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a b s t r a c t

A graph G is said to be hom-idempotent if there is a homomorphism
from G2 to G, and weakly hom-idempotent if for some n ≥ 1 there
is a homomorphism from Gn+1 to Gn. Larose et al. (1998) proved
that Kneser graphs KG(n, k) are not weakly hom-idempotent for
n ≥ 2k + 1, k ≥ 2. For s ≥ 2, we characterize all the shifts (i.e.,
automorphisms of the graph that map every vertex to one of its
neighbors) of s-stable Kneser graphs KG(n, k)s−stab and we show
that 2-stable Kneser graphs are not weakly hom-idempotent, for
n ≥ 2k + 2, k ≥ 2. Moreover, for s, k ≥ 2, we prove that s-
stable Kneser graphs KG(ks+1, k)s−stab are circulant graphs and so
hom-idempotent graphs. Finally, for s ≥ 3, we show that s-stable
Kneser graphs KG(2s+2, 2)s−stab are cores, notχ-critical, not hom-
idempotent and their chromatic number is equal to s + 2.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Let [n] denote the set {1, . . . , n}. For positive integers n ≥ 2k, the Kneser graph KG(n, k) has as
vertices the k-subsets of [n] and two vertices are connected by an edge if they have empty intersection.

A subset S ⊆ [n] is s-stable if any two of its elements are at least ‘‘at distance s apart’’ on the
n-cycle, that is, if s ≤ |i − j| ≤ n − s for distinct i, j ∈ S. For s, k ≥ 2 and n ≥ ks, the s-stable Kneser
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graph KG(n, k)s−stab is the subgraph of KG(n, k) obtained by restricting the vertex set of KG(n, k) to
the s-stable k-subsets of [n].

In a famous paper, Lovász [10] showed that the chromatic numberχ(K(n, k)) is equal to n−2k+2.
After this result, Schrijver [13] proved that the chromatic number remains the samewhenwe consider
the subgraph KG(n, k)2−stab of KG(n, k). Schrijver [13] also proved that the 2-stable Kneser graphs
are vertex critical (or χ-critical), i.e. the chromatic number of any proper subgraph of KG(n, k)2−stab
is strictly less than n − 2k + 2; for this reason, the 2-stable Kneser graphs are also known as the
Schrijver graphs. After these general advances, a lot of work has been done concerning properties of
Kneser graphs and stable Kneser graphs (see [2,3,9,1,11] and references therein). For example, it iswell
known that for n ≥ 2k + 1 the automorphism group of the Kneser graph KG(n, k) is the symmetric
group induced by the permutation action on [n]; see [4] for a textbook account.

Braun [1] and Torres [15] showed that the automorphism group of the s-stable Kneser graph
KG(n, k)s−stab is isomorphic to the dihedral group D2n of order 2n, where the group isomorphism
φ : D2n → Aut(KG(n, k)s−stab) is such that φ(α)({i1, i2, . . . , ik}) = {α(i1), α(i2), . . . , α(ik)}.
For convenience, from now on we do not distinguish between elements of Aut(KG(n, k)s−stab) and
elements of D2n.

The cartesian product G�H of two graphs G and H has vertex set V (G) × V (H), two vertices being
joined by an edge whenever they have one coordinate equal and the other adjacent. This product is
commutative and associative up to isomorphism.

In this paper, we assume that the graphs are finite. A homomorphism from a graph G into a graph
H , denoted by G → H , is an edge-preserving map from V (G) to V (H). If H is a subgraph of G and
φ : G → H has the property that φ(u) = u for every vertex u of H , then φ is called a retraction and
H is called a retract of G. If φ : G → H is a bijection and φ−1 is also a homomorphism from H to G,
then φ is an isomorphism and we write G ≃ H . In particular, if G is finite, a bijective homomorphism
from G to himself is an automorphism. Two graphs G and H are homomorphically equivalent, denoted
by G ↔ H , if G → H and H → G. A graph G is called a core if it has no proper retracts, i.e., any
homomorphism φ : G → G is an automorphism of G. It is well known that any finite graph G is
homomorphically equivalent to at least one core G•, as can be seen by selecting G• as a retract of G
with aminimum number of vertices. In this way, G• is uniquely determined up to isomorphism, and it
makes sense to think of it as the core of G. It is widely known that Kneser graphs are cores. Moreover,
it is not difficult to deduce that any χ-critical graph is a core. Therefore, any 2-stable Kneser graph is
also a core, because it is χ-critical [13].

An automorphism φ of a graph G is called a shift of G if {u, φ(u)} ∈ E(G) for each u ∈ V (G). In other
words, a shift of Gmaps every vertex to one of its neighbors [9].

