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FROM ALMOST (PARA)-COMPLEX STRUCTURES TO AFFINE

STRUCTURES ON LIE GROUPS

GIOVANNI CALVARUSO AND GABRIELA P. OVANDO

Abstract. Let G = H ⋉ K denote a semidirect product Lie group with Lie algebra
g = h⊕k, where k is an ideal and h is a subalgebra of the same dimension as k. There exist
some natural split isomorphisms S with S2 = ± Id on g: given any linear isomorphism
j : h → k, we get the almost complex structure J(x, v) = (−j−1v, jx) and the almost
paracomplex structure E(x, v) = (j−1v, jx). In this work we show that the integrability
of the structures J and E above is equivalent to the existence of a left-invariant torsion-
free connection ∇ on G such that ∇J = 0 = ∇E and also to the existence of an affine
structure on H . Applications include complex, paracomplex and symplectic geometries.

1. Introduction

Given a real vector space V , a linear isomorphism S ∈ End(V ) satisfying S2 = λ Id,
λ = ±1 is called split if it has exactly two eigenspaces (of the complexification of the vector
space, if λ = 1) with the same dimension. For instance, on R2n both the classical complex
structure

(x1, x2, . . . , xn, y1, y2, . . . , yn) 7→ (−y1,−y2, . . . ,−yn, x1, x2, . . . , xn),

and the classical involution

(x1, x2, . . . , xn, y1, y2, . . . , yn) 7→ (y1, y2, . . . , yn, x1, x2, . . . , xn);

are split isomorphisms.
These structures give rise to almost complex and almost paracomplex geometries on

manifolds, which are induced by differential (1,1)-tensors on a differentiable manifold M .
Both complex and paracomplex geometries are very active research fields (see in particular
the survey [16] and references therein for the last one). Other topics related to them are,
among others, (almost) Kähler, para-Kähler, bi-lagrangian, product and complex product
structures and more generally, generalized complex and paracomplex geometry. Up to
our knowledge, the first one to consider generalized complex and paracomplex structures
simultaneously in a systematic way was Vaisman in [23]. The aim of this paper is to
consider simultaneously a kind of complex and paracomplex structures on Lie groups.
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Let G = H ⋉ K be a semidirect product Lie group and denote by g, h and k the
corresponding Lie algebras. Then, h and k are respectively a Lie subalgebra and an ideal
of g, inducing the natural splitting g = h ⊕ k, which corresponds to the representation
π : h → End(k) acting by derivations, and is referred to in literature as the semidirect
product (or sum) of h and k. This algebraic setting was considered for almost contact
structures in [21].

Suppose now that dimH = dimK and consider a linear isomorphism j : h 7→ k. Then,
we can define on g a corresponding almost complex structure J and almost paracomplex
structure E, respectively determined by

J(x, v) = (−j−1v, jx) and E(x, v) = (j−1x, jv), for all x ∈ h, v ∈ k.

Thus, h and k are complementary and totally real subspaces for J .
Moreover, because of its algebraic decomposition, the semidirect product Lie group

G = H ⋉K can be described in terms of a canonical left-invariant paracomplex structure
F , which at the level of the Lie algebra g is defined by

F (x, v) = (x,−v), for all x ∈ h, v ∈ k.

The following natural questions motivate our research in this context:

(i) How to characterize the integrability of the split structures J and E?
(ii) Is there any distinguished connection for J or E on g? More explicitly, when there

exists a torsion-free connection on g, such that ∇J = 0 = ∇E?

The results here can also be seen as a kind of generalization of the following known fact
(see [14]). A symplectic structure ω on a Lie algebra g gives rise to an affine structure ∇
on g, implicitly defined by

ω(∇xy, z) = ω(y, [x, z]),

so that we get a converse in a sense we shall explain. In the present work we study the
above questions taking into account the algebraic setting underlying the semidirect product
structure on G. Notice that the condition F = EJ is always satisfied. Consequently, both
pairs {J,E} and {J, F} give rise to a left-invariant almost complex product structure on G
(see [2]).

The results we obtain along the article prove the following equivalences:

(i) The almost complex structure J is integrable;
(ii) The almost complex structure E is integrable; (Theorem 3.2).
(iii) There exists a left-invariant torsion-free connection ∇ on G such that ∇J = 0 and

∇E = 0; (Theorem 4.5’).
(iv) There exists a compatible left-invariant affine connection on H; (Theorem 5.8).

The key to prove this is based on the structure of k and the linear map j. We prove
that all the statements above are equivalent to the fact that k is abelian and j : h → k

is a 1-cocycle of (h, π). In particular, once we know the representation, the integrability
condition for J and E on g = h⊕ k becomes a linear equation.

Affine structures became relevant since the fundamental question of Milnor concerning
the existence of complete affine structures on solvable Lie groups (see [20] for details).
Making use of the above equivalences, one can get examples of totally real complex struc-
tures, paracomplex structures and left-symmetric affine (LSA) structures in a direct way.
We remark that in this framework the integrability condition for J follows from a linear
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equation, once the representation is given. Several further implications follow once we look
more deeply at the representation. Canonical examples where the situation above appears
are both the tangent and the cotangent bundle of a given Lie group. Consequently, almost
complex, generalised complex and almost paracomplex geometries are all touché by the
results above.

Finally, two remarks concerning these results:

• They generalize previous results concerning complex product structures [2, 7],
complex and symplectic structures related to tangent algebras [1, 6, 17], complex
and paracomplex structures on homogeneous manifolds [11].

• The existence of LSA structures imposes a clear obstruction. In fact, the Lie
algebras h and g are necessarily solvable, see [5, 20].

The paper is organized in the following way. We introduce totally real almost complex
and paracomplex structures on a semidirect product Lie algebra in Section 2, and in Sec-
tion 3 we characterize their integrability. In Section 4 we investigate the existence of a
torsion-free connection for which the almost complex structure J and almost paracom-
plex structure E are parallel. In Section 5 we consider LSA structures and prove the last
equivalence. Several examples will be described in Section 6, showing explicitly the con-
struction of compatible LSA from totally real complex structures on a semidirect product
Lie algebra and, conversely, given a Lie algebra h with a compatible LSA, the construction
of a totally real complex structure on semidirect product Lie algebra g = h ⊕ k. Finally,
we show how an arbitrary inner product on h extends on g = h ⊕ k to an inner product
compatible with the J above and to neutral metrics compatible with the E and F above,
and give a condition ensuring the integrability of these almost Kähler and para-Kähler
structures.

2. Natural split isomorphisms for semidirect products

An almost product structure on a Lie group G is determined by a (1, 1)-tensor P on G

such that P 2 = Id, but P̃ 6= ± Id, which gives rise to a splitting of the tangent bundle
TG into the Whitney sum of two subbundles T±G corresponding to the (±1)-eigenspaces
of P . For a Lie group G, one usually asks the almost product structure to be invariant
under translations on the left by elements g ∈ G, so that the (1, 1)-tensor is determined
at the Lie algebra g by the endomorphism P : g → g satisfying P 2 = Id but P 6= ± Id.
The integrability of such P is expressed by the vanishing of its Nijenhuis tensor: NP ≡ 0,
where

(1) NP (Y,Z) = [PY, PZ] + [Y,Z]− P [PY,Z]− P [Y, PZ] for all Y,Z ∈ g.

This integrability condition is equivalent to the fact that the eigenspaces of P are subal-
gebras of g. Globally the distributions determined by these eigenspaces by translations
on the left, are completely integrable. Almost product structures which are integrable are
simply called product structures.

If dim h = dim k, the almost product structure on g is split and it is called an almost
paracomplex structure. When integrable, it is just called a paracomplex structure.

