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Revisiting the anisotropy of metamaterials for water waves
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We establish, both theoretically and experimentally, that metamaterials for water waves reach a much higher
degree of anisotropy than the one predicted using the analogy between water waves and their electromagnetic
or acoustic counterparts. This is due to the fact that this analogy, based on the two-dimensional shallow water
approximation, is unable to account for the three-dimensional near field effects in the water depth. To properly
capture these effects, we homogenize the fully three-dimensional problem and show that a subwavelength
layered structuration of the bathymetry produces significant anisotropic parameters in the shallow water regime.
Furthermore, we extend the validity of the homogenized prediction by proposing an empirical anisotropic
version of the dispersion relation.
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I. INTRODUCTION

The design of metamaterials for water waves has generated
in the past 10 years an increasing interest for applications
including the realization of lenses [1–3], the control of the
ocean wave energy flow [4–6], or the cloaking able to produce
a protected free wave region [7–13]. For most of the cases,
these metamaterials require anisotropic effective parameters
that can take extreme values, a task that can be challenging.
One strategy to design artificial anisotropic media consists
of using a bathymetry varying at the subwavelength scale.
The waves propagating over such a structured medium feel
effective water depths differently depending on its direction
of propagation. Often, heuristically, the effective water depths
have been evaluated using the homogenization of the two-
dimensional wave equation under the linear shallow water
approximation (2D SWE)

div(h∇η) + ω2

g
η = 0, (1)

thus benefiting from the analogy with equations of the
Helmholtz type valid for polarized electromagnetic waves and
acoustic waves [1,5,6]. In (1), η(x,y) is the surface elevation,
h(x,y) is the local water depth, ω the frequency, and g the
gravity constant. Note that, starting from an initially 3D water
wave problem, the shallow water approximation allows us to
reduce the effect of the third dimension z in the inhomogeneous
factor h. For structurations made of layers [5,6], this modeling
predicts an effective water depth tensor related to the arithmetic
and geometric averages of the actual water depths; the effective
tensor is diagonal with

2D SWE hx = 〈h−1〉−1, hy = 〈h〉, (2)

in (x,y) the directions across and along the layers and with
〈.〉 the volume average [〈f 〉 = θf − + (1 − θ )f + with θ the
filling fraction of the layers, Fig. 1]. In this study, we show
that the actual anisotropy due to a layered structuration of the
bathymetry is much larger than the one predicted by (2). In-
deed, even if the SWE (1) is valid for wavelengths much larger
than the depth, it is unable to account for the near field effects

in a subwavelength structure. In order to properly model these
effects, the homogenization of the full 3D linear water wave
problem needs to be considered. Following Ref. [14], we shall
see that the effective water depths (hwx,hy) are of the form

3D problem hx = �

∫
Y

∂�

∂xr
, hy = 〈h〉, (3)

where � is the periodicity of the bathymetry and � is the
velocity potential associated to a simple potential flow
problem, see (11). Comparing (2) to (3), it appears that
only hx is impacted by 3D effects and we shall see that hx

in (3) may be much smaller than 〈h−1〉−1. The important
consequence is that the resulting anisotropy of the effective
medium can be much larger than the classical homogenization
of layered media, due to 3D near field effects.

The homogenized model of the linear 3D wave problem
is presented in Sec. II; it is shown that the price to pay
for the effective depth hx in (3) is the resolution of a
static problem on � which can be done once and for all
(a simple script to do so is provided in the Appendix A).
The validation of the model is presented in Sec. III. We
built a metamaterial structure in laboratory experiments and
inspected the anisotropic propagation of water waves over
such a structure. First, a Floquet-Bloch analysis of the 3D
linear problem is presented which allows us to validate the
model in the very low frequency regime and to propose an
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FIG. 1. Metamaterial for water waves, consisting of a subwave-
length layered variation of the bathymetry. In the experiments, a thin
tip excites water waves propagating over the metamaterial structure.
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anisotropic version of the dispersion relation to account for
dispersive effects. The experimental measurements confirm
the accuracy of the model and show that the linear theory is
robust with respect to nonlinear and viscous effects. Finally,
the anisotropy variations are inspected as a function of the
geometrical parameters.

