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Abstract
The single ionization of noble gas atoms by an attosecond pulse train assisted by an infrared laser
field is theoretically investigated by means of a non-perturbative model that under certain
approximations gives closed-form expressions for the angular distributions of photoelectrons. A
very good agreement between our predictions and experiments is observed. Interestingly, our
model allow us to interpret these angular distributions as two-center interferences where the
separation between centers is governed by the infrared laser field. Finally, we provide a physical
interpretation for the analogy of the two-center interferences.

Keywords: atoms, photoionization, attopulses, laser

(Some figures may appear in colour only in the online journal)

1. Introduction

Since the first realization of attosecond pulse trains in 2001
[1, 2], the theoretical effort and the development of tools to
scrutinize the electron dynamics in this time scale attracted
increasing attention, just because typical orbiting times of
valence electrons are hundreds of attoseconds. After that,
many works that oriented to the theory and/or experimental
field, together with the subsequent diversification of techni-
ques, have built the realm of attophysics in which the
coherent control of electron dynamics, in atoms or molecules,
emerged as one of the most fascinating perspectives. More-
over, the control of electron localization in dissociating
molecular states [3] and the control of orbital parity mix [4]
have been proved to be valid tools to steer dynamical prop-
erties in reactions.

When atomic or molecular targets are exposed to the
simultaneous action of an attosecond pulse train of odd har-
monics and a low intensity near infrared laser (NIR) field, the
reconstruction of attosecond beating by interference of two-
photon transition (RABBITT) scheme is obtained. The pho-
toelectron spectrum contains dressed harmonic lines mainly
populated by the absorption of a given harmonic in the
attopulse train, and sideband lines associated to the further
exchange of one NIR photon. The magnitude of these side-
bands oscillates at twice the NIR frequency when the delay

between the NIR and the train is modified. This measurement
scheme lies at the heart of the attosecond physics allowing,
for example, the reconstruction of the time structure of atto-
second pulse trains [1] and the time delay determination in
photoionization [5]. The intermediate NIR intensity regime,
where the exchange of more than one NIR photon is expec-
ted, has received much less attention. The presence of many
interfering quantum channels requires a treatment beyond the
second-order perturbation theory [1, 4].

The theoretical approach to these problems is not simple
at all. Solving the time dependent Schrödinger equation
(TDSE) for reactions such as the photoionization of multi-
electron atomic targets assisted by an NIR represents a
computational challenge [6] for current computational
resources. The use of simplified models leading to predictions
in reasonable agreement with ab initio calculations and/or
experimental results reveals as a valuable option to under-
stand the physical processes involved, as the numerical results
do not often have a straightforward interpretation. Nowadays,
several models able to describe reactions assisted by a
stronger NIR are available. Among them, the soft-photon
approximation [7] was successfully applied to study angular
distributions in laser-assisted atomic photoionization by
photons from free electron laser [8] or high harmonic gen-
eration [6, 9] sources. Moreover, the separable Coulomb–
Volkov (SCV) model came out as a versatile alternative to
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provide in certain situations quite accurate results or at least in
qualitative agreement with ab initio calculations for atomic or
molecular targets [10–12]. Briefly, in the SCV approach there
are three time steps in the electronic evolution. In the first one
(rapid), absorption of one energetic photon is produced and
the ionized electron evolves exclusively in the presence of the
Coulomb field of the residual target whereas in the third one
(slow), it moves under the exclusive influence of the NIR
laser. In the intermediate step, both the Coulomb residual
target and the NIR laser fields are acting on the ejected
electron.

The sophisticated techniques involved in the measure-
ment of energy-resolved and angle-resolved spectra have
evolved in an outstanding way. The long-term stability of the
synchronization between the train of attopulses and the
assistant laser, necessary for this kind of experiment in cold
target recoil ion momentum spectroscopy devices, was
reduced to about 60 attoseconds [9, 13], enabling thus the
determination of the angular distribution of photoelectrons
with a given energy and an almost fixed delay. Experimental
studies concerned with these angular distributions, although
scarce, showed a critical dependence with the delay [9, 13–
17]. The global shape of angle-resolved photoelectron spectra
in dressed harmonic lines changes significantly for different
delays, in contrast to the sideband lines that, after normal-
ization, are almost insensitive to the delay change [9]. In this
context, the angular distributions pose a stringent test to the
theoretical predictions.

Here, we present the results of a non-perturbative model
that can be considered as an extension of the SCV one. Under
certain approximations, this extended model leads to analy-
tical expressions for the angular distribution of photoelectrons
in the laser-assisted photoionization reaction. Interestingly,
the angle-resolved photoelectron spectra for atomic targets
can be interpreted as the ones coming from spatial two-center
interferences observed in diatomic molecules.

