
parameters of the model 

proposed for the steel  
investigated in this study
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tigue crack propagation over the entire fa-
tigue crack growth regime. The advantage 
of this work is that it needs only a single 
equation and the data required is simple to 
measure. No more than a straight forward 
test is required to obtain long crack data 
(ΔK vs. da/dN), the size of the microstruc-
tural barrier (usually the grain size) and 
the plain fatigue limit ΔσeR.

This approach was applied to four dif-
ferent materials: 7075-T6 alloy, Ti-6Al-4 V 
alloy, JIS S10C steel and 0.4 wt.% C steel. 
In all cases, the approach presented in 
this paper allows an accurate and valid 
estimation of high-cycle fatigue crack 
propagation.

Acknowledgement
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one equation must be solved and that with-
out iterations.

Vallellano, Navarro and Domínguez [28] 
had recently proposed a model for crack 
growth prediction. It establishes two differ-
ent thresholds to crack growth: one is as-
sociated with whether or not the monotonic 
plastic zone is able to overcome the barri-
ers and the other threshold imposes the 
same condition but for the cyclic plastic 
zone. For applying this model, one needs to 
know a lot of parameters of the material 
and has to resolve iterations. The simplicity 
of the mathematical model proposed in this 
paper is the significant difference com-
pared to the other approaches.

Conclusions

In this work, the approach previously pro-
posed by Chapetti [11] was taken, but now, 
it was applied to estimate high-cycle fa-
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Figure 4: Plot of da/dN 
vs. ΔK showing experi-
mental [24] and esti-
mated data from crack 
propagation behavior 
from 0.4 % C steel,  
a) plot, b) zoom of the 
principal zone

Figure 5: Experimental 
data of one crack to-
gether with the predic-
tions of Navarro and  
De Los Rios [24] and the 
approach discussed in 
the present work (left)

Figure 6: Plot of the num-
ber of cycles spent from 
initiation of crack growth 
to a determined crack 
length (right)

Model Range of applications Necessary parameters

Navarro and de 
los Rios from MSC to LC

• grain diameter
• Kth, a vs da/dN, G, σUTS, E
• conduct iterations

proposed here from MSC (a ≥ d) to LC

• long crack data of ΔK vs da/dN
• �size of the critical defect or strong microstructural 

barrier (usually d)
• plain fatigue limit ΔσeR

Table 6: Comparison of the models
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Nomenclature

a	 crack length
d	� position from the surface of the strongest 

microstructural barrier
da/dN	 crack growth rate
ΔK	 applied stress intensity factor range
ΔKthR	� fatigue crack propagation threshold for 

long cracks
MSC	 microstructurally short crack
LC	 long crack
R	 stress ratio
Δσ	 applied stress range
ΔσeR	 plain fatigue limit
Δσth	� fatigue crack propagation threshold stress
ΔKth	 fatigue crack propagation threshold
ΔKdR	 microstructural threshold
ΔKCR	 extrinsic component of ΔKthR

k	 material constant 
Δσn	 nominal applied stress range
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Abstract

Ein Modell für den Rissfortschritt unter High Cycle Fatigue (HCF) Be-
anspruchung. Der vorliegende Beitrag behandelt die Vorhersage des 
High-Cycle-Ermüdungsverhaltens für vier verschiedene Werkstoffe (Alu-
miniumlegierung 7075-T6, Titanlegierung Ti-6Al-4V, Stahl JIS S10C und 
Stahl mit 0,4 wt.-% Kohlenstoff) unter Verwendung von Chapetti’s Ansatz 
zur Abschätzung der Ermüdungsrissfortschrittskurve. Im ersten Teil des 
Beitrags wird eine einfache Integralgleichung zur Untersuchung des ge-
samten Fortschrittprozesses ermittelt, indem die neuesten Ergebnisse von 
Santus und Taylor berücksichtigt werden, die ein doppeltes Regime des 
Fortschritts (kurze und lange Risse) verwendet werden, das mit dem Mo-
dell von El Haddad charakterisiert wird. Der zweite Teil des Beitrags bein-
haltet einen Vergleich des Rissfortschrittverhaltens, wie es von Navarro 
und de los Rios propagiert wird, mit dem im ersten Teil des Beitrags wei-
terentwickelten Ansatzes. Die Ergebnisse erlauben die Schlussfolgerung, 
dass der in diesem Beitrag postulierte Ansatz eine gute und zuverlässige 
Abschätzung des HCF-Rissfortschritts darstellt, indem nur eine einzige 
Gleichung zur Beschreibung des gesamten Ermüdungsrissregimes ver-
wendet wird.
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