Product structures arise naturally in an algebraic context by considering the semidirect
product of two groups H and K, via a group homomorphism π : H → Aut(K). This gives
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a decomposition g = h ⊕ k into a direct sum as vector spaces, where h is a subalgebra of
g, k is an ideal of g and π : h → End(k) is a representation acting by derivations.

Explicitly, the Lie bracket on g satisfies

(2)

[x, y] = [x, y]h for all x, y ∈ h,

[x, v] = π(x)v for all x ∈ h, v ∈ k,

[u, v] = [u, v]k for all u, v ∈ k,

where [·, ·]h = h× h → h denotes the Lie bracket on h and correspondingly for [·, ·]k. The
Jacobi identity on g implies that π : h → End(k) is a representation acting by derivations.
Conversely, starting with a pair of Lie algebras (h, [·, ·]h) and (k, [·, ·]k) and a representation
π : h → End(k) acting by derivations, the direct sum as vector spaces g = h⊕ k equipped
with the binary operation in (2) introduces a Lie algebra structure on g. Abusing of names
we refer to such Lie algebra g as the semidirect product Lie algebra of h and k via π. In
this situation, the following exact sequence of Lie algebras splits:

0 −→ k −→ g −→ h −→ 0.

For k abelian and dim k = dim h, the resulting semidirect product Lie algebra g = k ⊕ h

via the representation π is sometimes called the tangent Lie algebra Tπ h.

Example 2.1. Both the tangent and cotangent bundles of a given Lie group H admit a
Lie group structure which can be described in terms of semidirect products. In fact:

• The tangent bundle TH of a Lie group H is identified with H × h as a semidirect
product Lie group with Lie algebra T h = h ⊕ h, the second copy of h with the
abelian Lie bracket and the adjoint representation ad : h → End(h) as ad(x)v =
[x, v] for x, v ∈ h.

• For the cotangent bundle of the Lie group H, one identifies T ∗H with H × h∗,
where one has the coadjoint representation ad∗ : h → End(h∗) given ad(x)∗ϕ(y) =
−ϕ ◦ ad(x)(y) for all x, y ∈ h, ϕ ∈ h∗. It is usually denoted by T∗ h and called the
cotangent Lie algebra of h.

A real linear isomorphism S on a Lie algebra g satisfying S2 = −Id is an almost complex
structure.

Let J be almost complex. It is said integrable or simply a complex structure if and only
if NJ ≡ 0 where

(3) NJ(Y,Z) = [JY, JZ]− [Y,Z]− J [JY,Z]− J [Y, JZ] for all Y,Z ∈ g.

In this context, the integrabiliy condition of J is equivalent to the fact that both eigen-
subspaces for J (as a complex linear map) are Lie subalgebras of the complexification
gC.

Example 2.2. Up to isomorphisms, there exist two non-isomorphic real Lie algebras in
dimension two. One is the real abelian Lie algebra underlying C which is a complex
manifold and the other one, denoted by aff(R) as it is Lie algebra underlying the group of
affine motions of R, is spanned by the vectors x, y satisfying the Lie bracket [x, y] = y. In
the abelian situation we also have a basis x, y with [x, y] = 0. In both cases, there exists
a complex structure defined by

Jx = y Jy = −x.
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Observe that both v1 = Rx and v2 = Ry are totally real subspaces of the semidirect
product v1 ⊕ v2.

A semidirect product Lie algebra g = h ⊕ k has a natural product structure associated
to this decomposition, given by the linear map

(4) F (x, v) = (x,−v), x ∈ h, v ∈ k.

Assume that dim h = dim k, so that the map F above constitutes a paracomplex struc-
ture on g.

A linear isomorphism j : h → k gives rise to split isomorphisms. In fact, it defines

• an almost complex structure J on g, by

(5) J(x, v) = (−j−1v, jx) for all x ∈ h, v ∈ k.

• an almost paracomplex structure E : g → g, by

(6) E(x, v) = (j−1v, jx), x ∈ h, v ∈ k.

We observe that for such J , the subspaces h and k are totally real, that is, they satisfy
Jh ∩ h = {0} and the same holds for k. Such an almost complex structure was called
totally real with respect to the decomposition g = h⊕ k in [17].

Conversely, if an almost complex structure on g = h⊕ k satisfies Jh = k, then the map
j := J |h : h → k is a linear isomorphism.

It is easy to check that the (±1)-eigenspaces of the almost paracomplex structure E are
the subspaces given by

E±1 = {(x,±jx) : x ∈ h}.

Again, Eh = k and we call E a totally real almost paracomplex structure.

Example 2.3. We note that a “totally real complex structure” J always underlies a fixed
decomposition on a given Lie algebra. For instance, take the real Lie algebra T∗ aff(R)
with decomposition aff(R) ⊕ aff(R)∗, where aff(R) = span{e1, e2} with [e1, e2] = e2 and
aff(R)∗ = span{e3, e4}. From the coadjoint action one gets e4 = −[e1, e4] = [e2, e4]. On
T∗ aff(R) consider the complex structure given by

Je1 = e2 Je3 = −e4.

This J is not totally real with respect to the decomposition aff(R)⊕ aff(R)∗. However, it
is totally real for the decomposition h⊕ k, where h = span{e1, e3} and k = span{e2, e4}.

Thus, given the Lie algebra g with a fixed splitting g = h ⊕ k, there is a one-to-one
correspondence between:

(i) totally real almost complex structures on g;
(ii) totally real almost paracomplex structures on g;
(iii) linear isomorphisms j : h → k.

The above characterization shows that the class of totally real almost complex structures
(equivalently, of totally real almost paracomplex structures) on g = h ⊕ k, is large and
increases quadratically in function of the dimension, since linear isomorphisms j : h → V

form an open subset of the vector space of linear maps from h to k which has dimension
n2, where n = dim h.
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Remark 2.4. Given an almost complex structure J on a Lie algebra g, it is always possible
to have a decomposition of g as a direct sum as vector spaces of the form g = u⊕ Ju for
which u and Ju are totally real vector subspaces. For considerations whenever one only
assumes that u is an ideal, we may refer to [13].

On the other hand, given a paracomplex structure on with splitting g = u1 ⊕ u2, where
ui are Lie subalgebras of the same dimension, it is always possible to define an almost
complex structure J as in Equation (5) and another almost paracomplex structure as in
Equation (6).

Another geometry arising from split isomorphisms is given by almost complex product
structures. Recall that an almost complex product structure is a pair (J, I) consisting of

• an almost complex structure J and
• an almost paracomplex structure I,

such that JI = −IJ.
Indeed, if the pair (J, I) is an almost complex product structure, then the pair (J, IJ)

gives another almost complex product structure. We may refer to [2] for more information
on complex product structures.

The pair consisting of the almost complex structure J in Equation (5) and the almost
paracomplex structure E in Equation (6) satisfies JE = −EJ , and

F = EJ

gives the canonical paracomplex structure described in Equation (4). Therefore, both the
pairs (J,E) and (J, F ) are almost complex product structures on g.

3. Integrability conditions

In this section we investigate the integrability conditions for the split isomorphisms J
and E defined in Section 2. We first observe that for the almost complex and paracomplex
structures introduced in Equations (5) and (6) and for all X,Y,Z ∈ g, the corresponding
Nijenhuis tensors verify the following relations:

• NE(Z,X) = −NE(X,Z) and NJ(Z,X) = −NJ(X,Z),
• NE(EY,EZ) = NE(Y,Z) and NJ(JY, JZ) = −NJ(Y,Z),
• NE(X,EZ) = −ENE(X,Z) and NJ(Y, JZ) = −JNJ(Y,Z).

We emphasize that although J and E need not be integrable, the almost paracomplex
structure F is always integrable.