II. HOMOGENIZATION OF THE 3D WATER
WAVE PROBLEM

The homogenization of the full 3D water wave problem
has been first presented in Ref. [14]; in this paper, the authors
conducted the homogenization to a high order so as to capture
the first nonlinear and dispersive contributions. Later on
the problem has been revisited using similar techniques in
Refs. [15,16].

In this section, we shall derive a homogenized model similar
to that proposed in Ref. [14] which allows us to identify the
potential flow problem for � in (3). We consider the harmonic
regime with time dependence e−iωt . Using the assumptions of
an inviscid, incompressible fluid and an irrotational flow, the
velocity potential ϕ(r,z) satisfies

	ϕ = 0,

∂ϕ

∂z
= ω2

g
ϕ, at z = 0, (4)

∇ϕ · n = 0, on 
,

with r = (x,y) the coordinates in the horizontal plane, z

the vertical coordinate, and t the time; z = 0 refers to the
unperturbed free surface position and 
 the nonflat bottom
(and n is the vector normal to 
). Then, the displacement of
the free surface η(r) is linked to the velocity potential through
the relation

η(r) = iω

g
ϕ(r,0). (5)

The bottom 
 is a patterned surface, resulting in sudden varia-
tions in the water depths (h+,h-) with spacing � [Fig. 2(a)], and
we consider � of the same order of magnitude than (h+,h-). In
the low frequency regime the parameter

ε = ω

√
�

g
� 1

measures the small spacing of the microstructure compared to
the wavelength, and it is also a shallowness parameter.

xsys xr
zr

ε

h+

h-

1
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Y
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FIG. 2. Three-dimensional configuration of the layered sea bed
in (rs,zr) coordinates and a zoom on the two-dimensional unit cell in
(xr,zr) coordinates.

The asymptotic analysis is performed owing to the two
typical length scales separated by ε, the microscopic scale �

of the microstructure and the macroscopic scale
√

g�/ω of the
wavelength. The separation of these scales is accounted for by
defining ϕ(rs,xr,zr), with rs = (xs,ys) and

rs = ω√
g�

r,

and with

(xr,zr) =
(

x

�
,
z

�

)
.

The macroscopic coordinate rs is adapted to describe the
slow variations of the surface waves propagating at the free
surface, and the microscopic coordinate (xr,zr) is adapted to
describe the rapid variations of the potential along xr due to
the microstructuration and in the vertical direction because of
the shallowness regime (see the rescaled unit cell in Fig. 2).

Due to this separation of scale, (4) now reads as

	rϕ + 2ε
∂2ϕ

∂xs∂xr
+ ε2	sϕ = 0,

∂ϕ

∂zr
= ε2ϕ, at zr = 0,

∇rϕ · n = −ε
∂ϕ

∂xs
nx, on 
,

ϕ and
∂ϕ

∂xr
periodic w.r.t. xr, (6)

with nx = n · ex . We shall establish the equation satisfied by
ϕ at the dominant order in the expansion

ϕ = ϕ0(rs,xr,zr) + εϕ1(rs,xr,zr) + ε2ϕ2(rs,xr,zr) . . . . (7)

At the order ε0, (6) reduces to

	rϕ
0 = 0,

∂ϕ0

∂zr
= 0, at zr = 0,

∇rϕ
0 · n = 0, on 
,

ϕ0 and
∂ϕ0

∂xr
periodic w.r.t. xr. (8)

It is easy to see that ∇rϕ
0 = 0, from which ϕ0(rs) depends

on the macroscopic coordinates only. Next, at the order ε, (6)
yields

	rϕ
1 = 0,

∂ϕ1

∂zr
= 0, at zr = 0,

∇rϕ
1 · n = −∂ϕ0

∂xs
(rs) nx, on 
,

ϕ1 and
∂ϕ1

∂xr
periodic w.r.t. xr. (9)