Let A be a group and S a subset of A that is closed under inverses and does not contain the identity.
The Cayley graph Cay(A, S) is the graphwhose vertex set is A, two vertices u, v being joined by an edge
if u−1v ∈ S. Cayley graphs of cyclic groups are often called circulants.

A graph G is said vertex-transitive if its automorphism group Aut(G) acts transitively on its
vertex-set. It is well known that Cayley graphs and Kneser graphs are vertex-transitive. However,
2-stable Kneser graphs are not vertex-transitive in general. For example, it is easy to verify that no
automorphism of KG(6, 2)2−stab sends vertex {1, 3} to vertex {1, 4}.

We write Gn for the n-fold cartesian product of a graph G. A graph G is said hom-idempotent if
there is a homomorphism from G2 to G, and weakly hom-idempotent if for some n ≥ 1 there is
a homomorphism from Gn+1 to Gn. Larose et al. [9] showed that the Kneser graphs are not weakly
hom-idempotent. However, the technique used by Larose et al. [9] cannot be extended directly to the
s-stable Kneser graphs.

In this paper, we characterize all the shifts of s-stable Kneser graphs. As a by-product we show that
many Schrijver graphs are notweakly hom-idempotent. Moreover, in Section 4, we show that s-stable
Kneser graphs KG(ks + 1, k)s−stab are circulant graphs and so hom-idempotent graphs, for s, k ≥ 2.

Finally, we study some properties of the s-stable Kneser graph KG(2s + 2, 2)s−stab for s ≥ 3.
We prove that for all s ≥ 3, the graphs KG(2s + 2, 2)s−stab are cores, not χ-critical and not
hom-idempotent. Moreover, we also prove that Meunier’s conjecture [11] concerning the chromatic
number of s-stables Kneser graphs holds for this family of graphs, that is, we prove that χ(KG(2s +
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2, 2)s−stab) = s+2.We end our paper with a conjecture concerning the hom-idempotence of s-stable
Kneser graphs.

In the remainder, we will use the term modulo [n] to denote arithmetic operations on the set [n]
where n represents the 0.

2. Shifts of s-stable Kneser graphs

As we have mentioned in the previous section, the automorphism group of the s-stable Kneser
graph KG(n, k)s−stab is isomorphic to the dihedral group D2n of order 2n. We denote the elements of
D2n as follows (arithmetic operations are taken modulo [n]):

• Rotations: Let σ 0 be the identity permutation on [n] and, for 1 ≤ i ≤ n − 1, let σ i
= σ i−1

◦ σ 1,
where σ 1 is the circular permutation (1, 2, . . . , n − 1, n).

• Reflexions:
– Case n odd. For 1 ≤ i ≤ n, let ρi be the permutation formed by the product of the transpositions

(i + 1, i − 1)(i + 2, i − 2) . . . (i + n−1
2 , i − n−1

2 ), where i is a fix point.
– Case n even. For 1 ≤ i ≤

n
2 , we have two types of reflexions: let ρi be the permutation formed

by the product of the transpositions (i + 1, i − 1)(i + 2, i − 2) . . . (i + n
2 − 1, i − n

2 + 1), where
i and i + n

2 are fix points; and let δi be the permutation formed by the product of transpositions
(i, i − 1)(i + 1, i − 2) . . . (i + n

2 − 1, i − n
2 ) without fix point.

In the following lemmas, we will to characterize all the shifts of stable Kneser graphs.

Lemma 2.1. Let n ≥ ks+ 1. Then, the reflexions are not shifts of the s-stable Kneser graph KG(n, k)s−stab.

Proof. Let us consider the following two cases:

• Case n odd. For each 1 ≤ i ≤ n, let vi be a vertex in KG(n, k)s−stab such that i ∈ vi. Trivially,
such vertex vi always exists. Now, we know that i is a fix point under the permutation ρi and thus,
i ∈ ρi(vi) which implies that {vi, ρi(vi)} is not an edge of KG(n, k)s−stab. Thus, for 1 ≤ i ≤ n, ρi is
not a shift of KG(n, k)s−stab.

