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Abstract

We describe the adjacency of vertices of the (unbounded version of the) set
covering polyhedron, in a similar way to the description given by Chvátal
for the stable set polytope. We find a sufficient condition for adjacency,
and characterize it with similar conditions in the case where the underlying
matrix is row circular. We apply our findings to show a new infinite family
of minimally nonideal matrices.
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1. Introduction

The stable set polytope of a graph G, STAB(G), is one of the most
studied polyhedra related to set packing problems. In 1975, Chvátal [5] gave
a characterization of the adjacency of its vertices: the characteristic vectors
of two stable sets S and S ′ of G are adjacent in STAB(G) if, and only if, the
subgraph of G induced by S 4 S ′ = (S \ S ′) ∪ (S ′ \ S) is connected.

Since a characterization of vertex adjacency may provide more insight
into the associated combinatorial problem, eventually becoming the basis for
efficient algorithms, it is quite natural to try to extend Chvátal’s result to
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other settings. This was done by several authors, on occasion in the context
of the simplex method or related to the Hirsch conjecture, see for instance
Hausmann and Korte [10], Ikebe and Tamura [11], Alfakih and Murty [1],
Matsui and Tamura [17], or Michini and Sassano [19]. See also Michini [18]
and references therein.

Sometimes, it may be very difficult to test adjacency: Papadimitriou [20]
observed the difficulty of the adjacency problem for the traveling salesman
polytope, later Chung [4] obtained a similar result for the set covering poly-
tope, whereas Matsui [16] showed the NP-completeness of the non adjacency
problem for the set covering polytope even though the matrix involved has
exactly three ones per row. Thus, in contrast to the case of STAB(G), it is
unlikely that a simple characterization of the adjacency of vertices of the set
covering polyhedron may be given.

Nevertheless, in this work we go one step beyond the usual sufficient
condition of connectivity of a certain graph, and give another condition which
is also sufficient for the adjacency of vertices of the (unbounded version of the)
set covering polyhedron, showing that more restrictive but similar conditions
are also necessary in the case of row circular matrices. Thus, the adjacency
problem for the set covering polyhedron is polynomial for these matrices.

This paper is organized as follows. After presenting the notation, some
preliminary results and comments in Section 2, in Section 3 we present the
graph which we associate with each pair of vertices of the set covering poly-
hedron defined by a binary matrix A. A sufficient condition for adjacency in
terms of this graph is presented in Theorem 4.3 of Section 4. In Section 5
we establish a characterization of adjacency which applies to the case where
A is a row circular matrix (Theorem 5.14), and give an example (Exam-
ple 5.17) showing that our sufficient condition is not always necessary even
for circulant matrices. Finally, in Section 6 we apply our results to obtain a
new infinite family of minimally nonideal matrices based on known minimally
nonideal circulant matrices.

2. Notation and preliminary results

Let us start by establishing some notation and definitions.
We denote by N the set of natural numbers, N = {1, 2, . . . }; by Z the set

of integers; by R the set of real numbers; by B the set of binary numbers,
B = {0, 1}; and by [n] the set {1, 2, . . . , n}.
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The vectors in the canonical basis of Rn will be denoted by e1, . . . , en. We
denote by 0n and 1n the vectors in Rn with all zeroes and all ones, respec-
tively, dropping the subindex n if the dimension is clear from the context.

The scalar product in Rn is denoted by a dot, so that, e.g., x · ei = xi for
x ∈ Rn. Given x and y in Rn, we say that x dominates y, and write x ≥ y,
if xi ≥ yi for all i ∈ [n]. |X| denotes the cardinality of the finite set X.

The support of x ∈ Rn is the set suppx = {i ∈ [n] | xi 6= 0}. Conversely,
given X ⊂ [n], its characteristic vector, χn(X) ∈ Bn, is defined by

ei · χn(X) =

{
1 if i ∈ X,
0 otherwise,

so that supp(χn(X)) = X.
Given a binary matrix A ∈ Bm×n, the set covering polyhedron associated

with A, Q∗(A), is the convex hull of non-negative integer solutions of Ax ≥ 1,

Q∗(A) = conv{x ∈ Zn | Ax ≥ 1, x ≥ 0}, (2.1)

and we denote by Q(A) the linear relaxation

Q(A) = {x ∈ Rn | Ax ≥ 1, x ≥ 0}. (2.2)

When A has precisely two ones per row, i.e., when A is the edge-node
incidence matrix of a graph G, the set covering polyhedron that we consider
here is the unbounded version of the node cover polytope of G:

Q∗(A) = conv{x ∈ Zn | Ax ≥ 1,1 ≥ x ≥ 0} .