The above problem on ϕ1 is linear w.r.t., the source term
∂xsϕ

0(rs) being independent of (xr,zr). Thus, we can set

ϕ1(rs,xr,zr) = ∂ϕ0

∂xs
(rs)(�(xr,zr) − xr) + ϕ̂1(rs), (10)
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with � satisfying the so-called “cell problem” defined at the
microscopic scale

	� = 0,

∂�

∂zr
= 0, at zr = 0,

∇� · n = 0, on 
, (11)

�

(
1

2
,zr

)
= �

(
−1

2
,zr

)
+ 1,

∂�

∂xr

(
1

2
,zr

)
= ∂�

∂xr

(
−1

2
,zr

)
,

and the last conditions are identical to the conditions (� − xr)
and ∂xr� periodic w.r.t. xr as ϕ1 and ∂xrϕ

1 do.
Equation (11) is the only cell problem that has to be solved

in order to obtain the effective medium wave equation (3). It is
worth noting that this problem is independent of the frequency
and that it corresponds to the problem of a potential flow in
a corrugated rigid duct. Note also that we defined ϕ̂1(rs) in
(10) since the problem (9) on ϕ1 is defined up to a function
of rs; this is incidental at the leading order but would be of
importance for the higher order solution.

The last step consists of integrating over the unit cell
Y (Fig. 2) the first equation in (6) written at the order ε2,
specifically∫

Y

(
	rϕ

2 + 2
∂2ϕ1

∂xr∂xs
+ 	sϕ

0

)
dxrdzr = 0. (12)

Using the boundary conditions (6) satisfied by ϕ2 at zr = 0
and on 
 along with (10), we get∫

Y
	rϕ

2dxrdzr = ϕ0(rs) + ∂2ϕ0

∂x2
s

(rs)
∫




(� − xr)nxds,

∫
Y

∂2ϕ1

∂xr∂xs
dxrdzr = ∂2ϕ0

∂x2
s

(rs)
∫

Y

(
∂�

∂xr
− 1

)
dxrdzr. (13)

It is now sufficient to use that
∫

Y (∂xr� − 1)dxrdzr + ∫



(� −
xr)nxds = 0 from (11), and that the surface of the unit cell
is

∫
Y dxrdzr = 〈h〉/� [with 〈h〉 = θh- + (1 − θ )h+]. Doing so,

we get that

hx

�

∂2ϕ0

∂x2
s

+ hy

�

∂2ϕ0

∂y2
s

+ ϕ0 = 0. (14)

Once coming back to the real space, we find the equation
satisfied by ϕ ∼ ϕ0 in (x,y) coordinate, thus satisfied by η, of
the form

hx
∂2η

∂x2
+ hy

∂2η

∂y2
+ ω2

g
η = 0, (15)

with (hx,hy) given by (3). The determination of hx has to be
done by solving (11); this can be done numerically easily with
any solver and we provide in Appendix A a way to do so, by
means of a multimodal method.

III. VALIDATION OF THE METAMATERIAL
ANISOTROPY

We built a metamaterial structure as shown in Fig. 1 using
plates of glass of 0.1 cm large, 7.5 cm long, and 1 cm height.

The plates were arranged on the bottom of a laboratory tank
along the x and y directions in order to form a metamaterial
structure with the following characteristics: layer spacing � =
0.6 cm, filling fraction θ = 1/6, and water depths h- = 0.4 cm,
h+ = 1.4 cm. The whole structure comprised of 60 layers
covers a region of 24 cm×36 cm.