• Case n even. Analogous to the previous case, we can show that ρi is not a shift of KG(n, k)s−stab, for
1 ≤ i ≤

n
2 . Now, for each 1 ≤ i ≤

n
2 , let vi = {i, i+ s, i+ 2s, . . . , i+ (k− 2)s, i− s− 1}. Clearly, vi

is an s-stable set, since i + (k − 2)s and i − s − 1 are at least at distance s apart on the n-cycle. So,
vi is a vertex of KG(n, k)s−stab such that {i + s, i − s − 1} ⊆ vi. However, {i + s, i − s − 1} ⊆ δi(vi)
which implies that {vi, δi(vi)} is not an edge of KG(n, k)s−stab. Thus, for 1 ≤ i ≤

n
2 , δi is not a shift

of KG(n, k)s−stab. �

Lemma 2.2. Let n ≥ (k+1)s−1. Then, the only 2(s−1) shifts of the s-stable Kneser graph KG(n, k)s−stab
are the rotations σ i with i ∈ {1, . . . , s − 1} ∪ {n − s + 1, . . . , n − 1}.

Proof. From Lemma 2.1 we only need to study the rotations σ i for i ∈ [n−1]. It is very easy to deduce
that the circular permutations σ i with i ∈ {1, . . . , s−1}∪{n−s+1, . . . , n−1} are shifts of the graph
KG(n, k)s−stab. In order to prove that they are the only 2(s−1) shifts of KG(n, k)s−stab, we will proceed
by cases. The arithmetic operations are taken modulo [n]. Clearly, the identity permutation σ 0 is not
a shift. Now, we claim that for each i ∈ {s, s + 1, . . . , n − s}, there exists a vertex vi in KG(n, k)s−stab
such that {1, i + 1} ⊆ vi. In fact, vertex vi can be computed as follows:

• If s ≤ i ≤ ks−1, let j such that js ≤ i ≤ (j+1)s−1 and vi = {1+ts : t = 0, . . . , j−1}∪{1+ i+ts :

t = 0, . . . , k − j − 1}.
• If ks ≤ i ≤ n − s then, set vi = {1, 1 + s, 1 + 2s, . . . , 1 + (k − 2)s, 1 + i}.

Now, for each s ≤ i ≤ n − s, we know that σ i(1) = 1 + i and therefore, 1 + i ∈ σ i(vi) which
implies that {vi, σ

i(vi)} is not an edge of KG(n, k)s−stab. Thus, for s ≤ i ≤ n − s, σ i is not a shift of
KG(n, k)s−stab. �

In the following lemma we consider [0] = ∅.
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Lemma 2.3. Let sk + 1 ≤ n ≤ s(k + 1) − 2 and r = n − sk. Then, the shifts of the s-stable
Kneser graph KG(n, k)s−stab are the rotations σ i for i ∈ {1, . . . , s − 1} ∪ {n − s + 1, . . . , n − 1} ∪

m∈[k−2]{ms + r + 1, . . . , (m + 1)s − 1}

.

Proof. Let T = {1, . . . , s−1}∪ {n− s+1, . . . , n−1}∪


m∈[k−2]{ms + r + 1, . . . , (m + 1)s − 1}

.

From Lemma 2.1 we know that the reflexions are not shifts. It is not hard to see that the circular
permutations σ i with i ∈ {1, . . . , s− 1} ∪ {n− s+ 1, . . . , n− 1} are shifts of the graph KG(n, k)s−stab.
So, let i ∈


m∈[k−2]{ms + r + 1, . . . , (m + 1)s − 1}. If v, σ i(v) are not adjacent for some vertex v,

then there exist j ∈ v ∩ σ i(v). Therefore, {j, j − i} ⊂ v. From the symmetry of KG(n, k)s−stab, w.l.o.g.
we assume that {1 + i, 1} ⊂ v. Notice that |v ∩ [i]| ≤

 i
s


and

|v ∩ {1 + i, . . . , n}| ≤


n − i
s


.

Consider m′
∈ [k − 2] such that i ∈ {m′s + r + 1, . . . , (m′

+ 1)s − 1}. Then,

•
 i

s


≤


(m′

+1)s−1
s


= m′.

•
 n−i

s


≤


n−(m′s+r+1)

s


≤

 n−r−1
s


− m′

=
 n−n+sk−1

s


− m′

= k − 1 − m′.

Thus, |v| ≤
 i

s


+

 n−i
s


≤ k − 1 which is a contradiction. Therefore σ i is a shift.

Now, let us see that if i ∉ T , σ i is not a shift of KG(n, k)s−stab.
Let Fd = {ds, ds + 1, . . . , ds + r} for d ∈ [k − 1] and F =

k−1
d=1 Fd. Observe that F = [n] − T .