Recall that given two Lie algebras h, k and a representation π : h → End(k) acting by
derivations, a linear map θ : h → k is called a 1-cocycle of (h, π) if

(7) π(x)θ(y)− π(y)θ(x)− θ[x, y]h = 0.

We refer for instance to [23] for more details about the cohomology theory of Lie algebras.

Remark 3.1. Observe that 1-cocycles always exist. In fact, given (h, π), it suffices to
take a fixed vector u ∈ k and define a linear map θ : h → k by θu(x) = π(x)u for all x ∈ h.
Such a 1-cocycle is called a coborder. A coborder does not necessarily define an almost
complex structure as in Equation (5) on g = h⊕ k.
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Cocycles arise naturally whenever we ask for integrability of the split isomorphisms J
and E defined above. In fact, let j : h → k denote a linear isomorphism. The Nijenhuis
tensor for J yields that for all x, y ∈ h, one has

NJ(x, y) = [jx, jy]− [x, y]− J [jx, y]− J [x, jy] = [jx, jy]− [x, y]− j−1π(y)jx+ j−1π(x)jy.

It is clear that due to the relations satisfied by the Nijenhuis tensor, the condition NJ ≡ 0
is equivalent to requiring that NJ(x, y) = 0 for all x, y ∈ k. So, this holds if and only if for
all x, y ∈ h

• [jx, jy] = 0 and

• [x, y] + j−1π(y)jx− j−1π(x)jy = 0,

which is equivalent to

• k is abelian and
• j is a 1-cocycle of (h, π).

More generally, we have the next result.

Theorem 3.2. Let g = h ⊕ k denote a semidirect product Lie algebra. Given a linear
isomorphism j : h → k, let J and E denote the almost complex and paracomplex structures
respectively defined in Equations (5) and (6). The following statements are equivalent:

(i) the almost complex structure J is integrable;

(ii) the almost paracomplex structure E is integrable;

(iii) k is abelian and the linear isomorphism j : h → k is a 1-cocycle of (h, π).

Consequently, when k is abelian, the pair (J,E) defines a complex product structure on
g = h⊕ k for any 1-cocycle j of (h, π).

Proof. The equivalence of (i) and (iii) was proved above. By an analogous argument for
E, given x, y ∈ h, we have

NE(x, y) = [jx, jy] + [x, y] + j−1π(y)jx− j−1π(x)jy

so that NE ≡ 0 is equivalent to k abelian and j is a 1-cocycle of (h, π), which proves the
equivalence of (ii) and (iii). �

Corollary 3.3. Let T h denote the tangent Lie algebra via the adjoint representation. If
either the almost complex structure J defined by Equation (5) or the almost paracomplex
structure E defined in Equation (6) is integrable, then h is nilpotent.

Proof. In view of Theorem 3.2, the integrability condition for either J or E on T h (see
Example 2.1) is given by

0 = −[y, jx] + [x, jy]− j[x, y]

which means that j is a non-singular derivation of h. And the existence of such a non-
singular derivation implies that h is nilpotent [19]. �

Example 3.4. Let h denote a Lie algebra with a non-degenerate skew-symmetric bilinear
form ω. This ω induces a linear isomorphism (denoted also by ω) from h → h∗ by taking
ω(x)(y) = ω(x, y) for x, y ∈ h. Moreover ω gives a symplectic structure on h if dω = 0,
that is,

ω([x, y], z) + ω([y, z], x) + ω([z, x], y) = 0 for all x, y, z ∈ h,

which is equivalent to requiring that the map ω : h → h∗ is a 1-cocycle of (h, ad∗).
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Conversely, a non-singular 1-cocycle j of (h, ad∗) gives a symplectic structure on h when
ω(x, y) := j(x)(y) is skew-symmetric.

Example 3.5. The cotangent Lie group is naturally equipped with a left-invariant neutral
metric. A left-invariant Hermitian structure (for the neutral metric) on the cotangent Lie
group T ∗G is given by linear morphisms J of T∗ g, whose matrix form with respect to the
decomposition g⊕ g∗ is

J =

(

J1 J2
J3 J4

)

satisfying

(i) J4 = −J∗
1 , J2 = −J∗

2 , J3 = −J∗
3 ;

(ii) J2
1 + J2J3 = − Id, J1J2 = −(J1J2)

∗, J3J1 = −(J3J1)
∗;

(iii) J is integrable.

A complex structure I on g such that I∗α = α ◦ I for α ∈ g∗ induces J as above on T∗ g,
by taking J1 = I, J4 = −I∗, J2 = J3 = 0.

Let ω denote a sympletic structure on g and consider also the associated linear isomor-
phism ω : g → g as in Example 3.4. Then, ω induces an Hermitian complex structure on
T∗ g, by defining J(x, α) = (−ω−1(α), ω(x)).

Observe that left-invariant Hermitian complex structures on T ∗G correspond to left-
invariant generalized complex structures on G (see for instance [3]).

Recall that two complex structures J and J ′ on a given Lie algebra g are called equivalent
if there exists an automorphism ψ : g → g, such that ψ ◦ J ′ = J ◦ ψ.

Fix the splitting g = h⊕ k on the semidirect product Lie algebra g and let ϕ : g → g be
a linear map with matrix

ϕ =

(

A C

B D

)

.

Let g = h ⊕ k be as above with associated representation π, F the canonical product
structure associated to this decomposition as in Equation (4) and ϕ : g → g denote an
automorphism. The following statements are equivalent:

• the subspaces h and k are ϕ-invariant;
• ϕ ◦ F = F ◦ ϕ.

Let ϕ denote now an automorphism of g = h⊕ k preserving the paracomplex structure
F . Thus,

• A : h → h and D : k → k are automorphisms and
• π(Ax) ◦D = D ◦ π(x) for every x ∈ h.

Let J and J ′ be totally real almost complex structures on g associated to the linear
isomorphism j, j′ : h → k. Let ϕ : g → g denote a linear map of g with matrix as above
preserving F and satisfing J ◦ ϕ = ϕ ◦ J ′. This occurs if and only if Dj′x = jAx for all
x ∈ h.

Observe that if such a ϕ is an automorphism, we get an equivalence between J and J ′

which also preserves F . Thus, in such a case we also have an equivalence between the
almost complex product structures (F, J) and (F, J ′). By the same argument, we also get
equivalences between (E, J) and (E′, J ′) for E = −FJ and E′ = −FJ ′.
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We now turn our attention to some special classes of almost complex and paracomplex
structures. An almost complex structure J on a Lie algebra g is said to be

c1) bi-invariant if [JY,Z] = J [Y,Z] for all Y,Z;

c2) abelian if [JY, JZ] = [Y,Z] for all Y,Z;

c3) anti bi-invariant if [JY,Z] = −J [Y,Z] for all Y,Z.

An almost complex structure of type c3) is integrable only when g is abelian, while struc-
tures of type c1) and c2) are always integrable. In fact, direct calculations show that the
bi-invariant condition of J implies that the eigenspaces g±i are ideals, while in the case of
abelian structures c2) one has abelian subalgebras g±i.

In particular, for the almost complex structure J on g = h⊕ k defined in Equation (5):

(1) J bi-invariant yields that for all x, y ∈ h: J [x, jy] = [jx, jy] = 0, since the left side
of the equality belongs to h while the right side belongs to k.

Thus, k is abelian and Jπ(x)jy = 0 for all x, y ∈ h. Since j is non-singular, it
follows that
a) π = 0 and
b) h is abelian, since for any x, y ∈ h, one also has J [x, Jy] = [x, J2y].

Therefore, we have the isomorphism g ≃ Rm ⊕ Rm ≃ R2m, the abelian Lie
algebra as a direct sum as Lie algebras of two totally real abelian ideals.