In this configuration, from (3), and the numerical resolution
of (11), we get

hx = 0.48 cm, hy = 1.23 cm. (16)

The effective depth hy = 〈h〉 is close to h+ which is expected
for our thin layers (θ = 1/6). Also, hx is close to h-, and
this is intuitive as well since the layers are relatively close
to each other. Thus, the flow associated to waves propagating
across the layers cannot enter deeply between two layers, and
it remains confined at depths of the order of h-, i.e., mainly
sensitive to the smaller depth. In comparison, the homogenized
version of the approximate shallow water equation, unable to
account for the near field between two layers, yields a less
intuitive value of hx = 〈h−1〉−1 = 1 cm, from (2).

A. Floquet analysis

To compute the Floquet-Bloch spectrum, we solve the full
3D problem (4) with Bloch condition in the unit cell Y. Owing
to the invariance of the geometry along y, this reduces in
practice to a 2D problem with

ϕ(x + �,y,z) = eikx�ϕ(x,y,z),
(17)

∂ϕ

∂x
(x + �,y,z) = eikx�

∂ϕ

∂x
(x,y,z),

with a dependence on y being simply of the form eikyy .
The problem is solved for each frequency ω and each wave
number ky to get kx , and we report in Appendix B a numerical

kx

k
y

0
0
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−π π
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0
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1

0
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FIG. 3. Band structure ω
√

g/h+ of the layered metamaterial
against (kx�,ky�) given by the Floquet-Bloch analysis of the 3D
problem. The inset at bottom shows a zoom for ω

√
g/h+ < 1 and in

dashed white lines, the 3D homogenized prediction, (18) with (16)
for ω

√
g/h+ = 0.25, 0.5, 0.75, and 1.
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FIG. 4. Nondimensional wave numbers kx� and ky� as a function
of ω

√
g/h+; open symbols: obtained from the Floquet-Bloch

analysis, plain lines: from the 3D homogenized prediction in the
shallow water regime, Eq. (18), and dashed lines: including the
dispersive correction (19) [in both cases, with (hx,hy) in (16)]. The
arrows show the dispersive correction.

procedure to do it using a multimodal method. We computed
the band structure of our metamaterial and the result is shown
in Fig. 3. From the zoom at low frequency ω

√
g/h+ < 1 in

Fig. 3, the dispersion relation

ω2

g
= hxk

2
x + hyk

2
y (18)

predicted by the homogenized model (15) [with hx and hy in
(16)] is found to reproduce with good accuracy the actual band
structure.

However, under scrutiny of Fig. 3(a), it is visible that the
anisotropy decreases slightly when increasing the frequency,
which is attributable to dispersive effects. Interestingly, for still
unknown reasons, it turns out that these dispersive effects can
be described by extending heuristically the dispersion relation
for constant water depth to its anisotropic version

ω2 = g
(
k2

xhx + k2
yhy

)
tanh(kh)/kh, kh =

√
k2

xh
2
x + k2

yh
2
y.

(19)

This is illustrated in Fig. 4 where we reported (kx,ky) calculated
using (18) (plain lines) and using (19) (dashed lines), compared
to the (kx,ky) given by the Floquet-Bloch analysis (symbols).
The dispersive correction given by (19) appears to be efficient
in the whole Brillouin region. This surprising result allows us
to use (hx,hy), obtained from low frequency homogenization,
to characterize the response of the metamaterial both in the
nondispersive and dispersive regimes. More specifically, we
found that the nondispersive dispersion relation (18) has an
error, when compared to the Floquet-Bloch solution, of 20%
for ω

√
g/h+ < 1 and 90% for ω

√
g/h+ < 2; accounting

for (19) reduces the error to 1% for ω
√

g/h+ < 1 and 4%
for ω

√
g/h+ < 2. Higher order homogenization as done in

Ref. [14] might help to understand this dispersive behavior.