Atomic units are used throughout unless explicitly stated.

2. Theory

Let us consider the photoionization of atomic targets by a
train of attopulses arising from high-order harmonic genera-
tion assisted by a monochromatic laser in the near infrared
region. As the intensity of each harmonic in the train is low,
they may ionize the target only through single photon pro-
cesses [1] and, thus, the interaction of the active electrons in
the atom with the train of attopulses (the first stage of the
SCV approach) may be treated in the frame of the time-
dependent perturbation theory [6, 18]. On the other hand, the
assistant laser field may easily induce multiphoton transitions
in the continuum (the third stage of the SCV approach)
requiring a non-perturbative treatment. Therefore, the trans-
ition matrix amplitude within the dipole approximation in the
velocity gauge is given by,

ò= - áY Y ñ
-¥

¥
M t t t tp r A p ri d , , , 1f iSCV ( ) ( )∣ ( ) · ˆ∣ ( ) ( )

where p is the photoelectron momentum associated to the
momentum operator p̂ and Y tr,i f, ( ) are the wavefunctions in
the initial and final channels of the reaction, respectively. The
vector potential tA( ) represents the attosecond pulse train
(APT) and it can be expressed as a combination of harmonics
with Gaussian envelope

åP= w f t- -t AA e e r , 2
j

j
j t ti i 2j T0

2 2( ) ( )

where P is the polarization vector, w0 is the fundamental
frequency and fj is the individual phase of each frequency
component whose amplitude is given by Aj, respectively. The
full width half maximum (FWHM) duration of the train
is related to the parameter tT through the expres-
sion t t= 2 2 ln 2 TFWHM .

The effect of the assistant laser field on the initially
bound atomic states has been considered previously [18–20],
showing that bound-continuum transitions from atomic states
with large ionization and excitation energies are barely
affected when the laser field intensity is small or moderate
and the photoelectron energy is sufficiently far from the
ionization threshold. Therefore, we neglect the polarization
and the ionization due to the assistant laser field. Under this
approximation, the state of the system in the initial channel of
the reaction may be described by the laser-free wavefunction

yY »tr r, e , 3i i
I ti p( ) ( ) ( )

where Ip is the ionization potential associated to the initial
atomic orbital y ri ( ).

The final channel of the reaction, where the interaction
between the photoelectron and the assistant laser field is
treated to all orders, is represented through the ansatz [10, 12]
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i
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where y rf ( ) is the laser-free continuum wavefunction with
asymptotic momentum p. The importance of including the
Coulomb interaction between the released photoelectron and
the parent ion, particularly for photoelectrons with relatively
low kinetic energy, has been revealed in the past [18, 20]. A
widespread theoretical approach to account for this interac-
tion, leading to analytic results, is to use the wavefunction

y p= - N Gr r2 e , 5f p
p r3 2 i( ) ( ) ( ) ( )·

that represents asymptotically the Coulomb interaction of the
residual target with the photoelectron, where, = pnN ep

2

nG +1 i( ), n = Z pf where Zf is the net charge of the residual
target and n= - - +G F prr p ri ; 1; i1 1( ) ( ( · )) is the con-
fluent hypergeometric function.

For the sake of simplicity, we consider an assistant laser
field with polarization collinear to the APT one, with vector
potential tAL ( ) given by,

w
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and, consequently,

w f= -
¶
¶

-t
t

t
tE

A
E cos 7L

L
L1 0( ) ( ) ( ) ( )

2

J. Phys. B: At. Mol. Opt. Phys. 49 (2016) 185601 D I R Boll and O A Fojón



where E1 is the amplitude of the corresponding electric field
and f w= tL 0 0 is an arbitrary phase that allows to modify the
delay t0.

It can be shown that the replacement of equations (2), (3),
(4) and (6) into (1), leads to the following expression for the
transition matrix amplitude,

å åpt=- -

f f w t

=-¥

¥

- + -

M M i A

J M J N e

p pi 2 1

e e , 8

T ph
m n j

n m
j

m n
m n

SCV
,

i 2 i 2L j j T
2 2

( ) ( ) ( )

( ) ( ) ( )( )

where we have defined,
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2

0( ) ( )

where =p p∣ ∣ is the asymptotic momentum modulus and
M pph ( ) is the monochromatic transition matrix element
describing the single photon ionization from the initial state
y ri ( ) to the final state y rf ( ).