(2) J abelian means that for x, y ∈ h, we get [jx, jy] = [x, y] = 0, which says that both
h and k are abelian. Moreover, we must have π(x)jy = π(y)jx for all x, y ∈ h.
Thus, g ≃ Rm ⊕ Rm is a tangent Lie algebra Tπ R

m via the representation π.

Example 3.6. Let hn denote the Heisenberg Lie algebra of dimension 2n+1. It is
spanned by the vectors x1, . . . , xn, y1, . . . , yn, z satisfying the non-trivial Lie bracket re-
lations [xi, yi] = z for i = 1, . . . , n.

The Lie algebra g = hn × R admits an abelian complex structure J , defined by

Jz = e0, Jxi = yi, i = 1, . . . n,

where e0 spans R in g = h2n+1 × R. It is clear that the abelian Lie subalgebras a1 =
span{xi, z}

n
i=1 and a2 = span{yi, e0}

n
i=1 are totally real with respect to J .

An almost paracomplex structure E is said to be

e1) bi-invariant if E[Y,Z] = [Y,EZ];

e2) abelian if [EY,EZ] = −[Y,Z].

Again, each of these conditions implies the integrability of E.

Example 3.7. Making use of the definition, it is easily seen that the canonical paracom-
plex structure on g = h⊕ k given by F (x, v) = (x,−v) is bi-invariant.

With regard to the almost paracomplex structure E on Tπ h defined in Equation (6), we
can proceed as in the above case for the complex structure J . The results we obtain show
that the existence of such abelian or bi-invariant structures on the semidirect product Lie
algebra g imposes restrictions on the algebraic structure of g.

Proposition 3.8. Let g = h ⊕ k denote a semidirect Lie algebra and J,E the almost
complex and paracomplex structures defined in Equations (5) and (6) respectively. Then:

• For the bi-invariant case, the following statements are equivalent:
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(i) the almost complex structure J is bi-invariant;
(ii) g is abelian;
(iii) the almost paracomplex structure E is bi-invariant.

• For the abelian case,
(i) J is abelian if and only if h and k are abelian and π(x)jy = π(y)jx for all

x, y ∈ h.
(ii) E is abelian if and only if h and k are abelian and π(x)jy = −π(y)jx for all

x, y ∈ h.

Remark 3.9. Observe that while the canonical paracomplex structure F on g = h⊕ k is
always bi-invariant, by requiring E to be bi-invariant we get that g is necessarily abelian.

4. A parallel connection for the almost complex product structure

In this section we investigate the existence of a torsion free connection on a semidirect
product Lie algebra g = h⊕ k such that for the almost complex J and almost paracomplex
E it holds ∇E = 0 and ∇J = 0.

Let ∇ denote any connection on a Lie algebra g. The torsion of ∇ is defined as

T (X,Y ) = ∇XY −∇YX − [X,Y ],

so that ∇ is said to be torsion-free is T ≡ 0. The curvature of ∇ is given by the tensor

R(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z.

In particular, we say that the connection ∇ is flat if R ≡ 0.
Let P : g → g denote the product structure associated to a semidirect product Lie

algebra g = b⊕ c, where b is a Lie subalgebra and c is an ideal of g. A general element of
g can be written as x+ v for x ∈ b and v ∈ c. Thus, the product structure P is given by

(8) P (x+ v) = x− v for all x ∈ b, v ∈ c.

Denote by pb and pc the projections onto b and c respectively with respect to the
decomposition g = b⊕ c.

Let ∇ denote a connection of g such that ∇P ≡ 0. Then, one has

(9) ∇x+u(y − v) = P∇x+u(y + v) for all x, y ∈ b, u, v ∈ c,

that is,

pb∇x+u(y − v) = pb∇x+u(y + v), pc∇x+u(y − v) = −pc∇x+u(y + v),

which gives

(10) pb∇x+uv = 0 = pc∇x+uy.

Example 4.1. Let g = b⊕ c denote a semidirect product Lie algebra, with b subalgebra
and c an ideal. Let ∇1 be a torsion-free connection on b, ∇2 a torsion-free connection on c

and ρ : b → End(c) be the representation defined by [x, v] = ρ(x)v for x ∈ b, v ∈ c. Then,
the connection on g given by

∇x+u(y + v) = ∇1
xy +∇2

uv + ρ(x)v

is torsion-free.

We shall now prove that the above example gives the conditions for ∇P ≡ 0.
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Lemma 4.2. Let P denote the product structure associated to the semidirect product Lie
algebra g = b⊕ c as in (8). If ∇ is a torsion-free connection on g such that ∇P ≡ 0, then
it has the form

(11) ∇x+u(y + v) = ∇1
xy +∇2

uv + ρ(x)v,

where ∇1 is a torsion-free connection on b, ∇2 is a torsion-free connection on c, and ρ is
the representation ρ : b → End(c)m associated to the splitting g = h⊕ρ k.

Proof. By using Equation (10) and asking the connection ∇ to be torsion-free, one has:

• ∇xv −∇vx = pc∇xv − pb∇vx = ρ(x)v for all x ∈ b, v ∈ c.

Therefore, ∇xv = π(x)v ∈ c for every x ∈ b, v ∈ c and pb∇vx = 0, which gives
0 = ∇vx for all x ∈ b, v ∈ c.

• ∇xy − ∇yx = pb∇xy − pb∇yx = [x, y] for all x, y ∈ b, that is, for every x, y ∈ b

the bilinear map (x, y) → ∇xy takes values on b, so it coincides with a torsion-free
connection, namely ∇1 on b.

• Finally, by Equation (10) one has ∇vw ∈ c and this gives a torsion-free connection
∇2 on c.

This proves (11). �

Note that the curvature of such a connection is completely described by

• R(x, y)z = R1(x, y)z for all x, z, z ∈ b,

• R(u, v)w = R2(u, v)w for all u, v, w ∈ c,

• R(x, v)z = 0 for all x, z ∈ b, v ∈ c and

• R(x, v)w = π(x)∇2
vw −∇2

vπ(x)w −∇2
π(x)vw, for all x ∈ b, v, w ∈ c.

Example 4.3. Let g = b⊕ c be a semidirect product Lie algebra, where c is an ideal with
dim b = dim c and assume ρ : b → End(c) is a representation acting by derivations. Take
a non-singular cocycle of (b, ρ). Then the connections on b and c respectively given by

∇1
xy = j−1ρ(x)jy and ∇2

vw =
1

2
ad(v)w for all x, y ∈ b, v, w ∈ c,

build a torsion-free connection on g such that ∇P = 0, being P the paracomplex structure
associated to the splitting g = b⊕ρ c.

Indeed, for c abelian the connection ∇2 here would be trivial and the connection ∇ on
g = b⊕ρ c will be completely determined by ∇1 and ρ.

We now investigate the conditions for a connection that parallelizes the almost complex
structure J defined in Equation (5). Let ∇ denote a connection on the semidirect Lie
algebra g = h ⊕ k, with k an ideal such that dim h = dim k. By using the definition of J ,
it is easily seen that

(∇x1+jy1J)(x2 + jy2) = ∇x1+jy1(−y2 + jx2)− J∇x1+jy1(x2 + jy2).

Hence, we have that ∇J = 0 if and only if

(12) pk∇x1+jy1(x2 + jy2) = −jph∇x1+jy1(y2 − jx2), for all xi, yj ∈ h.

Making use of this and the Lemma 4.2 we obtain the following characterization.
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Theorem 4.4. Let J denote the almost complex structure on g = h⊕k defined in Equation
(5) and let F be the paracomplex structure given by F (x + v) = (x − v) for x,∈ h, v ∈ k.
Then, there exists a torsion-free connection ∇ on g = h⊕ k such that ∇F = 0 and ∇J = 0
if and only if J is integrable.