B. Experimental results

To inspect the anisotropy of our structure, a point source
is realized using a linear motor equipped with a thin tip
moving vertically in a sinusoidal motion; the source emits
from the center of the structure. Our working frequency range
is f ∈ [2,6] Hz, whence ω

√
h+/g ranges in [0.5, 1.4]. The

wave fields are measured using an optical method (Fourier

2 Hz 3 Hz 4 Hz 5 Hz

20 cm

x

y

FIG. 5. Experimental measurements of the surface wave eleva-
tion due to a point source at the center of the metamaterial structure.
Top panels: instantaneous snapshots η(r,t) measured by FTP (the
dotted lines at 2 Hz show the boundaries of the metamaterial). Bottom
panels: corresponding real parts of the Fourier component at f of the
wave field η̂(r,f ), (20).

transform profilometry, termed FTP below) able to achieve
space-time resolved measurement of the free surface elevation
[17,18]. The measurement domain is 34×60 cm2 with a pixel
size of 0.68 mm. The temporal resolution is given by the
frame rate of the camera, which is fixed at 125 Hz in our
experiments. Typical instantaneous fields of the free surface
elevation η(r,t) measured by FTP are reported in Fig. 5 (top
panels). The anisotropy of the structure is visible to the necked
eye, particularly at the lowest frequencies.

To be more quantitative, the wavelengths λx and λy have
been measured. We benefit from the space-time resolution in

FIG. 6. The main plot shows the real part of η̂(r,f ) computed
with (20) from the experimental measurements at f = 5.5 Hz; the
insets show the profiles at x = 0 and y = 0 (blue symbols) along with
the best fits with Hankel function H 0(kxx) and H 0(kyy) (red curves).
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FIG. 7. Wave numbers (λx,λy) against the frequency, determined
from the experimental measurements (symbols) and given by the 3D
homogenization prediction: in the shallow water regime (18) with
(16) (plain lines) and including the dispersive correction (19) (dashed
lines).

our measurements to compute the fields of the complex Fourier
components η̂(r,nf ), n = 0,1, . . ., defined as

η̂(r,nf ) = 1

T

∫ T

0
η(r,t)e−2iπnf tdt, (20)

with T = 1/f . In practice, a temporal signal t ∈ (0,tf ) is used,
with t = 0 chosen after the signal emitted by the source has
reached the boundaries of our metamaterial structure and with
tf chosen in order to avoid the spurious wave reflections at
the walls of the tank. Next, the interval (0,tf ) is taken back in
(0,T ) using t → t − nT , with n the floor part of (t/T ). The
complex fields η̂(r,f ) at the fundamental frequency f have
been computed, and we report their real parts in Fig. 5 (bottom
panels). With maximum amplitudes of the waves about 1
cm near the source, the contribution of the higher harmonics

(essentially at 2f ) were found to be of the order of 15% on
average.

The determination of the wavelengths (λx,λy) has been done
on η̂(r,f ) along the lines y = 0 and x = 0, respectively, by
means of a measure of peak-to-peak distances and by means of
a fit by a Hankel function. A typical example is shown in Fig. 6
at f = 5.5 Hz, where we reported the experimental profiles
on the centerlines x = 0 and y = 0 and the corresponding best
fits with a Hankel function H 0(kxx) and H 0(kyy), respectively.

The wavelengths (λx,λy) have been determined at each
frequency f ∈ (2,6) Hz with a spacing of 0.5 Hz. Figure 7
reports the main result of our study. Together with the
experimental measurements (symbols), we show the effective
wavelengths given by the 3D homogenization prediction in
the shallow water regime (18) and including the disper-
sive correction (19), in both cases using the homogenized
prediction (16).

The homogenized model in the shallow water is already
accurate for the smallest wavelength λx which confirms that
the effective depth has to be calculated considering 3D effects.
Next λy departs slightly from the average predicted in the
shallow water regime, and the shift is corrected efficiently
considering the dispersive correction proposed in (19).

C. Maximum anisotropy in metamaterial structure

We have seen that the anisotropy of a patterned bottom is
higher than that expected by simple inspection of the shallow
water equation, and reasonable questions are: How high can be
the actual anisotropy? On which parameters does it depend? To
answer these questions, we define a measure of the anisotropy
by the parameter A

A ≡
(

λy

λx

)2

� hy

hx
, (21)

where the approximationA � hy/hx, valid at low frequencies,
is used to avoid an additional discussion on the frequency
dependence.