Let i ∈ Fd for some d ∈ [k−1]. Consider t = i−ds andv = {1, 1+s+t, 1+2s+t, . . . , 1+(k−1)s+t}.
Then v is a vertex of KG(n, k)s−stab and {v, σ i(v)} is not an edge of KG(n, k)s−stab since σ i(1) = 1+ i =

1+ ds+ t belongs to v. Therefore, if i ∈ F the rotations σ i is not a shift of KG(n, k)s−stab and the result
follows. �

As a by-product of these results, in the following section we prove that if n ≥ 2k+ 2, the Schrijver
graphs KG(n, k)2−stab are not weakly hom-idempotent.

3. Schrijver graphs and weakly hom-idempotence

Given a graph G, the set of all shifts of G is denoted by SG. Larose et al. [9] showed the following
useful results:

Proposition 3.1 (Proposition 2.3 in [9]). A graph G is hom-idempotent if and only if G ↔ Cay(Aut
(G•), SG•).

Theorem 3.2 (Theorem 5.1 in [9]). Let G be a χ-critical graph. Then G is weakly hom-idempotent if and
only if it is hom-idempotent.

Proposition 3.3. Let n ≥ 2k+2 and let G denote the graph KG(n, k)2−stab. Then, G ↛ Cay(Aut(G), SG).

Proof. We know that the automorphism group of the graph KG(n, k)2−stab is the dihedral group
D2n on [n]. Moreover, by Lemma 2.2, we known that the only two shifts of KG(n, k)2−stab are
the circular permutations σ and σ−1. Therefore the Cayley graph Cay(D2n, {σ , σ−1

}) is a disjoint
union of two n-cycles. This implies that 2 ≤ χ(Cay(D2n, {σ , σ−1

})) ≤ 3. Thus KG(n, k)2−stab ↛

Cay(D2n, {σ , σ−1
}). �

Asmentioned in the previous section, we know that any 2-stable Kneser graph is a core. Therefore,
by Propositions 3.1 and 3.3, and by Theorem 3.2, we have the following result.

Theorem 3.4. For any n ≥ 2k + 2, the 2-stable Kneser graphs KG(n, k)2−stab are not weakly hom-
idempotent.
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4. s-stable Kneser graphs KG(ks + 1, k)s−stab

Let G denote the complement graph of the graph G, i.e. G has the same vertex set of G and two
vertices are adjacent in G if and only if they are not adjacent in G. Let p be a positive integer. The pth
power of a graph G, that we denoted by G(p), is the graph having the same vertex set as G and where
two vertices are adjacent in G(p) if the distance between them in G is at most equal to p, where the
distance of two vertices in a graph G is the number of edges on the shortest path connecting them.

Let n ≥ 2k be positive integers. The Cayley graphs Cay(Zn, {k, k+ 1, . . . , n− k}), that we denoted
by G(n, k), are known as circular graphs [16,6], where Zn denotes the cyclic group of order n. It is well
known that the Kneser graph KG(n, k) contains an induced subgraph isomorphic to G(n, k). In fact,
let C(n, k) be the subgraph of KG(n, k) obtained by restricting the vertex set of KG(n, k) to the shifts
modulo [n] of the k-subset {1, 2, . . . , k}, that is, {1, 2, . . . , k}, {2, 3, . . . , k+ 1}, . . . , {n, 1, 2, . . . , k−

1}. Define φ : G(n, k) → C(n, k) by putting φ(u) = {u + 1, u + 2, . . . , u + k} where the arithmetic
operations are taken modulo [n]. Clearly, φ is a graph isomorphism. Notice also that the graph G(n, k)

is isomorphic to the graph C (k−1)
n , i.e. the complement graph of the (k − 1)th power of a cycle Cn.

Vince [16] has shown that χ(G(n, k)) = ⌈
n
k ⌉.

In the remainder of this section,wewill always assumew.l.o.g. that any vertex v = {v1, v2, . . . , vk}

of the s-stable Kneser graph KG(ks + 1, k)s−stab is such that v1 < v2 < · · · < vk, where s, k ≥ 2. For
i ∈ [k − 1], let li(v) = vi+1 − vi and lk(v) = v1 + (ks + 1) − vk. If C is the cycle on ks + 1 points
labeled by integers 1, 2, . . . , ks + 1 in the clockwise direction and v = {v1, v2, . . . , vk} is a vertex of
the s-stable Kneser graph KG(ks + 1, k)s−stab, then li(v) gives the distance in the clockwise direction
between vi and vi+1 in C .

Lemma 4.1. Let s, k ≥ 2 and let v = {v1, v2, . . . , vk} be a vertex of KG(ks + 1, k)s−stab. Then,
li(v) ∈ {s, s + 1} for all i ∈ [k]. Moreover, there exists exactly one i′ ∈ [k] such that li′(v) = s + 1.