As far as we are aware, general closed-form expressions
for the above summations are not known. However, we will
obtain analytical expressions under some simplifying
assumptions. Here, our interest is focused on the differential
cross sections of dressed harmonic (DH) lines or sideband
(SB) lines, satisfying the energy relation + +p I2q p

2

w w=M q2 0 0.
If the APT is a combination of odd harmonics, the SB

lines result from the interference of energy-degenerate con-
tinuum states associated with the absorption of different
harmonics from the APT and the exchange of an odd number
of NIR photons. In the low NIR intensity limit they are
mainly populated by transitions involving the absorption of
either two consecutive odd harmonics of the APT plus the
absorption and emission of one NIR photon, respectively.
Accordingly, they are described by an even integer number q
and their transition matrix amplitude is given by (see
appendix)

f= fM B M Np pi e sin cos , 12q ph q
M

LSCV 0
i sin 2 L( ) ( ) ( ) ( )( )

where B0 is defined in equation A2.
On the other hand, DH lines represent the interference of

energy-degenerate continuum states associated with the
absorption of different harmonics from the APT and the
exchange of an even number of NIR photons. In the low NIR
intensity limit these lines are mainly populated by the trans-
ition involving the absorption of a given harmonic in the
APT. Accordingly, they are described by an odd integer
number q and their transition matrix amplitude is given by
(see the appendix)

f= fM B M Np p e cos cos . 13q ph q
M

LSCV 0
i sin 2 L( ) ( ) ( ) ( )( )

In every case considered, the constant M appears as a global
phase indicating that, independently of the NIR intensity, the
oscillatory term that comes from AL

2 in the Volkov phase can
be omitted.

The transition matrix amplitudes in equations (12) and
(13) can be used to calculate the differential cross section of
SB and DH lines as

s
f

W
µ M Np p

d

d
sin cos , 14

e
q ph q L
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d
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e
q ph q L
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respectively, where q q fW =d sin d de e e e is the differential
solid angle element in the photoelectron emission direction as
measured from the polarization vector P.

Before we proceed any further, let us check that the
above expressions reproduce the expected behavior in the low
NIR intensity limit, where <N 1. A first-order approximation
of the sine function in equation (14) yields a result propor-
tional to f+1 cos 2 L( ), that is, an oscillation at twice the NIR
frequency, which is the expected result for SB lines. An
analogous expansion of the cosine factor in equation (15)
indicates, as expected, that DH lines do not oscillate as a
function of the delay in the low NIR intensity limit.

Moreover, these results suggest an interesting
analogy. Recalling that w=N p E1 0

2· , then we define
f w=R E2 cosL L1 0

2( ) and replace it into equations (14) and
(15) to obtain the following expressions for the differential
cross sections of SB and DH lines,

s
W

µ Mp p p R
d

d
sin 2 , 16

e
q ph q q L

2 2( ) ∣ ( )∣ ( · ) ( )

s
W

µ Mp p p R
d

d
cos 2 , 17

e
q ph q q L

2 2( ) ∣ ( )∣ ( · ) ( )

respectively. A physical interpretation of the interference
factors in equations (16) and (17) as well as the vector RL is
given below.

We point out here that the differential cross sections for
the ionization of an atom by a sequence of in-phase odd
harmonics in the presence of an NIR are analogous to those of
the monochromatic ionization of a homonuclear diatomic
molecule with internuclear separation RL, oriented collinearly
to the NIR [21–24].

For SB lines it can be seen that equation (16) predicts the
existence of a nodal plane for emission perpendicular to RL

or, equivalently, to the NIR polarization direction, irrespec-
tive of the photoelectron momentum modulus, the laser field
intensity or the delay. On the contrary, DH lines according to
equation (17) exhibit a constructive interference for this
situation.

These facts resemble the findings for impact of massive
particles on homonuclear diatomic molecules [24] where the
classical emission perpendicular to the internuclear vector is
forbidden (allowed) for final ungerade (gerade) states in
ionization from the ground (gerade) state. In the same way
as for massive particles, the interference factors appearing
in equation (16) may be related to the interference
pattern corresponding to two point sources emitting waves
in counter-phase, whereas, the interference predicted by
equation (17) may be interpreted as the ones coming from in-
phase emitters [24]. The emission at other angles strongly

3
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depends on the relation between the separation RL of the
sources and the photoelectron wavelength l p= p2q q.

To calculate the photoionization differential cross
sections (or alternatively, the angular distributions) for atomic
targets by using equations (16) and (17), we need to compute
the corresponding monochromatic transition amplitudes
which are proportional to the square modulus of the transition
matrix element M pph q( ). Now, provided that the magnetic
sublevels of the atomic target are equally populated, the
differential cross sections for photoionization by linearly
polarized monochromatic radiation has the general form [25],

s s
p

b q
W

= + µP Mp p
d

d 4
1 cos , 18

e
q e ph q

tot
2

2( ) [ ( )] ∣ ( )∣ ( )

where stot is the total photoionization cross section, β is the
asymmetry parameter, = -P x x3 1 22

2( ) ( ) is the second-
order Legendre polynomial.