Moreover, such a connection is uniquely determined by

∇x1+jy1(x2 + jy2) = π̃(x1)x2 + π(x1)jy2, with x1, x2, y1, y2 ∈ h,

where π̃(x1) ∈ End(h) is given by π(x1)x2 = j−1π(x1)jx2.

Proof. Let ∇ denote a torsion-free connection on g = h ⊕ k, such that ∇F = ∇J = 0.
Thus, the connection ∇ satisfies the conditions listed in Lemma 4.2, which together with
Equation (12) gives

∇x1+jy1(−y2 + jx2) = −∇1
x1
y2 + π(x1)jx2 +∇2

jy1
jx2

= J(∇1
x1
x2 + π(x1)jy2 +∇2

jy1
jy2),

for the connections ∇1 : h × h → h and ∇2 : k × k → k. The components on h and k

respectively of such equations give, for all x1, x2, y1, y2 ∈ h:

(a) on h: −∇1
x1
y2 = −j−1π(x1)jy2 − j−1∇2

jy1
jy2,

(b) on k: π(x1)jx2 +∇2
jy1
jx2 = j∇1

x1
x2.

Observe that since these equations must hold for arbitrary elements, taking x1 = 0 we
obtain ∇2 ≡ 0. Thus, this implies the following:

• from (b): ∇1
x1
x2 = j−1π(x1)jx2;

• by asking ∇2 to be torsion-free, we get that k should be abelian.

For the connection ∇1, the condition of being torsion-free is equivalent to the fact that
the identity map is a 1-cocycle of (h, π̃). In fact, this follows by applying j−1 to the
equation for j to be a 1-cocycle of (h, π). So, J is integrable.

Conversely, by Theorem 3.2 the integrability of J is equivalent to k is abelian and j is a
non-singular isomorphism which is a 1-cocycle of (h, π). Thus, the connection ∇ defined
by

(13) ∇x1+jy1(x2 + jy2) = π̃(x1)x2 + π(x1)jy2,

where π̃(x1) := j−1π(x1)j, is an equivalent representation of π (and also a torsion-free
connection on h), is torsion-free and it satisfies ∇F = ∇J = 0. �

Remark 4.5. Under the assumptions of the above Theorem, since π is a representation
one gets

0 = π(x)π(y)jz − π(y)π(x)jz − π([x, y])jz = j∇1
x∇

1
yz − j∇1

y∇
1
yz − j∇1

[x,y]z,

that is the connection ∇1 on h is flat. Since ∇2 ≡ 0, one concludes that ∇ is flat.

Observe that since F = EJ (equivalently, E = −FJ , J = EF ), if a given connection
∇ parallelizes any pair of structures among J,E, F , it necessarily parallelizes also the
remaining one. In particular, we see that for any linear isomorphism j : h → k we have
several statements which are equivalent to Theorem 4.4 for the almost complex structure
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J and the almost paracomplex structures E already defined, whose proof simply follows
from the relations among J,E, F .

Theorem 4.4.’ Let g = h⊕ k denote a semidirect product Lie algebra and let j : h → k

be any linear isomorphism. Then, the following statements are equivalent:

• There exists a torsion-free connection ∇ on g, such that ∇F = 0 and ∇J = 0;
• There exists a torsion-free connection ∇ on g, such that ∇F = 0 and ∇E = 0 ;
• There exists a torsion-free connection ∇ on g, such that ∇E = 0 and ∇J = 0;
• J is integrable;
• E is integrable.

In any case, such a connection is unique and flat. See Theorem 4.4.

Remark 4.6. As proved in [2], for a complex product structure {J,E} on a Lie algebra
there exists a unique torsion-free connection which makes both J and E parallel. The
above theorem extends this result to the wide class of almost complex product structures
on a semidirect product Lie algebra g = h⊕k, defined by any linear isomorphism j : h → k.
We do not ask J to be integrable, while F is integrable with one of the eigenspaces as an
ideal.

5. Affine structures and split isomorphisms

In this section we study the connection of the previous section as an LSA structure. We
start by recalling some generalities of affine structures.

Let V denote a real vector space. A left-symmetric algebra structure on V (LSA for
short) consists of a bilinear map operation · : V × V → V , whose associator

a(x, y, z) = (x · y) · z − x · (y · z)

satisfies a(x, y, z) = a(y, x, z).
LSA are also known as pre-Lie algebras or Koszul-Vinberg algebras. An LSA gives rise

to a Lie algebra structure on V , where the Lie bracket is defined by

(14) [x, y]L := x · y − y · x for all x, y ∈ V.

We shall refer to this as to the Lie algebra underlying the LSA (V, ·). An LSA on the
vector space V with associator a ≡ 0 is nothing but an associative algebra structure on
V . On the other hand, it is known that Equation (14) is the usual way to define a Lie
algebra bracket on any associative algebra.

Proposition 5.1. [8, 18] There is a canonical one-to-one correspondence between the
following classes of objects, up to suitable equivalence:

• {Left-invariant affine structures on G};

• {Affine structures on the Lie algebra g};

• {LSA structures on g}.

An affine structure on a Lie algebra g is a connection ∇ : g×g → g which is torsion-free
and flat. Such connection gives rise to a left-invariant affine connection on the corre-
sponding Lie group G. See more about LSA or affine structures in [4, 8, 9, 10, 22] for
instance.
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Example 5.2. Whenever k is abelian, the connection ∇ of Theorem 4.4 gives an affine
structure on the semidirect product Lie algebra g = h⊕ k.

Let ∇ denote an affine structure on a Lie algebra g. By defining

x · y = ∇xy

one gets an LSA structure · on g, such that the Lie bracket induced by the binary operation
coincides with the original Lie bracket on g. In fact,

a(x, y, z) = ∇∇xyz −∇x∇yz,

so that a(x, y, z) = a(y, x, z) yields the following equality:

∇∇xyz −∇x∇yz = ∇∇yxz −∇y∇xz.

On the other hand, since ∇ is torsion-free, one has

∇∇xyz −∇∇yxz = ∇[x,y]z = ∇x∇yz −∇y∇xz

where the second equality follows from the flatness condition of ∇. Thus, the bilinear map
· : g× g → g gives an LSA structure if and only if it satisfies

[x, y] = x · y − y · x,(15)

[x, y] · z = (x · y) · z − (y · x) · z(16)

for all x, y, z ∈ g.

Example 5.3. Since the end of 60’s-the early 70’s (see for example [14]), it is well known
that if ω is a symplectic structure on a Lie algebra g, the formula

ω(∇xy, z) = ω(y, [x, z])

defines an affine structure on g.

Consider a left-symmetric algebra · on a real vector space V and the Lie algebra g

underlying (V, ·). The left-multiplication L in V is given by L(x)y = x · y, while the right
multiplication is defined analogously by R(x)y = y · x. The two conditions above then
yield that

L : g → End(g) is a Lie algebra homomorphism,(17)

Id : g → g is a 1-cocycle of (g, L).(18)

We now consider aff(g) = End(g) ⊕ g with the Lie bracket [(T, x), (S, y)] = (TS −
ST, Ty − Sx). Let α be the linear map α : g → aff(g) given by

α(X) = (L(X),X).

Proposition 5.4. The linear map L satisfies (17) and (18) if and only if α is a Lie
algebra homomorphism.

Moreover, we recall the following result proved in [10].