We observe that in this case the function x 7→ 1− x affinely maps Q∗(A) to

STAB(G) = conv{x ∈ Zn | Ax ≤ 1,1 ≥ x ≥ 0} .

As mentioned in the introduction, for the latter polytope Chvátal proved the
following characterization of vertex adjacency:

Theorem 2.1 ([5]). The characteristic vectors χn(S) and χn(S ′) of two sta-
ble sets of G are adjacent in STAB(G) if, and only if, the subgraph of G
induced by S 4 S ′ is connected.

As a consequence of this and the fact that it can be proved that for any
binary matrix A two vertices of Q∗(A) are adjacent if and only if they are
adjacent in Q∗(A), we obtain:
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Corollary 2.2. Suppose that every row of A ∈ Bm×n has exactly two ones,
i.e., that A is the edge-node incidence matrix of a graph G. Then, two distinct
vertices v and v′ of Q∗(A) (resp. of Q∗(A)) are adjacent in Q∗(A) (resp. in
Q∗(A)) if, and only if, the subgraph of G induced by supp v 4 supp v′ is
connected.

In this paper we assume that the binary matrix A associated with the set
covering polyhedra in (2.1) and (2.2) verifies the following assumptions:

Assumptions 2.3. The matrix A ∈ Bm×n satisfies:

• it has no dominating rows,

• it has between 2 and n− 1 ones per row,

• it has no column of all ones or of all zeroes.

We denote by Ct the support of the t-th row of A, and we let C =
{C1, . . . , Cm}. Assumptions 2.3 imply that 2 ≤ |C| ≤ n− 1 for every C ∈ C,
that

⋃
C∈C C = [n], and that C is a clutter in the nomenclature of Cornuéjols

and Novick [6].
The vertices of Q∗(A) are the binary vertices of Q(A). They form the

blocker of A, b(A), and their supports are the minimal transversals of C,
which we denote by T . That is, T ∈ T if and only if T ∩C 6= ∅ for all C ∈ C
and if R ⊂ T with R ∩ C 6= ∅ for all C ∈ C then R = T . Notice that

• C ∩ T 6= ∅ for all C ∈ C and T ∈ T .

• For every T ∈ T and p ∈ T , there exists C ∈ C such that C ∩T = {p}.

As b(b(A)) = A if A is a clutter matrix, we also have:

• For every C ∈ C and p ∈ C there exists T ∈ T such that C ∩ T = {p}.

Remark 2.4. Notice that Assumptions 2.3 also imply that T has properties
similar to those of C: 2 ≤ |T | ≤ n− 1 for every T ∈ T , and

⋃
T∈T T = [n].

A convex combination of the points x1, . . . , x` of Rn is a point of the form∑
k∈[`] λkx

k, where
∑

k∈[`] λk = 1 and λk ≥ 0 for k ∈ [`]. The combination is

strict if all xk are different and 0 < λk < 1 for all k ∈ [`].
The following result is well known and we will use it to prove adjacency:
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Proposition 2.5. Suppose P = {x ∈ Rn | Ax ≥ b, x ≥ 0}, where A ∈ Rm×n
has non-negative entries and b ≥ 0. If v and v′ are distinct vertices of P ,
the following are equivalent:

(a) v and v′ are adjacent in P .

(b) If a strict convex combination
∑

k∈[`] λkx
k of points of P belongs to the

segment with endpoints v and v′, then xk also belongs to this segment
for all k ∈ [`].

(c) If y =
∑

k∈[`] λku
k is a strict convex combination of vertices u1, . . . , u`

of P and y ≤ 1
2

(v + v′), then ` = 2 and, without loss of generality,
u1 = v and u2 = v′.