3. Results

In what follows, our analytical results are applied to calculate
angular distributions (ADs) in the laser-assisted photo-
ionization of noble gas atoms. The considered attosecond
pulse trains are a combination of in-phase odd harmonics of
the fundamental frequency w = 0.0568550 a.u. 801.4 nm( ),
and both the APT and the NIR are linearly polarized along the
same direction. Our results are compared with recent exper-
imental and theoretical results.

In figure 1, our results for the laser-assisted photo-
ionization of He atoms are compared to the available
experimental data [9]. We consider an NIR of intensity

= ´I 0.8 10L
12 W cm−2,in agreement with the observed

shifts due to the ponderomotive energy [9]. The b = 2 value
used to obtain the ADs is extracted from [25], where a qcos e

2

dependence is predicted for the monochromatic photo-
ionization of an s-type electron. The ADs in figure 1(a) and
(b) are normalized for the emission angles 67◦ and 17◦,

respectively, preserving thus the normalization of the original
experimental data [9].

In figure 1(a), the ADs of the DH19 line evolve notably
by changing the delay fL, particularly for emission in direc-
tions close to the polarization axis q = 0e( ). In addition, as in
these ADs the distance between the sources RL is smaller than
half the wavelength of the ejected photoelectron, according to
equation (17) no total destructive interferences are expected
regardless of the emission angle. However, the emission at
angles qe near 0◦ reflects the path difference expected for
different delays as a change in the interference factor of
equation (17). On the contrary, for emission in the direction
q = 90e total constructive interferences are expected but the
monochromatic ADs given by equation (18) are proportional
to qcos e

2 , which gives a zero value for the ADs at q = 90e

due to the dipole selection rules. The discrepancies with the
experimental data [9] observed at emission angles q < 20e

are unlikely to result from the approximations in our analy-
tical model. For instance, we performed a non-linear fitting of
the data with a partial sum of equation (8) including the most
relevant contributions and considering six free parameters
(amplitude and phase of each contribution). We found that the
description of the experimental ADs at q < 20e is not
enhanced by this procedure.

On the other hand, the shape of the AD in the SB20
(figure 1(b)) does not show a significant dependence with the
delay after normalization. The results for the SBs may be
understood taking into account that under the present condi-
tions they are populated mainly by two-photon transitions.
So, an expansion of the sine factor in equation (14) into
Bessel functions and retaining only the first term leads to,

s
f

W
µ J N Mp p

d

d
cos 19

e
q ph q L1

2 2 2( ) ∣ ( )∣ ∣ ( )∣ ( )

where the delay dependence turns out to be a scaling factor,
that, considered as a function of the delay oscillates at twice
the NIR frequency. This result, valid only when the SBs are
populated mainly by two-photon transitions, is similar to the

Figure 1. (a) Helium APT-NIR angular distributions for the DH19 line with f p= 0.14L (black) and f p= 0.64L (red). (b) Same as (a) but for
the SB20 line with f p= 0.14L (black). The asymptotic photoelectron energy is (a) =p 2 4.76 eVq

2 and (b) =p 2 6.30 eVq
2 .
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one found in previous second-order perturbation studies
[1, 9]. The faster decay observed in the SBʼs angular
distribution as compared to the DH ones for angles qe near 90

◦

may be explained as the combination of the monochromatic
qcos e

2 decay modulated in the SBs by the destructive
interference predicted by equation (16) for q = 90e . The
slight discrepancies observed between our theoretical predic-
tions and the experimental data for emission angles near 90◦

may be attributed to our model that forbids the exchange of
NIR photons for emission in directions perpendicular to the
NIR polarization. In contrast, TDSE results show that the
ADs of the SBs do not cancel completely at 90◦ [14].

In figure 2, we show ADs for the DHs of Ar targets,
obtained with our model and compared to the available
experimental data [9, 13]. We consider an NIR of intensity

= ´I 1.3 10L
12 W cm-2 for figure 2(a) and = ´I 0.76L

1012 W cm−2 for figure 2(b). The ADs are normalized at an
emission angle of 90◦ and the asymmetry factor β corresp-
onding to each of the asymptotic photoelectron energies were
interpolated from theoretical data [26].

As can be seen, our results for Ar are in better agreement
with the experiments than the ones for He. The same situation
was observed for the soft-photon approximation [9]. At var-
iance with the results for He atoms, constructive interferences
predicted by equation (17) for emission at q = 90e may be
observed in the DH lines of Ar as the emission in this
direction is not forbidden by the dipole selection rules. The
evolution of the ADs as a function of the delay for emission
angles near q = 0e may be interpreted analogously to the
He case.

So far, we proved that our analytical model is reasonably
accurate in describing the ADs in several situations. Now, we
proceed a step further by considering a higher NIR intensity
and photoelectron energies satisfying the necessary condi-
tions for the existence of nodes in DH lines coming from two-
center interferences ( l>R 2L q or p>p Rq L· ).