Lemma 5.5. Let (V, ·) be an LSA structure with underlying Lie algebra g. Then, g is
abelian if and only if (V, ·) is associative and commutative.
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Remark 5.6. As we already mentioned in the Introduction, LSA structures are related
to affine transformations. Milnor proved in [20] that a connected Lie group acts freely by
affine transformations of some Rn if and only if it is simply connected and solvable. He
stated the following question [20].

Milnor’s Question. Does every solvable Lie group G admit a complete left-invariant
affine structure, or equivalently, does the universal covering group G̃ operate simply tran-
sitively by affine transformations of Rk?

In the conditions of this question, Auslander [5] proved that G is solvable.
Recall that the group of affine transformations of Rk, denoted by Aff(Rk), is given by

Aff(Rk) =

{(

A b

0 1

)

A ∈ GL(Rk), b ∈ R
k

}

and acts on a vector

(

v

1

)

∈ Rk by

(

A b

0 1

)(

v

1

)

=

(

Av + b

1

)

.

Observe that the Lie algebra of Aff(Rk) is aff(Rk) ⊂ End(Rk).

If we start from a Lie algebra (h, [ , ]), an LSA structure · on h is said to be compatible
if the Lie bracket defined by ·, as described in (14), coincides with the Lie bracket on h:
[ , ] = [ , ]L.

Example 5.7. An LSA structure · on a real vector space V gives rise to a semidirect
product Lie algebra in the following way. Let h denote the Lie algebra underlying (V, ·).
We take the direct sum of vector spaces g = h⊕ V with the Lie bracket

[(x, u), (y, v)] = ([x, y]L, θL(x)θ
−1v − θL(y)θ−1u),

where [x, y]L is given by (14) and θ : h → V is a linear bijection. So, L̃(x)(v) :=
θL(x)θ−1(v) induces an equivalent representation of h to End(V ). It is clear that h and
V are subalgebras of g, V is an abelian ideal of g and θ : h → V is a linear isomorphism
which is a 1-cocycle of (h, L̃).

Proposition 5.8. Let · denote an LSA structure on a vector space V and h the un-
derlying Lie algebra. Then the canonical inclusion ι : h → g = h ⊕ V is a Lie algebra
monomorphism, where g is equipped with the Lie bracket of Example 5.7.

Observe that in the context above we have an almost complex structure and an almost
paracomplex structure on g = h⊕ V given respectively by

J(x, v) = (−θ−1v, θx) E(x, v) = (θ−1v, θx).

The natural question concerning the converse construction is answered by the following
result.

Theorem 5.9. Let g = h ⊕ k denote a semidirect product Lie algebra attached to (h, π).
Let j : h → k denote a linear isomorphism. Then, the following statements are equivalent:

(i) ∇xy := j−1π(x)jy is an affine connection on h;

(ii) the almost complex structure J defined by J(x, v) = (−j−1v, jx) is integrable.
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(iii) the almost para-complex structure E defined by J(x, v) = (j−1v, jx) is integrable.

Proof. We know from Theorem 4.4 that the integrability of J on g = h ⊕ k is equivalent
to the fact that k is an abelian ideal and j : h → k is a 1-cocycle of (h, π). Thus,
j−1 ◦ j = Id : h → h is a 1-cocycle of the equivalent representation π̃(x) = j−1π(x)j, and
the conclusion follows from Proposition 5.4. In fact, π̃ : h → End(h) is a torsion-free flat
connection on h. The converse also follows from Theorem 4.4. �

The results proved throughout this work now yield the following main Theorem. More
precisely, denoting by J,E, F the structures described in Section 2, we have the following
result.

Theorem 5.10. Let g = h⊕ k denote a semidirect product Lie algebra with dim h = dim k.
There are correspondences between the following sets:

• Affine structures on h;

• Complex structures J on g for which h and k are totally real subspaces.

• Paracomplex structures E on g such that Eh = k;

• Torsion-free connections on g parallelizing both the almost complex structure J and
the almost paracomplex structure E.

Remark 5.11. Note that starting with an affine structure ∇1 on h we have an almost
complex structure on the semidirect product Lie algebra g = h⊕π V . Moreover, the con-
nection ∇ on g given by ∇(x1,jy1)(x2, jy2) = (π̃(x1)x2, π(x1)y2) is also an affine structure
on g. Therefore, ∇ permits to construct a complex structure and a para-complex structure
on the semidirect product via ∇, g⊕ Vg, where Vg denotes the underlying vector space of
g seen as an abelian Lie algebra.

Example 5.12. On symplectic structures As we already mentioned, a left-invariant
symplectic structure on a Lie group H induces an Hermitian complex structure on T∗ h,
which in turn corresponds to some left-invariant generalized complex structures on G.
This can be read as a one-cocycle of (h, ad∗).

As said in Example 5.3 a symplectic structure ω on a Lie algebra h defines a torsion
flat connection ∇. Once we apply the equivalence above for the coadjoint representation,
we get exactly this connection.

6. Examples and applications

In this section we show some applications once we make a natural choice of metri.
Explicit computations of complex structrures and affine structures are also done.

6.1. Almost Hermitian and para-Hermitian structures on Tπ h. We now start
from any inner product 〈 , 〉 on the Lie algebra h and observe that 〈 , 〉 can be naturally
extended to the semidirect product Lie algebra g = h⊕ k:

• to an inner product g:

(19) g((x, u), (y, v)) := 〈x, y〉+ 〈j−1u, j−1v〉;

• to some neutral metrics ḡ and g̃:

(20) ḡ((x, u), (y, v)) := 〈x, y〉 − 〈j−1u, j−
1

v〉;
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(21) g̃((x, u), (y, v)) := 〈x, j−1v〉+ 〈j−1u, y〉;

It is easy to check that for all x, y ∈ h and u, v ∈ k:

• g(J(x, u), J(y, v)) = g((x, u), (y, v));

• ḡ(E(x, u), E(y, v)) = −ḡ((x, u), (y, v));

• g̃(F (x, u), F (y, v)) = −g̃((x, u), (y, v)).

Thus, the pair (J, g) defines an almost Hermitian structure on g = h ⊕ k, while (E, ḡ),
(F, g̃) give almost para-Hermitian structures on g = h ⊕ k. Observe that j : h → k is an
isometry with respect to the inner products induced by g on these subspaces.

In view of the equalities above, we have the corresponding 2-forms:

ωJ(X,Y ) = g(JX, Y ), ωE(X,Y ) = ḡ(EX,Y ), ωF (X,Y ) = g̃(FX, Y ).

It is known that ωJ is called the Kähler or fundamental 2-form of (J, g) and correspond-
ingly, ωE and ωF are the fundamental 2-forms of the almost para-Hermitian structures
(E, ḡ) and (F, g̃) respectively. We may refer to [16] for further information concerning
almost para-Hermitian structures and related notions. We recall that:

• the pair (J, g) is called almost Kähler if the fundamental form ω is closed;

• the pair (E,ωE) (respectively, (F, ωF )) is called almost para-Kähler if dωE = 0
(respectively, dωF = 0).

Observe that notwithstanding the differences under these metrics and structures, we have

(22) ωJ(X,Y ) = −ωE(X,Y ) = ωF (X,Y ) for all X,Y ∈ Tπ h.

Moreover, these 2-forms are non-degenerate. Therefore, they are symplectic if and only if
they are closed. We now characterize the closeness condition for these structures.

Proposition 6.1. For any linear isomorphism j : h → k and metric 〈 , 〉 on h, let (J, g)
denote the almost Hermitian structure on the semidirect product Lie algebra g = h ⊕ k

described by J as in Equation (5), and g as above (19), and let (E, ḡ), (F, g̃)be the almost
para-Hermitian structures described respectively by Equations (6),(20) and by Equations
(4),(21). Then, the following properties are equivalent:

(a) (J, g) is almost Kähler;
(b) (E, ḡ) is almost para-Kähler;
(c) (F, g̃) is para-Kähler;
(d) k is abelian and

(23) 〈j−1π(y)jz, x〉 − 〈j−1π(x)jz, y〉 = 〈[x, y], z〉 for all x, y, z ∈ h.