We point out that it is possible to relax the usual condition y = 1
2

(v+v′)
to the inequality y ≤ 1

2
(v + v′) in Proposition 2.5(c) due to the fact that we

assume that A has non-negative entries, and so the polyhedron P satisfies
the following property: x ∈ P and z ≥ x imply z ∈ P .

To prove that the vertices v and v′ of Q∗(A) are not adjacent, it will be
convenient to make use of a variant of Proposition 2.5. Namely, suppose v
and v′ can be decomposed as nontrivial sums of binary vectors:

v = z + c+ d and v′ = z + c′ + d′,

so that z is a “common part”, and the remaining parts are split into two: c
and d for v and c′ and d′ for v′. Suppose also that by interchanging d and d′

we obtain two points of Q∗(A):

x = z + c+ d′ = v − d+ d′ and x′ = z + c′ + d = v′ − d′ + d.

Since 1
2

(x + x′) = 1
2

(v + v′), if we could assure that either x or x′ does not
belong to the segment with endpoints v and v′, then by the equivalence
of (a) and (b) of Proposition 2.5 when P = Q∗(A), we would conclude
that v and v′ are not adjacent in Q∗(A). This is the idea behind the next
lemma.

Proposition 2.6. Let v and v′ be distinct vertices of Q∗(A). Suppose there
exist d and d′ in Rn such that:

• 0 ≤ d ≤ v and 0 � d′,
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• v · d′ = 0,

• x = v − d+ d′ and x′ = v′ − d′ + d are elements of Q∗(A),

• x is binary and different from v′.

Then v and v′ are not adjacent in Q∗(A).

Proof. We notice first that 0 ≤ (v − d) · d′ ≤ v · d′ = 0, which implies
(v − d) · d′ = 0.

If x was equal to v, we would have

0 = v · d′ by hypothesis,

= x · d′ since we are assuming x = v,

= (v − d+ d′) · d′ by definition of x,

= d′ · d′ since (v − d) · d′ = 0,

> 0 since d′ 6= 0,

i.e., we obtain a contradiction. Thus, x is different from v.
Given that a segment with endpoints in Bn cannot contain other binary

points, and that x is binary and different from v and v′, it follows that
x cannot belong to the segment with endpoints v and v′. The result now
follows from the equivalence of (a) and (b) of Proposition 2.5 when
P = Q∗(A), since 1

2
(x+ x′) = 1

2
(v + v′).

3. The joint saturation graph

The following definitions are essential in this paper.

Definition 3.1. Given a matrix A ∈ Bm×n and the associated clutter C as
described in the previous section, let v and v′ be distinct vertices of Q∗(A).
We construct a simple undirected graph GA(v, v′) depending on v, v′ and
A, called the joint saturation graph of v and v′ (with respect to A), by the
following setup:

• the set of nodes of GA(v, v′) is

supp v4 supp v′ = (supp v \ supp v′) ∪ (supp v′ \ supp v) ,

• GA(v, v′) is bipartite with partite sets

supp v \ supp v′ and supp v′ \ supp v ,
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• p ∈ supp v \ supp v′ and p′ ∈ supp v′ \ supp v are neighbors in GA(v, v′)
if there exists Ct ∈ C such that

Ct ∩ supp v = {p} and Ct ∩ supp v′ = {p′}. (3.1)

See Figure 2 below for an illustration of Definition 3.1.
Following West [22], we will denote by p↔ p′ and p 6↔ p′ whether p and

p′ are neighbors in GA(v, v′) or not, respectively. A path of GA(v, v′) will be
called even (resp. odd) if it contains an even (resp. odd) number of edges.

The name joint saturation graph comes from the fact that each edge of
GA(v, v′) corresponds to an inequality in Ax ≥ 1 which is saturated, i.e.,
satisfied with equality, by both vertices v and v′. Observe that there may
exist inequalities in Ax ≥ 1 which are saturated by both vertices v and v′

and do not correspond to edges of GA(v, v′), because the saturation can be
due to a coordinate in supp v ∩ supp v′.

In what follows, when the matrix A is clear from the context, we will
simply write G(v, v′).

Remark 3.2. Let us recall that given a nontrivial proper subset I of [n],
the contraction minor A/I is obtained by eliminating the columns of A with
indices in I, and then removing any dominating row that might appear.