We kept the same water depths as in our experiments
(h+ = 1.4 cm, h- = 0.4 cm) and we considered a large spacing

0 1

(a) (b)

θ

hx1

hx2

hx3

hy

A1

A2

A3

h−1 −1

2

3

10.4

1.4

0.9

0.5 0 1
θ

0.5

FIG. 8. (a) Variation of hx (in cm) as a function of θ for �/h+ = 0.04 (hx1), �/h+ = 0.4 (hx2), and �/h+ = 4 (hx3); hy is independent on
�/h+. (b) Resulting anisotropy A. In (a) and (b) the dashed gray lines show the 2D SWE predictions, using hx = 〈h−1〉−1, for comparison.
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�/h+ = 4, a small spacing �/h+ = 0.04, and the intermediate
one �/h+ = 0.4 being that or our experiments. Figure 8 shows
the graphs of (hx,hy), from (3), against θ in these three cases
and the resulting anisotropy A (hx has been calculated using
the script given in the Appendix A). For comparison, the 2D
SWE predictions are reported, with hx = 〈h−1〉−1, and it is
worth noting that hx and A are independent of � in this case. It
appears the maximum allowed value A = h+/h- is obtained
decreasing the layer spacing � and the layer thickness (θ = 0),
i.e., the maximum anisotropy is reached for very tight thin
plates. For such compact array, hx remains close to h- for
any θ [see hx1 in Fig. 8(a)]. This is quite intuitive since the
flow cannot enter in the dense region of vertical layers which
thus becomes similar to a flat bottom at depth h-. Meanwhile,
decreasing θ produces a linear increase in hy, with hy = h-

(whence A = 1) at θ = 1 to hy = h+ at θ = 0. This is the
linear behavior that is observed for A1 (�/h+ = 0.04), which
simply reflects the linear decrease of hy for an almost constant
hx. The other limit for large �/h+ is instructive as well; in this
case, the near field effects diminish, being confined in the vicin-
ity of each isolated vertical layer. This is why the anisotropy
approaches the approximate 2D shallow water result.

IV. CONCLUDING REMARKS

In conclusion, we report good news from full 3D homoge-
nization theory. When designing an anisotropic metamaterial
for water waves, it might be tempting to evaluate the needed
microstructure by solving the approximate 2D shallow water
equation. Two drawbacks on this approach can be highlighted:
(i) even for moderate anisotropy, the predicted microstructure
requires bathymetry with high contrasts that are in general
challenging to realize and (ii) the approximation of the model is
questionable, all the more since we have very steep bathymetry.
By applying the homogenization method to the full 3D linear
water wave equation, it appears that these two drawbacks fall
simultaneously. Besides, experimental results have shown that
this linear theory is robust with respect to nonlinear and viscous
effects. We believe that our findings will facilitate the design
of metamaterials to control energy flow of water waves.
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APPENDIX A: MATLAB SCRIPT TO COMPUTE
THE EFFECTIVE WATER DEPTH hx

We provide below a simple script to compute hx, defined
in (3) with � satisfying (11). This can be done easily
using a multimodal method based on matched eigenfunction
expansion that we describe below.

First, we use that (i) (� − x) and ∂x� are periodic and
(ii) (� − x) is odd up to a constant that can be chosen equal
to zero [in this section, we use the notation (x,z) instead of
(xr,zr) for simplicity]. This is because the boundary conditions

h-

h+

1

θ

z
x0

N

N

D
D

S

z
x0

∂Φ
∂x Φ

N

(a) (b)

FIG. 9. (a) Unit cell in which the cell problem for (� − x) is
defined. (b) Solution for the velocity potential � [shown for x ∈
(0,1/2)] and corresponding horizontal velocity ∂x� [shown for x ∈
(−1/2,0)] whose integral provides hx.