Proof. The equivalence of (a),(b) and (c) follows at once from the definitions of the two-
forms in (22) and the respective closeness conditions. We now prove the equivalence of
(a) and (d). We first observe that because of (19), h is ortogonal to k with respect to g.
Therefore, k is an isotropic ideal for ωJ (that is, ω|k×k = 0). Hence, if ωJ is closed (and so,
symplectic), then k must be abelian.

Assume that k is abelian. By taking x, y, z ∈ h, one has

• dωJ(x, y, z) = dωJ(jx, jy, jz) =dωJ(jx, y, jz) = 0 is always satisfied.

• dω(x, y, jz) = 0 if and only if Equation (23) holds.
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Conversely, it is easily seen by direct calculation that if (23) holds and k is abelian, then
dωJ = 0.

�

Corollary 6.2. Let g = h ⊕ k denote a semidirect product Lie algebra attached to the
representation π : h → End(k). Let 〈 , 〉 denote an inner product on h such that j−1π(x)j :=
π̃(x) ∈ so(h) for every x ∈ h and j : h → k a linear isomorphism. Let g denote the metric
on g as above. If (g, J) is almost Kähler, then (g, J) is Kähler.

Proof. Indeed, π̃(x) = j−1π(x)j defines an equivalent representation of π, such that π̃(x) ∈
so(h) for all x ∈ h. By the previous proposition, (J, g) is almost Kähler if and only if

• k is abelian and
• π̃(x)y − π̃(y)x = [x, y] for all x, y ∈ h, which follows from the skew-symmetric
property of π̃. Therefore, the linear map Id :h → h is a 1-cocycle of (h, π̃).

This yields that j : h → k is a 1-cocycle of (h, π) and the almost complex structure J
given by J(x, jy) = (−y, jx) is integrable. It is not hard to see that the connection ∇
given by ∇(x1,jy1)(x2, jy2) = (π̃(x1)x2, π(x1)jy2) is torsion-free and ∇g = 0 and so, (g, J)
is Kähler. �

We shall now describe some explicit examples of the equivalences obtained in Theo-
rem 5.10 between compatible LSA on a Lie algebra h and totally real complex structures
on a semidirect product Lie algebra g = h⊕ V .

6.2. From LSA to totally real complex structures. We shall consider some real
Lie algebras, equipped with some LSA deduced from the examples described in [9], and
construct the corresponding semidirect product Lie algebras and totally real complex
structures on them.

Before starting, we make the following general remark. Let · denote an LSA structure
on a vector space V and h the underlying Lie algebra. As we explained in the previous
section, any linear isomorphism j : h → V determines

a) a semidirect product Lie algebra g = h⊕ V , with Lie bracket described by (14);

b) a totally real complex structure J on g, described as in (5).

Thus, starting from a basis {ei} of h, we can consider the corresponding basis {vi := j(ei)}
of V , with the obvious advantage that with respect to the basis {ei, vi} of g, the complex
structure J , defined as in Equation (5), will be completely determined by the simple
equations

Jei = vi, i = 1, . . . , n.

Clearly, V being an abelian ideal of g, in any case we shall have [vi, vk] = 0, and the
description of the Lie algebra g will be completed by calculating

[ei, ek] = ei · ek − ek · ei, [ei, vk] = jL(ei)j
−1vk, i, k = 1, . . . , n.

Three-dimensional examples. In the next subsection we shall illustrate compatible
LSA on three-dimensional Lie algebras, whose either tangent or cotangent Lie algebras ad-
mit some totally real complex structures. Here, we consider a family of three-dimensional
Lie algebras h, which, by the results proved in [12], do not admit totally real complex
structure neither on Th nor on T ∗h.
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For any real constant λ 6= 0,−1 < λ < 1, consider the three-dimensional Lie algebra
h = r3,λ=span{e1, e2, e3}, described by

(24) [e1, e2] = e2, [e1, e3] = λe3,

and on h the compatible LSA

(25) e1 · e1 = (λ+ 1)e1, e1 · e2 = e2, e1 · e3 = λe3, e2 · e3 = e1, e3 · e2 = e1.

Denoted by V the vector space underlying h and by j : h → V a linear isomorphism, we
consider on V the basis {vi := j(ei), i = 1, 2, 3}. We then apply (14) to ei, vi and prove
the following.

Proposition 6.3. For any real constant λ 6= 0,−1 < λ < 1, consider the three-dimensional
real Lie algebra h = r3,λ given by (24), the vector space V underlying h and on it the com-
patible LSA structure given by (25). Then, the Lie brackets

[e1, e2] = e2, [e1, e3] = λe3,

[e1, v1] = (λ+ 1)v1, [e1, v2] = v2, [e1, v3] = λv3, [e2, v3] = v1, [e3, v2] = v1

describe a semidirect product Lie algebra g = h ⊕ V = span(ei)⊕ span(vi), admitting the
totally real complex structure J completely determined by Jei = vi.

For the Lie algebra h = r3, 1
2

, given by (24) with λ = 1
2 , we can also consider a different

compatible LSA, namely,

(26) e1 · e1 =
3
2e1, e1 · e2 = e2, e1 · e3 =

1
2e3, e2 · e3 = e1, e3 · e2 = e1, e3 · e3 = −e2.

As before, we denote by V the vector space underlying h and by j : h → V a linear
isomorphism and fix on V the basis {vi := j(ei), i = 1, 2, 3}. Applying (14) to ei, vi, we
obtain the following.

Proposition 6.4. Consider the three-dimensional real Lie algebra h = r3, 1
2

described by

(24) with λ = 1
2 , the vector space V underlying h and on it the compatible LSA structure

given by (26). Then, the Lie brackets

[e1, e2] = e2, [e1, e3] =
1
2e3,

[e1, v1] =
3
2v1, [e1, v2] = v2, [e1, v3] =

1
2v3,

[e2, v3] = v3, [e3, v2] = v1, [e3, v3] = −v2

determine a semidirect product Lie algebra g = h⊕V = span(ei)⊕span(vi), not isomorphic
to the one described (for λ = 1

2) in the above Proposition 6.3, admitting the totally real
complex structure J given by Jei = vi.

Examples in arbitrary dimension.

1) h = In. Consider the n-dimensional Lie algebra h =span{e1, . . . , en}, described by

(27) [e1, ek] = ek, k ≥ 2,

and on h the compatible LSA

(28) e1 · e1 = 2e1, e1 · ek = ek, ek · ek = e1, k ≥ 2.
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Let V denote the vector space underlying h and j : h → V a linear isomorphism. We
fix on V the basis {vi := j(ei), i = 1, . . . , n}. Then, applying (14) to ei, vi, we prove the
following.

Proposition 6.5. Consider the n-dimensional real Lie algebra h = In described by (27),
V the vector space underlying h and on it the compatible LSA structure given by (28).
Then, the Lie brackets

[e1, ek] = ek, [e1, v1] = 2v1, [ek, vk] = v1, k ≥ 2

describe a semidirect product Lie algebra g = h ⊕ V = span(ei)⊕ span(vi), admitting the
totally real complex structure J completely determined by Jei = vi.

2) h = An. We now consider the n-dimensional Lie algebra h =span{e1, . . . , en}, de-
scribed by

(29) [e1, ek] = αkek, k ≥ 2,

for some real constants α1, . . . , αn satisfying αi 6= 0 for all i and αn+2−k = α1 − αk for all
k ≥ 2. On h one has the compatible LSA

(30) e1 · ei = αie1, ek · en+2−k = e1, i ≥ 1 and k ≥ 2.