Note that v and v′ are adjacent in Q∗(A) if, and only if, they are adjacent
in the face {x ∈ Q∗(A) | xi = 0 for i ∈ I}, where I = [n] \ (supp v ∪ supp v′).
Observe that the projection of this face on the coordinates in supp v∪supp v′

is given by Q∗(A/I), and that GA(v, v′) coincides with GA/I(v[n]\I , v′[n]\I),
where v[n]\I and v′[n]\I denote the projections of v and v′ on the coordinates
in supp v ∪ supp v′, respectively.

Now, let Ā be the submatrix of A/I consisting of the rows with precisely
two ones, and let G be the graph whose edge-node incidence matrix is Ā. It
can be proved that GA(v, v′) coincides with the subgraph of G induced by
the nodes in supp v4 supp v′.

Remark 3.3. If v and v′ are distinct vertices of Q∗(A), then:

• supp v \ supp v′ 6= ∅ since we cannot have v ≤ v′. Similarly, we have
supp v′ \ supp v 6= ∅.

• Consequently, G(v, v′) has at least two nodes.
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• If G(v, v′) has exactly two nodes, then it is connected: if p ∈ supp v \
supp v′ and p′ ∈ supp v′\supp v are the two nodes, R = supp v∩supp v′,
and Ct ∈ C is such that Ct ∩ supp v = {p}, then necessarily Ct ∩R = ∅
and Ct ∩ supp v′ = {p′}.

Sufficient and necessary conditions for the adjacency of vertices of Q∗(A)
will be given in terms of properties of the joint saturation graph. With this
aim, it is convenient to make the following definition:

Definition 3.4. A bipartite graph is said to be partite-connected if one of its
partite sets is contained in a component, and it is said to be almost-connected
if it has exactly two components, one of which is an isolated node.

Observe that according to our definition, a connected bipartite graph is
partite-connected but not almost-connected, and an almost-connected graph
is always partite-connected.

4. A sufficient condition for adjacency

In this section we present a sufficient condition for the adjacency of two
vertices of Q∗(A) in terms of their joint saturation graph. For this, we will
need the following lemma.

Lemma 4.1. Let v and v′ be distinct vertices of Q∗(A), and let G(v, v′)
be their joint saturation graph. Suppose y =

∑
k∈[`] λku

k is a strict convex

combination of vertices u1, . . . , u` of Q∗(A) such that y ≤ 1
2

(v + v′). Then,
for each k ∈ [`], we have:

(a) suppuk ⊆ supp v ∪ supp v′.

(b)
∣∣{p, p′} ∩ suppuk

∣∣ = 1 whenever p and p′ are neighbors in G(v, v′).

Proof. Let us write z = 1
2

(v + v′).
If q ∈ suppuk we must have uk · eq > 0, and therefore y · eq > 0 since

the convex combination for y is strict. Hence z · eq > 0 as z ≥ y. Therefore,
q ∈ supp v ∪ supp v′.

For the second part, let a be a row of A such that (3.1) holds with
Ct = supp a. Since suppuk ⊆ supp v ∪ supp v′, by (3.1) it follows that p
and p′ are the only elements of Ct which can belong to suppuk. Then, from
{p, p′} ⊂ Ct we conclude that

{p, p′} ∩ suppuk = Ct ∩ suppuk.
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Moreover, by (3.1) we have a ·z = 1, and since z ≥ y, it follows that a ·y ≤ 1.
On the other hand, as y ∈ Q∗(A), we have a · y ≥ 1, and therefore a · y = 1.
Similarly, since y is a strict convex combination of the points u1, . . . , u` and
a · uh ≥ 1 for all h ∈ [`], we conclude that a · uh = 1 for all h ∈ [`]. Thus, in
particular we have

∣∣Ct ∩ suppuk
∣∣ = 1, proving the lemma.

Lemma 4.2. Let v and v′ be distinct vertices of Q∗(A). Suppose y =∑
k∈[`] λku

k is a strict convex combination of vertices u1, . . . , u` of Q∗(A)

such that y ≤ 1
2

(v + v′). If the joint saturation graph of v and v′ is partite-
connected, then ` = 2 and, without loss of generality, u1 = v and u2 = v′.

Proof. To prove the lemma it is enough to show that, for each k ∈ [`], either
uk = v or uk = v′.