on the vertical parts of 
 at x = ±θ/2 read ∂x(� − x) = −1
(the boundary conditions on the horizontal parts of 
 are of
the Neumann type). Thus, the domain can be reduced to x ∈
(0,1/2) applying the boundary conditions for (� − x) (i) the
free surface and the horizontal parts of the layers are associated
to Neumann boundary condition (N in Fig. 9), (ii) the parts of
the domain at x = 0 and x = 1/2 are associated to Dirichlet
boundary condition (D in Fig. 9), and only the vertical part
of the layer at x = θ/2 is associated to a source term through
∂x(� − x) = −1 (condition S in Fig. 9).

The eigenfunction expansions are written in two the regions
of constant depth, where two expansions of � are used;
afterwards the continuity of � and of ∂x� at x = θ/2 will
be used. Specifically, we use the expansions

x ∈ (0,θ/2) :

�(x,z) =
N−∑
n=1

Bn

sinh(a−
n x)

sinh(a−
n θ/2)

�−
n (z) + B0x,

x ∈ (θ/2,1/2) :

�(x,z) =
N+∑
n=1

An

sinh (a+
n (x − 1/2))

sinh (a+
n (θ − 1)/2)

�+
n (z)

+A0x + 1 − A0

2
, (A1)

which already satisfy the Dirichlet boundary conditions for
(� − x) at x = 0 and x = 1/2. With a±

n = nπ�/h±, n > 0,
we define the normalized transverse functions

�±
n (z) =

√
2

h± cos(a±
n z), (A2)

which are adapted to the Neumann boundary conditions at
z = 0 and z = −h±/�. We have (N+ + N− + 2) unknowns
(An,Bn) and we shall write (N+ + N− + 2) equations to
determine them. At x = θ/2, the continuity of � is accounted
for by imposing ∫

Y−
�−dz =

∫
Y−

�+dz,∫
Y−

�−�−
n (z)dz =

∫
Y−

�+�−
n (z)dz, (A3)
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where Y± = (−h±/�,0) and with the notations f ± =
f (θ±/2,z); this provides (N− + 1) relations. Next, the con-
tinuity of ∂x� is written as

∫
Y−

∂�−

∂x
dz =

∫
Y+

∂�+

∂x
dz,

∫
Y−

∂�−

∂x
�+

n (z)dz =
∫

Y+

∂�+

∂x
�+

n (z)dz, (A4)

which provide (N+ + 1) relations. Note that in (A4) the
Neumann boundary conditions ∂x� = 0 for z ∈ (−h+, − h-)
are accounted for implicitly. Once (A0,B0) are known, it is
straightforward to get that hx in (3) is given by

hx = h+(1 − θ )A0 + h-θB0, (A5)

where A0 and B0 depend on h+/�, h-/� and θ . Below we
provide a Matlab script with (�,θ,h+,h-,N+,N−) inputs to
compute (hx,hy).

function [hx,hy]=PbCell(L,theta,hp,hm,Np,Nm)

hp=hp/L; hm=hm/L; %non dimensional form

No1=sqrt(2/hp); No2=sqrt(2/hm);
aNp=(1:Np)*pi/hp; aNm=(1:Nm)*pi/hm;

a1=ones(Nm,1)*aNp;a2=aNm.'*ones(1,Np);
C=No1*No2*hm/2*(sinc((a1-a2)*hm/pi)+sinc((a1+a2)*hm/pi));
D=C';
c=No1*hm*sinc(aNp*hm/pi);

M1= diag(aNp./tanh(aNp*(theta-1)/2));
M2= -D*diag(aNm./tanh(aNm*theta/2));
Mat=[-C, zeros(Nm,1), eye(Nm), zeros(Nm,1);
      - c, hm/2*(1-theta), zeros(1,Nm),  theta/2*hm;
   M1, zeros(Np,1), M2, -c.';
   zeros(1,Np), -hp, zeros(1,Nm),  hm];