Denoted by V the vector space underlying h and by j : h → V a linear isomorphism, we
consider on V the basis {vi := j(ei), i = 1, . . . , n} and apply (14) to ei, vi, proving the
following.

Proposition 6.6. For any real constants α1, . . . , αn satisfying αi 6= 0 for all i and
αn+2−k = α1 − αk for all k ≥ 2, consider the n-dimensional real Lie algebra h = An

described by (29), the vector space V underlying h and on it the compatible LSA structure
given by (30). Then, the Lie brackets

[e1, ek] = αkek, [e1, vk] = αkvk, [ek, vn+2−k] = v1, k ≥ 2

describe a semidirect product Lie algebra g = h ⊕ V = span(ei)⊕ span(vi), admitting the
totally real complex structure J completely determined by Jei = vi.

6.3. From totally real complex structures to LSA. Let g = h⊕ V denote a semidi-
rect product Lie algebra, determined by a representation π, where V is an abelian ideal.
We consider an isomorphism j : h → V , which is a cocycle of (h, π). Then, by Theo-
rem 3.2, j defines a totally real complex structure J given by Equation (5). Moreover, by
Theorem 5.10, the Lie algebra h will admit a compatible LSA, explicitly given by

x · y = j−1π(x)jy, x, y ∈ h.

We shall now start from some examples of totally real complex structures obtained in [12]
on tangent and cotangent Lie algebras, and describe the corresponding compatible LSA.

Tangent Lie algebras. As proved in [12], totally real complex structures on the
tangent Lie algebra Th of h can only occur when h is nilpotent. In particular, if dim h = 3,
then the only possibility is given by h = h1, where h1 denotes the three-dimensional
Heisenberg Lie algebra. Following [12], the tangent Lie algebra Th1:

[e1, e2] = e3, [e1, v2] = v3, [e2, v1] = −v3
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admits the totally real complex structures

(31) Jse1 = v1, Jse2 = −sv1 + v2, Jse3 = 2v3, s = 0, 1.

Clearly, by Equation (5), these totally real complex structures correspond to the linear
isomorphisms js completely determined by jsei = Jsei, i = 1, 2, 3. Then, on h1 we have
the corresponding compatible LSA given by

ei ·s ej = j−1
s adei js(ej), i, j = 1, 2, 3,

determined by js and the adjoint representation. Applying the equation above, we obtain
the following.

Proposition 6.7. For s = 0, 1, consider the totally real complex structures Js on the
tangent Lie algebra of h1 described in (31). Then, h1 admits the corresponding compatible
LSA structures ·s, described by

e1 ·s e2 =
1
2e3, e2 ·s e1 = −1

2e3, e2 ·s e2 =
s
2e3.

Let now consider again the (2n+ 1)−dimensional Heisenberg Lie algebra hn, described
by [xi, yi] = z. On the tangent Lie algebra Thn there exist many totally real complex
structures, because they are in a one-to-one correspondence with the nonsingular deriva-
tions of hn [12]. For example, if we take the totally real complex structure corresponding
to the very simple nonsingular derivation j : h → h described by

jxi = xi, jyk = yk, jz = 2z,

then we have the corresponding compatible LSA on hn, described by

xi · yk = 1
2δikz, i, k = 1, . . . , n.

Further compatible LSA on hn can be easily constructed by the same argument.

Cotangent Lie algebras. Totally real complex structures on cotangent Lie algebras
T ∗h of three-dimensional Lie algebras h were completely classified in [12, Proposition 3.8].
They exist if and only if either h is unimodular or isomorphic to R×aff(R). In these cases,
the linear isomorphism j : h → h∗, determining the complex structure by Equation (5),
admits a matrix representation as follows:

T ∗h1 :





a b c

d e f

−c −f 0



 ; T ∗r3,−1 :





a b c

−b 0 d

−c −d 0



 ;

T ∗r3,0 :





a b c

−b 0 0
d 0 e



 ; T ∗r′3,0 :





a b c

−b 0 d

−c −d 0



 ;

for some real constants a, . . . , f . Observe that r3,0 = R × aff(R). Because there exist
totally real complex structures for the cotangent Lie algebras T ∗r3,λ when λ = 0,−1,
in the previous subsection we gave new examples of totally real complex structures for
semidirect product Lie algebras r3,λ ⊕ V assuming λ 6= 0 and −1 < λ < 1.

In the case of T ∗r3,−1 we shall now describe the compatible LSA corresponding to the
whole family of totally real complex structures described above. The tangent Lie algebra
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T ∗r3,−1 is given by (see [12])

[e1, e2] = e2, [e1, e3] = −e3,

[e1, v2] = −v2, [e1, v3] = v3, [e2, v2] = v1, [e3, v3] = −v1

and admits a four-parameter family of totally real complex structures, namely, the ones
determined by the above linear isomorphisms j, for all values of real constants a, b, c, d,
such that det(j) = ad2 6= 0. Then, each of these isomorphisms determines on r3,−1 a
corresponding compatible LSA, explicitly given by

(32) ei · ej = j−1 ad∗ei j(ej), i, j = 1, 2, 3,

determined by j and the coadjoint representation. Applying (32), we then prove the
following.

Proposition 6.8. Consider the totally real complex structures J on the cotangent Lie
algebra of r3,−1, corresponding to the linear isomorphisms j : h → h∗ described above, for
any real constants a, b, c, d with ad 6= 0. Then, r3,−1 admits the following corresponding
compatible LSA structures:

e1 · e1 = b
d
e3, e1 · e2 =

1
ad
(−bde1 + (ad+ bc)e2 − b2e3),

e1 · e3 = 1
ad
(cde1 − c2e2 − (ad− bc)e3), e2 · e1 = − b

ad
(de1 − ce2 + be3),

e2 · e3 = 1
a
(de1 − ce2 + be3), e3 · e1 =

c
ad
(de1 − ce2 + be3),

e3 · e2 = 1
a
(de1 − ce2 + be3).

For the remaining cases, namely, T ∗h1, T
∗r3,0 and T ∗r′3,0, we shall restrict ourselves to

some examples of totally real complex structures explicitly described in [12], leaving the
calculation of further compatible LSA to the interested reader. Since we use the same
argument already explained in the case of T ∗r3,−1, we only report below, for the different
cases, the description of the cotangent Lie algebras and of the totally complex structures
we are considering.

T ∗h1 : [e1, e2] = e3, [e1, v3] = −v2, [e2, v3] = v1,

Je1 = v1, Je2 = v3, Je3 = −v2;

T ∗r3,0 : [e1, e2] = e2, [e1, v2] = −v2, [e2, v2] = v1,

Je1 = v2, Je2 = −v1, Je3 = v6;

T ∗r′3,0 : [e1, e2] = −e3, [e1, e3] = e2, [e1, v2] = −v3,

[e1, v3] = −v2, [e2, v3] = −v1, [e3, v2] = v1,

Je1 = εv1 = ±e1, Je2 = v3, Je3 = −v2.

Applying Equation (32) to the structures above, we prove the following.

Proposition 6.9. Three-dimensional Lie algebras h1, r3,0 and r′3,0 admit the following
LSA compatible structures, corresponding to the totally real complex structures J on the
cotangent Lie algebras T ∗h1, T

∗r3,0 and T ∗r′3,0 described above:

h1 : e1 · e2 = e3, e2 · e2 = e1;

r3,0 : e1 · e1 = −e1, e2 · e1 = −e2;

r′3,0 : e1 · e2 = −e3, e1 · e3 = e2, e2 · e2 = −εe1, e3 · e3 = −εe1.
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