Proof. By definition, li(v) ≥ s for any i ∈ [k]. The result follows from the fact that
k

i=1 li(v) =

ks + 1. �

Lemma 4.2. Let s, k ≥ 2. The number of vertices of the graph KG(ks + 1, k)s−stab is equal to ks + 1.

Proof. Again, let C be the cycle on ks + 1 points labeled by integers 1, 2, . . . , ks + 1 in the clockwise
direction. From Lemma 4.1, we have that each vertex of KG(ks+ 1, k)s−stab is uniquely determined by
a clockwise circular interval of length s+ 1 in C . Trivially there exist ks+ 1 distinct clockwise circular
intervals of length s + 1 in C and the lemma holds. �

Proposition 4.3. Let s, k ≥ 2. Then, G(ks + 1, k) ≃ KG(ks + 1, k)s−stab.

Proof. Let C be a cycle on ks + 1 points. We assume that the vertices of G(ks + 1, k) are disposed
over C in clockwise increasing order from 0 to ks. In order to prove the isomorphism, we define the
application φ : G(ks + 1, k) → KG(ks + 1, k)s−stab as follows: let u be a vertex of G(ks + 1, k) such
that u = jk + i, where 0 ≤ j ≤ s − 1 and 0 ≤ i ≤ k − 1. Then, φ(u) = {u1, . . . , uk} where,

ur =


j + 1 + (r − 1)s, if 1 ≤ r ≤ k − i
j + 2 + (r − 1)s, if k − i + 1 ≤ r ≤ k.

Finally, define φ(ks) = {s + 1, 2s + 1, . . . , ks + 1}. From Lemma 4.2, it is not difficult to prove
that φ is a bijective function. It remains to show that φ is indeed a graph isomorphism. Let u, v be two
vertices in C(ks + 1, k). In the sequel, we assume that v > u. In fact, if u > v we can always swap u
and v. Let u = jk + i, where 0 ≤ j ≤ s − 1 and 0 ≤ i ≤ k − 1. Let t = v − u, where 1 ≤ t ≤ sk. Let
us see that φ(u), φ(v) in KG(ks + 1, k)s−stab are adjacent if and only if k ≤ t ≤ k(s − 1) + 1. Consider
t = xk + y where 0 ≤ x ≤ s and 0 ≤ y ≤ k − 1. Besides, let Vy = {k − i + 1 − y, . . . , k − i} if
1 ≤ y ≤ k− i and Vy = {1, . . . , k− i, k(s+1)− i+1− y, . . . , ks} if y > k− i. By construction, notice
that:

• if 1 ≤ y ≤ k − 1 then vr = ur + 1 + x if r ∈ Vy and vr = ur + x if r ∉ Vy.
• if y = 0 then vr = ur + x for all r .
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Therefore, if t ≤ k−1 then vr = ur for all r ∉ Vy. So, we have that φ(u)∩φ(v) ≠ ∅. Analogously, if
k(s−1)+2 ≤ t ≤ ks then vr = ur+1 for all r ∈ Vy\{k−i}. Again,wehave thatφ(u)∩φ(v) ≠ ∅. Besides,
notice that lr(u) = s if r ≠ k − i and lk−i(u) = s + 1. From this fact, it follows that φ(u) ∩ φ(v) = ∅ if
k ≤ t ≤ k(s − 1) + 1.

Therefore, vertices u, v in C(ks + 1, k) are adjacent if and only if vertices φ(u), φ(v) in KG(ks +

1, k)s−stab are adjacent. �

A direct consequence of Proposition 4.3 is thatχ(KG(ks+1, k)s−stab) = s+1. In fact, Vince [16] has
shown, at the end of the eighties, that χ(G(n, k)) = ⌈

n
k ⌉, and thus, we obtain that χ(G(ks + 1, k)) =

χ(KG(ks+1, k)s−stab) = s+1. However, as far as we know, therewas no known connections between
graphsG(ks+1, k) andKG(ks+1, k)s−stab. For this reason, twenty years later,Meunier (see Proposition
1 in [11]) computes again the chromatic number of KG(ks + 1, k)s−stab.

Let Cay(A, S) be a Cayley graph. If a−1Sa = S for all a ∈ A, then Cay(A, S) is called a normal Cayley
graph.

Lemma 4.4 ([5]). Any normal Cayley graph is hom-idempotent.

Note that all Cayley graphs on abelian groups are normal, and thus hom-idempotents. In particular,
the circulant graphs are Cayley graphs on cyclic groups (i.e., cycles, powers of cycles, complements of
powers of cycles, complete graphs, etc.). Therefore, by Proposition 4.3 and Lemma 4.4, we have the
following result.