In figure 3, we show the angular distributions for the
DH17 in Ar, for different delays fL and an NIR intensity of

= ´I 2.78 10L
12 W cm−2, that is about two or three times

the values of the previous cases.
The angles labelled as A, B and C in figure 3 satisfy the

relation =p Rcos 2 0q L( · ) for different delays, showing that
with a higher NIR intensity and/or photoelectron energy, it
could be possible to observe nodes in the ADs. Moreover,
these zeros have been also observed in ab initio calculations
(figure (5) from [6]).

Also, it is clear that the angular position of these zeros
moves towards q = 0e as the delay fL increases from 0 to
p 3, i.e., as the separation between the emitters is reduced.
Finally, for f p= 3L no total destructive interferences are

Figure 2. (a) Argon APT-NIR angular distributions for the DH13 line with f p= 0.144L (black) and f p= 0.644L (red). (b) Same as (a) but
for the DH15 line with f p= 0.188L (black) and f p= 0.688L (red). The asymptotic photoelectron energy is (a) =p 2 4.28 eVq

2 and

(b) =p 2 7.40 eVq
2 .

Figure 3. Argon APT-NIR angular distributions for the DH17 line
for different delays fL. The considered NIR intensity is

= ´I 2.78 10L
12 W cm-2. The insets show the cylindrically

symmetric three dimensional angular distributions. The asymptotic
photoelectron energy is =p 2 10.38 eVq

2 .
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observed because the separation RL becomes smaller than half
the photoelectron wavelength lq.

The results in figure 4 show the ADs for the SB16 in Ar
normalized at the emission angle q = 17e , for different
delays and the same NIR intensity as before. These results are
different from those of He in figure 1(b) mainly because the
ADs now show an evolution when different delays are con-
sidered. This evolution is related to the existence of effec-
tively open channels involving a net exchange of more than
one NIR photon. In contrast with our predictions, the results
obtained with equation (19) in figure 4 are independent of the
delay after normalization and thus unable to represent the
trend observed for the different delays.

In addition, this also means that the SB modulation as a
function of the delay no longer oscillates at twice the NIR
frequency as expected from the low NIR intensity limit. In
turn, this is in agreement with ab initio results where a dist-
ortion of the SB signal was found increasing the NIR intensity
[27]. The advantage of our model is that it provides analytical
expressions accounting for these modifications in the SB or
DH lines.

Moreover, assuming that ~ +p pq q 1, it is clear from
equations (16) and (17) that the arithmetical sum of the
differential cross sections of a dressed harmonic line and one
of its neighbour lines (a sideband), should be proportional to
the monochromatic photoionization differential cross section.
In turn, this means that the increase (decrease) in DH lines
comes from a decrease (increase) in the neighbour SB line
signal, whether it is considered as a function of the delay or
the NIR intensity.

It is worth mentioning that a further increase in the
photoelectron energy or the NIR intensity may lead to angular
distributions of SB lines with nodes at emission angles pre-
scribed by the equation (16). The necessary conditions
that must be fulfilled to obtain these nodes is p>p R 2q L· ,
thus requiring twice the photoelectron momentum (or

alternatively, twice the electric field amplitude) as compared
with the dressed harmonic line case.

If an atomic target behaves as a diatomic molecule when
ionized by a comb of odd harmonics in the presence of an
assistant laser, then a natural question arises: how do these
angular distributions change when molecular targets are
considered? To address this question, we briefly compare the
results for the simplest diatomic molecule ( +H2 ) with those
obtained for a fictitious hydrogen atom having the same
ionization potential as the molecule.

In figure 5, we compare the atomic and molecular results
for a dressed harmonic with =p 3.16q and different delays.

The chosen NIR intensity is = ´I 4.5 10L
11 W cm−2. The

details about the computation of monochromatic transition
amplitudes for the +H2 target can be found in [12].

As can be seen, the existence of another interference
mechanism in the molecular case may have a profound impact
in the angular distributions, according to the chosen delay.
The angle labelled A in figure 5 corresponds to the totally
destructive interference due to the coherent emission from
both molecular centers. This interference mechanism is
described approximately by the expression p Rcos2( · )
[21, 22], where R is the internuclear separation of the
molecule =R 2( for +H2 ) and from which the angle A is
obtained.

For f = 0L , the angular distributions for atomic and
molecular targets are similar. The angle B, for which

p Rcos L( · ) in equation (17) is zero, lies close to the angle A
and therefore the qualitative behaviour of the angular dis-
tributions does not change significantly.