Source=[zeros(Nm,1);hm/2;zeros(Np+1,1)];
Sol=Mat\Source;

A=Sol(1:Np); nn=length([A]);
A0=Sol(nn+1:nn+1); nn=length([A;A0]);
B=Sol(nn+1:nn+Nm); nn=length([A;A0;B]);
B0=Sol(nn+1:end); 

hy=L*(hm*theta+hp*(1-theta)); %dimensional form
hx=L*(A0*hp*(1-theta)+B0*hm*theta);

APPENDIX B: FLOQUET-BLOCH ANALYSIS
OF THE FULL 3D PROBLEM

The Floquet-Bloch analysis is performed in a cell of
dimension (−�/2,�/2) × (−h+,0) (in the real space, see
Fig. 10). To begin with, we compute the scattering matrix S

using a mode matching technique similar to the one presented
in the previous section, see Ref. [19]. We use that

ϕ(x,y,z) = eikyy ϕ̃(x,z), (B1)

x0

A−

A+
B+

B−
h+

h-

FIG. 10. Solution ϕ(x,y = 0,z) satisfying (4) with (17). A±

denote the vectors of the right/left going waves at x = −�/2 and
B± denote the vectors of the right/left going waves at x = +�/2.

with

x � −�/2 :

ϕ̃(x,z) =
N∑

n=0

(
A+

n eikn(x+�/2) + A−
n e−ikn(x+�/2)

)
ϕ+

n (z),

x � �/2 :

ϕ̃(x,z) =
N∑

n=0

(
B+

n eikn(x−�/2) + B−
n e−ikn(x−�/2))ϕ+

n (z), (B2)

and

ϕ+
n (z) = cosh (Kn(z + h+))[

h
2 (sinhc(2Knh+) + 1)

]1/2 . (B3)

The normalized transverse functions adapted to the boundary
conditions of the Neumann type at z = −h+ and of the Robin
type at z = 0 if Kn satisfies the dispersion relation of the water
waves

ω2/g = Kn tanh(Knh
+),

and ϕ satisfying the Laplace equation, we have

kn =
√

K2
n − k2

y. (B4)

Then, similar expansions of ϕ are written in x ∈ (−�/2, −
θ�/2), (−θ�/2,θ�/2) and, in (θ�/2,�/2) the expansions are
written using the basis ϕ−

n (z) similar to (B3) with h+ → h-.
Next, the matching of ϕ and ∂xϕ are applied at the junctions
x = ±�/2 and x = ±θ�/2, as in (A3)–(A4). This leaves us
with with relations between the components (A−

n ,B+
n ) of the

outgoing waves to the components (A+
n ,B−

n ) of the ingoing
waves. Denoting A+ = (A+

n ) the vector of the components
(the same for A− and B±), these relations can be written(

A−
B+

)
= S

(
A+
B−

)
S =

(
r t

t r

)
, (B5)

where we used that the cell is symmetric and centered at
x = 0, which simplifies the expression of S. The S matrix
involves the reflection r and the transmission t matrices which
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can be calculated in practice for A+ = 0 (incident left going
waves at x = �/2) or for B− = 0 (incident right going wave at
x = −�/2). The system (B5) can be written as

M1

(
A+

A−

)
= M2

(
B+

B−

)
, (B6)

where

M1 =
(

t 0

−r I

)
, M2 =

(
I −r

0 t

)
. (B7)

Projecting the expansions of ϕ onto the ϕ±
n , it is easy to see

that the Floquet-Bloch condition (17) reduces to(
B+
B−

)
= μ

(
A+
A−

)
(B8)

with μ(ω,ky) = eikx�. The corresponding eigenvalue problem
to solve is

M1

(
A+
A−

)
= μ M2

(
A+
A−

)
. (B9)

Eventually, it allows us to obtain the Floquet-Bloquet wave
number kxl in the first Brillouin zone (−π,π ) as a function of
ω and ky�.
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