Theorem 4.5. Let s, k ≥ 2. Then, KG(ks + 1, k)s−stab is hom-idempotent.

5. Properties of the graph KG(2s + 2, 2)s−stab

In this section, we study some properties of the graph KG(2s + 2, 2)s−stab, with s ≥ 3. First recall
that in Section 3, we use the strong structural property of ‘‘criticality’’ of Schrijver graphs to prove that
almost all Schrijver graphs are not weakly hom-idempotent. We will prove in this section that graphs
KG(2s + 2, 2)s−stab are not χ-critical for all s ≥ 3. However, we will prove that these graphs are core
and thus, we will be able to deduce that KG(2s + 2, 2)s−stab is not hom-idempotent for all s ≥ 3.

In 2011, Meunier stated the following conjecture (see [11] for a more general context):

Conjecture 5.1 ([11]). χ(KG(n, k)s−stab) = n − (k − 1)s, for any s, k ≥ 2 and n > sk.

Since this conjecture was stated, some papers have confirmed it for particular cases (see, e.g.
[8,11]). However, the case k = 2 and n = 2s + 2 is still open. We will prove that Meunier’s
Conjecture 5.1 holds for the case k = 2, n = 2s + 2, and any s ≥ 3. In fact, we will show that
χ(KG(2s + 2, 2)s−stab) = s + 2.

Let us consider the s-stable Kneser graphs KG(2s + 2, 2)s−stab for s ≥ 3. It is known that s + 1 ≤

χ(KG(2s + 2, 2)s−stab) ≤ s + 2.
For i ∈ [2s + 2], let Ii be the subset of vertices I of KG(2s + 2, 2)s−stab such that i ∈ I . It is known

that {Ii}i∈[2s+2] is the family of all maximum stable sets of KG(2s + 2, 2)s−stab (see Theorem 3 in [14]).
Let S = {{1, 1+ s}, {2, 2+ s}, . . . , {s+ 2, s+ 2+ s}, {1, 3+ s}, {2, 4+ s}, . . . , {s, 2s+ 2}} and Gn

be the Cayley graphs Cay(Zn, {±1, ±2, . . . ,±(s − 1), s + 1}) with n = 2s + 2. Let us denote KG[S]
the subgraph induced by S in KG(2s + 2, 2)s−stab. Observe that KG[S] is isomorphic to Gn, with the
isomorphism φ : Gn → KG[S] defined as follows:

φ(u) =


{u + 1, u + 1 + s} if u ∈ {0, . . . , s + 1};
{u − (s + 1), u + 1} if u ∈ {s + 2, . . . , 2s + 1}.

Besides, notice that C (s−1)
n is a subgraph (not induced) of KG[S], therefore χ(KG[S]) ≥ χ(C (s−1)

n ) =

s + 1. This last fact holds from the following known result.

Theorem 5.2 ([12]). Let n ≥ 2a and n = q(a + 1) + r, with q > 0 and 0 ≤ r ≤ a. Then,
χ(Ca

n ) = a + 1 +


r
q


.
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On the other hand, the set T = {{1, 2+ s}, {2, 3+ s}, . . . , {s+1, 2s+2}} induces a complete graph
in KG(2s + 2, 2)s−stab and S, T induce a partition of V (KG(2s + 2, 2)s−stab).

LetG be the subgraph induced by S∪{{1, 2+s}, {2, 3+s}}.Wewill prove thatχ(G) ≥ s+2. Assume
that χ(G) = s + 1. Let f be a minimum coloring of G. Since α(KG[S]) = 2, each color class of f has
exactly two vertices in KG[S]. Besides, f −1(f ({1, 2+ s})) and f −1(f ({2, 3+ s})) are disjoint maximum
stable sets inG. Then, f −1(f ({1, 2+s})) = I1 and f −1(f ({2, 3+s})) = I2 or f −1(f ({1, 2+s})) = I2+s and
f −1(f ({2, 3+ s})) = I3+s. W.l.o.g. we assume that f −1(f ({1, 2+ s})) = I1 and f −1(f ({2, 3+ s})) = I2.
Therefore, f ({1, 1+s}) = f ({1, 3+s}) = f ({1, 2+s}) and f ({2, 2+s}) = f ({2, 4+s}) = f ({2, 3+s}).
Let a = f ({1, 2 + s}) and b = f ({2, 3 + s}). Let N(v) be the set of neighbors of vertex v in G. The set
U = {{3, 3 + s}, {4, 4 + s}, . . . , {s + 2, s + 2 + s}} verifies that U ⊂ N({1, 1 + s}) ∪ N({1, 3 + s})
and U ⊂ N({2, 2 + s}) ∪ N({2, 4 + s}). Then f (v) ∉ {a, b} for all v ∈ U . Since U has cardinality s and
induces a complete graph in G, f need at least s + 2 colors, which is a contradiction.