The results for f p= 3L are more interesting. Firstly, as
the wavelength of the photoelectron is similar to the inter-
nuclear separation R, the coherent emission from both
molecular centers in the +H2 case presents a constructive
interference for emission directions with q ~ 0e . As can be
seen in figure 5 this implies a nearly atomic behaviour for the
angles q <e C. Moreover, this angle C defines the emission

Figure 4.Argon APT-NIR angular distributions for the SB16 line for
different delays fL. The remaining parameters are equal to those in
figure 3. The insets show the cylindrically symmetric three
dimensional angular distributions. he asymptotic photoelectron
energy is =p 2 8.83 eVq

2 .

Figure 5. +H2 APT-NIR angular distributions for the asymptotic
photoelectron momentum =p 3.16 and different delays fL. The
considered NIR intensity is = ´I 4.5 10L

11 W cm-2. The results for
the hydrogenic atom are rescaled, for each delay, to the molecular
ones at q = 0e .
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direction for which total destructive interference among the
channels opened by the NIR is expected, according to
equation (17). Finally, as the emission angle increases up to
90°, major differences between the results of atomic and
molecular targets are found. The molecule still presents a
destructive interference for the angle A whereas the atomic
target has the most probable emission direction at those
angles, leading to strongly different angular distributions.

Thus, the inclusion of an additional interference mech-
anism present in molecular targets offers better opportunities
for the control of electron dynamics, as the angular distribu-
tions in the molecular case can be steered to behave almost
like an atom f = 0L( ) or to a mixed atomic and molecular
behaviour f p= 3L( ) just by selecting different delays.

4. Discussion

In order to get a physical insight about the meaning of the
vector RL defined previously we unitarily transform the
wavefunctions of the initial and final channels of the
reaction as well as the interaction Hamiltonian operator
 = tA pint ( ) · ˆ in equation (1). This unitary transformation is
defined by means of the operator   = 1 2, where,

⎡
⎣⎢

⎤
⎦⎥ ò= ¢ ¢t tAexp

i

2
d , 20

t

L1
2 ( ) ( )

and

 a= tpexp i , 212 [ ˆ · ( )] ( )

where we have defined the vector quantity

òa
w

w f= ¢ ¢ = -t t t tA
E

d cos . 22
t

L L
1

0
2 0( ) ( ) ( ) ( )

The operator 1 represents a time dependent phase shift
related to the ponderomotive energy w=U E 4p 1

2
0
2 and 2 is a

translation operator that defines an active transformation,
equivalent to describe the original states from the Kramers–
Henneberger (KH) reference frame [28], which, in turn,
follows the classical quiver motion a t( ) of a free electron in
the laser field tEL ( ). We note that within the dipole
approximation, the following commutation relations are
satisfied    = =, , 01 2 int[ ] [ ] .

The transformed initial and final wavefunctions are given
by Y = Yt tr r, ,i f i f, ,

˜ ( ) ( ) with the explicit representations

ayY = + f w+ -t tr r, e e , 23i i
I U t M ti i sin 2 2p p L 0˜ ( ) ( ( )) ( )( ) ( )

and

ayY = + a- -t tr r, e e , 24f f
p t tpi 2 i2˜ ( ) ( ( )) ( )· ( )

respectively. We would like to emphasize that oscillating
expressions for initial dressed states were found previously
within the impulse Coulomb–Volkov approximation in the
length gauge [29, 30], but in our case the oscillatory character
of the initial state corresponds merely to the description of an
initial unperturbed state from the KH reference frame.

In the transformed reference frame, the transition matrix
amplitude reads,

  ò= - áY Y ñ
-¥

¥
M t t tp r ri d , , , 25f iSCV int( ) ˜ ( )∣ ∣ ˜ ( ) ( )†

and replacing the expressions for the initial and final
wavefunctions given by equations (23) and (24), taking into
account that the operator  commutes with the interaction
Hamiltonian and considering that the ionization of the target
occurs almost instantaneously at times p w=t j 0 [15, 16], we
get (see the appendix),

µ a af -M Mp p e e e , 26q ph q
M p p

SCV
i sin 2 i iL 0 0( ) ( ) ( ) ( )( ) · ·

wherea a= 00 ( ) and the plus (minus) sign correspond to the
DHs (SBs) lines. Except for a global phase factor, the
expressions in equation (26) are identical to the transition
matrix elements, within the two-effective center approx-
imation [23] for the monochromatic photoionization of a
homonuclear diatomic molecule initially in an ungerade
(gerade) state with internuclear separation a=R 2L 0.

The sense in which these spatial two-center interferences
may be interpreted is the following. Due to the oscillatory
character of the initial and final states in the KH reference
frame and as the ionization step of the reaction occurs at
almost defined different times, the reaction evolves in the final
channel as if the photoelectron wavepackets were emitted
from different positions in space.