Thus, we obtain the following lemma.

Lemma 5.3. For all s ≥ 3, χ(KG(2s + 2, 2)s−stab) = s + 2 and KG(2s + 2, 2)s−stab is not χ-critical.

However, let us see that KG(2s + 2, 2)s−stab is a core. Firstly, notice that the chromatic number
of KG(2s + 2, 2)s−stab − {s + 2, 2s + 2} is s + 1, since its vertex set admits the partition I1, . . . , Is, J
with J = {{s + 1, 2s + 1}, {s + 1, 2s + 2}}. Besides, since Aut(KG(2s + 2, 2)s−stab) acts transitively on
S, χ(KG(2s + 2, 2)s−stab − v) = s + 1 for all v ∈ S.

Therefore, S is contained in the vertex set of the core of KG(2s + 2, 2)s−stab. Assume that KG(2s +

2, 2)s−stab is not a core and let G′ be its core. Then, there is a retraction f of KG(2s + 2, 2)s−stab
onto G′ [7]. It follows that f (u) ∈ S for some vertex u ∈ T , since T induces a complete graph
in KG(2s + 2, 2)s−stab. Notice that u = {i, i + s + 1} for some i ∈ {1, . . . , s + 1}. Then f (u) ∈

{{i, i + s}, {i, i + s + 2}, {i − 1, i + s + 1}, {i + 1, i + s + 1}}.
Let us prove that if f (u) ∈ {{i, i + s}, {i, i + s + 2}, {i − 1, i + s + 1}, {i + 1, i + s + 1}},

there is a vertex v ∈ S such that u and v are adjacent in KG(2s + 2, 2)s−stab but f (u) and f (v)
are not adjacent in G′, which is a contradiction. Observe that f (v) = v since f is a retraction of
KG(2s+ 2, 2)s−stab onto G′. Then, for f (u) = {i, i+ s}, {i, i+ s+ 2}, {i− 1, i+ s+ 1}, {i+ 1, i+ s+ 1}
let v = {i − 2, i + s}, {i + 2, i + s + 2}, {i − 1, i + s − 1}, {i + 1, i + s + 3}, respectively.

Therefore, we obtain the following result.

Lemma 5.4. KG(2s + 2, 2)s−stab is a core.

In order to obtain that KG(2s + 2, 2)s−stab are not hom-idempotent, we can follow the reasoning
in Section 3, since s-stable Kneser graphs KG(2s + 2, 2)s−stab are cores. Firstly, we will observe that if
G = KG(2s + 2, 2)s−stab, the graph Cay(Aut(G), SG) is isomorphic to the disjoint union of two C s−1

n .
Moreover, we prove a more general result.

Remark 5.5. If G = KG(2s + 2, 2)s−stab or G = KG(n, k)s−stab with n ≥ (k + 1)s − 1, Cay(Aut(G), SG)
is isomorphic to the disjoint union of two C s−1

n .

Proof. As we have mentioned in Section 2, the rotations and reflexions of the dihedral group D2n are
denoted by σ i and ρi respectively, for 1 ≤ i ≤ n. It is easy to see that σ iσ j

= σ i+j. Besides, if n is odd
we have:

σ jρi = ρm with

m =


i +

n − 1
2

+
j + 1
2

if j is odd,

i +
j
2

if j is even,

and if n is even:

σ jρi =


δm if j is odd, withm = i +

j + 1
2


mod

n
2


,

ρm if j is even, withm = i +
j
2


mod

n
2


.
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Therefore, since Aut(G) is isomorphic to D2n and SG = {σ i
: i = 1, . . . , s−1, n− s+1, . . . , n−1},

fromprevious facts it follows that the rotations induce a C s−1
n and the reflexions also induce a C s−1

n . �

Finally, to prove that if G = KG(2s + 2, 2)s−stab then G ↛ Cay(Aut(G), SG), it is enough to notice
that, from Theorem 5.2, χ(C s−1

2s+2) = s + 1 < s + 2. So, by Proposition 3.1, we obtain the following
result.

Lemma 5.6. For s ≥ 3,KG(2s + 2, 2)s−stab is not hom-idempotent.

Observe that if Conjecture 5.1 is true for n ≥ (k + 1)s − 1 and the graphs KG(n, k)s−stab are cores,
by an analogous reasoning as before we obtain that the following conjecture is true.

Conjecture 5.7. If n ≥ (k + 1)s − 1 and s ≥ 3, the s-stable Kneser graph KG(n, k)s−stab is not hom-
idempotent.

Finally, we end this paper with a stronger conjecture:

Conjecture 5.8. Let s ≥ 3, k ≥ 2 and n > ks + 1. Then, the s-stable Kneser graph KG(n, k)s−stab is not
hom-idempotent.

References

[1] B. Braun, Symmetries of the stable Kneser graphs, Adv. Appl. Math. 45 (2010) 12–14.
[2] P. Frankl, On the chromatic number of the general Kneser graph, J. Graph Theory 9 (2) (1985) 217–220.
[3] P. Frankl, Z. Füredi, Extremal problems concerning Kneser graphs, J. Combin. Theory Ser. B 40 (3) (1986) 270–284.
[4] C.D. Godsil, G. Royle, Algebraic Graph Theory, in: Graduate Texts in Mathematics, Springer, 2001.
[5] G. Hahn, P. Hell, S. Poljak, On the ultimate independence ratio of a graph, Eur. J. Comb. 16 (1995) 253–261.
[6] G. Hahn, C. Tardif, Graph homomorphisms: structure and symmetry, in: Graph Symmetry, Algebraic Methods and

Applications, in: NATO ASI Ser. C, vol. 497, 1997, pp. 107–166.
[7] P. Hell, J. Nes̆etr̆il, The core of a graph, Discrete Math. 109 (1992) 117–126.
[8] J. Jonsson, On the chromatic number of generalized stable Kneser graphs, 2012 (unpublished manuscript).
[9] B. Larose, F. Laviolette, C. Tardif, On normal Cayley graphs and Hom-idempotent graphs, European J. Combin. 19 (1998)

867–881.
[10] L. Lovász, Kneser’s conjecture, chromatic number and homotopy, J. Combin. Theory Ser. A 25 (1978) 319–324.
[11] F. Meunier, The chromatic number of almost stable Kneser hypergraphs, J. Combin. Theory Ser. A 118 (2011) 1820–1828.
[12] A. Prowse, D.R. Woodall, Choosability of powers of circuits, Graphs Combin. 19 (1) (2003) 137–144.
[13] A. Schrijver, Vertex-critical subgraphs of Kneser graphs, Nieuw Arch. Wiskd. 26 (3) (1978) 454–461.
[14] J. Talbot, Intersecting families of separated sets, J. Lond. Math. Soc. (2) 68 (1) (2003) 37–51.
[15] P. Torres, The automorphism group of the s-stable Kneser graphs, 2015 (submitted for publication). http://arxiv.org/abs/

1509.09185.
[16] A. Vince, Star chromatic number, J. Graph Theory 12 (4) (1988) 551–559.

http://refhub.elsevier.com/S0195-6698(16)30116-0/sbref1
http://refhub.elsevier.com/S0195-6698(16)30116-0/sbref2
http://refhub.elsevier.com/S0195-6698(16)30116-0/sbref3
http://refhub.elsevier.com/S0195-6698(16)30116-0/sbref4
http://refhub.elsevier.com/S0195-6698(16)30116-0/sbref5
http://refhub.elsevier.com/S0195-6698(16)30116-0/sbref6
http://refhub.elsevier.com/S0195-6698(16)30116-0/sbref7
http://refhub.elsevier.com/S0195-6698(16)30116-0/sbref9
http://refhub.elsevier.com/S0195-6698(16)30116-0/sbref10
http://refhub.elsevier.com/S0195-6698(16)30116-0/sbref11
http://refhub.elsevier.com/S0195-6698(16)30116-0/sbref12
http://refhub.elsevier.com/S0195-6698(16)30116-0/sbref13
http://refhub.elsevier.com/S0195-6698(16)30116-0/sbref14
http://arxiv.org/abs/1509.09185
http://arxiv.org/abs/1509.09185
http://arxiv.org/abs/1509.09185
http://arxiv.org/abs/1509.09185
http://arxiv.org/abs/1509.09185
http://arxiv.org/abs/1509.09185
http://refhub.elsevier.com/S0195-6698(16)30116-0/sbref16

	Shifts of the stable Kneser graphs and hom-idempotence
	Introduction
	Shifts of  s -stable Kneser graphs
	Schrijver graphs and weakly hom-idempotence
	 s -stable Kneser graphs  KG (ks+ 1, k)s- stab 
	Properties of the graph  KG (2s+ 2, 2)s- stab 
	References