As the interfering wavepackets are launched to the con-
tinuum at different times, a comparison with the usual time-
double slit [31, 32] in the strong field ionization of atoms by a
few-cycle intense laser field is appropriate. In this scheme, the
wavepackets that interfere are released to the continuum at
times where the vector potential assumes its unique value, as

Figure 6. Comparison between the instantaneous vector potential
value seen by the interfering wavepackets in the usual time-double
slit and the laser-assisted ionization. In the former, interference is
only possible for wavepackets launched to the continuum in times
(purple squares) where the vector potential intersects the horizontal
dash-dotted line corresponding to the asymptotic photoelectron
momentum in the same semiplane. For the latter, the vector potential
seen by consecutive wavepackets (black bullets surrounded by
dotted ellipses) lies in opposite semiplanes.
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shown by the purple squares in figure 6, giving rise to
intracycle and intercycle interferences [33].

On the contrary, in our case the interfering wavepackets
are released at times where the instantaneous values of the
vector potential are not necessarily equal as shown by the
black bullets surrounded by the dotted ellipse in figure 6
corresponding to the values of the vector potential seen by
successive wavepackets. Moreover, they lie in different
semispaces, as opposed to the temporal double slit where they
are, necessarily, in the same semispace to interfere. In our
case, consecutive wavepackets finally interfere due to the
multicolour character of the ionizing field.

In this sense, our results are closer to those of the
wavepacket interferometry in the streaking regime as in
[15, 16, 34] despite that the ionizing signal in this scheme
does not fulfil the validity conditions of our model for every
possible delay. Nevertheless, our results may be useful to
interpret some of the interferograms in this regime.

5. Conclusion

We have extended the separable Coulomb–Volkov model to
the case of an ionizing field with many frequencies. Using our
extended model we find for the first time analytical expres-
sions for the angular distributions in the laser-assisted ioniz-
ation of atomic targets that resemble the monochromatic
ionization of molecular targets. The results of our model were
compared to recent experimental results showing an agree-
ment comparable to other methods at hand including
approximations and ab initio. The strength of our results
resides in the fact that they express for DH and SB lines the
interaction between the photoelectron and the assistant laser
field to all orders providing analytical expressions that
reproduce the expected behaviour in the low NIR intensity
limit. Moreover, taking advantage of the non-perturbative
character of our model, we calculate the angular distributions
for the photoionization of atomic targets assisted by a stronger
laser field. We find that zeros in dressed harmonic lines,
previously reported in ab initio simulations, may be inter-
preted as a destructive interference of wavepackets emitted
from different positions in space. Also, we show that an
increase of the laser intensity and/or photoelectron energies
leads to an evolution of the sideband lines for different delays
even when they are normalized. This evolution, related to the
breakup of the low NIR intensity behaviour for these lines, is
connected with the population transfer between dressed har-
monic lines and sideband lines, whether it is considered as a
function of the delay or the NIR intensity. In addition, we
briefly study the case of molecular targets, showing that the
angular distributions obtained for these targets can be steered
to behave fully or partially as an atom, just by selecting dif-
ferent delays. Finally, by a unitary transformation we show
that the emergence of the spatial two-center interference,
obtained within our model, may be explained in terms of
oscillating initial and final states when the reaction is
described in the Kramers–Henneberger reference frame.

Acknowledgments

Authors acknowledge financial support from the Agencia
Nacional de Promoción Científica y Tecnológica (PICT No.
01912), the Consejo Nacional de Investigaciones Científicas y
Técnicas de la República Argentina (PIP No.
11220090101026), and the Fundación Josefina Prats.

Appendix A. Obtaining equations (12) and (13)

Starting from equation (8) for the transition matrix amplitude
in the laser-assisted photoionization process, we note that the
Gaussian factor is the only one that prevents the factorization
into independent series as w = + + + +p I M m2 2 2j p

2 (
w-n j 0) . As we are interested in the angular distributions for

dressed harmonic lines or sideband lines, where the energy
relation w w+ + =p I M q2 2q p

2
0 0 is satisfied, the wj factor

assumes its final form w w= + + -m n q j2j 0( ) .
Now, if t w 2T 0, which is true for APTs with many

pulses, then the Gaussian factor behaves as,

⎧⎨⎩=
= + +

w t
a

-
-

j m n q
e

1 if 2 ,

e otherwise
A.12

2
j T
2 2

2( )
( )

where a t w= + + - m n q j2 1T 0∣ ∣ . Under these condi-
tions, the terms with ¹ + +j m n q2 may be omitted, i.e.,
the Gaussian factor may be replaced by the Kronecker delta
d + +j m n q,2 . Then, the triple sum in equation (8) turns into a
double sum, where the mixed dependence of each term on the
independent indices m and n is encoded into the phases
f + +m n q2 and the amplitudes + +A m n q2 .

A combination of harmonics, as the one in equation (2),
produces a train of pulses with a sub-femtosecond duration
only if harmonics are phase-locked. Therefore, we adopt the
widespread theoretical approach of considering a combination
of in-phase harmonics with equal amplitudes Aj [6, 27], which
in turn allows the factorization of these index-dependent
phases and amplitudes as a global factor. Then, the triple sum
in equation (8) may be factorized as the product of two
independent series,

å

å

= -

´

f

f

-

-

M B M J M

i J N

p p 1 e

e , A.2

q ph q
m

m
m

m

n

n
n

n

SCV 0
i2

i

L

L

( ) ( ) ( ) ( )

( ) ( )

where pt= -B Ai 2 L0 0 and A0 is the constant amplitude of
each harmonic.

Now, these series can be evaluated analytically invoking
the complex- and real-valued Jacobi–Anger expansions [35]
but before we proceed any further it is necessary to separate
the cases under study. As we show below, parity considera-
tions among the integer numbers j, n and q play a crucial role.
On the contrary, the index m is not relevant because it is
multiplied by two in = + +j m n q2 .

Firstly, if the APT is an even-odd combination of har-
monics, the index j runs on even and odd integer numbers.
Moreover, as the parameter q can be also even or odd, the
Kronecker delta does not impose restrictions over the set of
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values assumed by n. In this case, the transition matrix ele-
ment reads,

= f fM B Mp p e e , A.3q ph q
M N

SCV 0
i sin 2 i cosL L( ) ( ) ( )( )

where we make use of the complex-valued Jacobi–Anger
expansions to obtain the analytical sum of each series in
equation (A.2).

Secondly, if the APT is a combination of odd harmonics,
the index j only assumes odd integer values. As the parameter
q, describing the photoline of interest, can be an even or odd
integer number, parity considerations in the relation
= + +j m n q2 impose restrictions over the set of values

that the index n may assume. Accordingly, we separate the
results for q an even or odd integer number.

For q an even number (SBs), the index n can only assume
odd integer values to satisfy the parity considerations, in
agreement with the physical picture of SBs populated only by
transitions involving a net exchange of an odd number of NIR
photons. In this case, the transition matrix amplitude is given
by

f= fM B M Np pi e sin cos , A.4q ph q
M

LSCV 0
i sin 2 L( ) ( ) ( ) ( )( )

where the complex- and real-valued Jacobi–Anger expansions
are used to obtain the analytical sum of each series in
equation (A.2).

On the other hand, for q an odd number (DHs), the index
n can only assume even integer numbers to satisfy the parity
considerations, in agreement with the physical picture of DHs
populated only by transitions involving a net exchange of an
even number of NIR photons. Accordingly, the transition
matrix amplitude is given by,

f= fM B M Np p e cos cos . A.5q ph q
M

LSCV 0
i sin 2 L( ) ( ) ( ) ( )( )

Appendix B. Obtaining equation (26)

Starting from equation (25), replacing the expressions for the
initial and final wavefunctions given by equations (23) and
(24) and taking into account that the operator  commutes
with the interaction Hamiltonian, we get

ò=-

´

a

f w
-¥

¥

- + +

M t M tp pi d , e

e e , B.1

ph q
t

M t p I U t

p
SCV

i

i sin 2 2 i 2L p p0
2

( ) ( )

( )

· ( )

( ) ( )

where the ‘time-dependent’ monochromatic transition matrix
element is given by

a ay y= á + + ñ B.2M t t t tp r A p r, .ph q f i ( )( ) ( ( ))∣ ( ) · ˆ ∣ ( ( ))

The key to factorize this transition matrix element is to note
that it depends on time only through the vector potential tA( ).
In fact, in the velocity gauge, the spatial integral involved

*ò y yPµ -  = B.3M t r Mp r r p, i d ,ph q f r i ph q
3 ( )( ) (˜) · (˜) ( )

is time independent, as can be seen making the transformation
r r̃, with a= + tr r˜ ( ). Such a transformation leaves the

last integral unaffected, irrespective of the a t( ) value.
Finally, as the ionization of the target by the APT can be

considered to occur almost instantaneously at times fixed by
the time dependent part of the vector potential tA( ), and
taking into account that the APT contains two opposite pulses
per NIR cycle [6, 15, 16], the time integration in
equation (B.1) may be approximated by the sum over two
consecutive times p w=t j 0, and we get

µ a af -M Mp p e e e , B.4q ph q
M p p

SCV
i sin 2 i iL 0 0( ) ( ) ( ) ( )( ) · ·

where we defined a a= 00 ( ) and use the fact that
a ap w+ = -t t0( ) ( ). The minus (plus) sign correspond
to the SBs (DHs) lines.
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