Without loss of generality, assume that the partite set supp v \ supp v′ is
contained in a component of G(v, v′).

Let I =
{
k ∈ [`] | suppuk ∩ (supp v \ supp v′) = ∅

}
and J = [`] \ I.

Observe that for k ∈ I we must have suppuk ⊆ supp v′ as suppuk ⊆
supp v ∪ supp v′ by Lemma 4.1(a). Thus, since v′ and uk are binary vertices
of Q∗(A), we conclude that

uk = v′ for all k ∈ I. (4.1)

On the other hand, for k ∈ J , let us fix p ∈ suppuk ∩ (supp v \ supp v′).
Since supp v \ supp v′ is contained in a component of G(v, v′), for each q ∈
(supp v\supp v′)\{p} there exists a path p = p1, p

′
2,. . . , p

′
h, ph = q connecting

p and q, where p′i ∈ supp v′ \ supp v and pi ∈ supp v \ supp v′ for i = 2, . . . , h.
Using repeatedly Lemma 4.1(b), we see that p1 = p ∈ suppuk, p′2 /∈ suppuk,
p2 ∈ suppuk, and so on, i.e., pi ∈ suppuk and p′i /∈ suppuk for all i = 2, . . . , h.
Thus, in particular we have q = ph ∈ suppuk. Since this holds for any
q ∈ (supp v \ supp v′) \ {p}, we conclude that

supp v \ supp v′ ⊆ suppuk for all k ∈ J. (4.2)

Consider now any q ∈ supp v\supp v′. From (4.1), (4.2) and the fact that
1
2

(v + v′) ≥ y =
∑

k∈[`] λku
k, we obtain

1

2
=

1

2
(vq + v′q) ≥

∑
k∈I

λku
k
q +

∑
k∈J

λku
k
q =

∑
k∈J

λk ,
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and so
∑

k∈I λk = 1−
∑

k∈J λk ≥
1
2
. Since using (4.1) we also have

1

2
(v + v′) ≥

∑
k∈I

λku
k +

∑
k∈J

λku
k =

∑
k∈I

λkv
′ +
∑
k∈J

λku
k,

we conclude that 1
2
v ≥

∑
k∈J λku

k, which implies suppuk ⊆ supp v for all
k ∈ J . Therefore, since v and uk are binary vertices of Q∗(A), it follows that
uk = v for all k ∈ J . This completes the proof.

Using Proposition 2.5 and Lemma 4.2, we obtain the main result of this
section:

Theorem 4.3. If the joint saturation graph of two distinct vertices of Q∗(A)
is partite-connected, then these vertices are adjacent in Q∗(A).

Theorem 4.3 implies that if G(v, v′) is connected, then v and v′ are ad-
jacent in Q∗(A). This sufficient condition can be alternatively derived from
Corollary 2.2 and Remark 3.2. To see this, let I, Ā, G, v[n]\I and v′[n]\I
be defined as in Remark 3.2, and consider the subgraph of G induced by
supp v4supp v′, which coincides with G(v, v′). If this subgraph is connected,
then v[n]\I and v′[n]\I are adjacent in Q∗(Ā) (by Corollary 2.2), which implies

they are also adjacent in Q∗(A/I), and so v and v′ are adjacent in Q∗(A)
(by Remark 3.2 we know that v[n]\I and v′[n]\I are adjacent in Q∗(A/I) if and

only if v and v′ are adjacent in Q∗(A)).

5. Characterization of vertex adjacency for row circular matrices

As mentioned in the introduction, the sufficient condition of Theorem 4.3
is not always necessary. In this section we show that the converse of that
theorem is true when the matrix A is row circular. Actually, in this case
we will give a much more detailed characterization in terms of properties of
the joint saturation graph. We will also show that being partite-connected
is far from being a necessary condition when we consider the similar class of
circulant matrices.

Let us first recall that the circulant matrix C (c) ∈ Rn×n associated with
a vector c = (c1, . . . , cn) ∈ Rn is defined as

C (c) = C (c1, . . . , cn) =


c1 c2 . . . cn
cn c1 . . . cn−1
...

...
. . .

...
c2 c3 . . . c1

 ,
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where each row is a right rotation (shift) of the previous one.
Following Bartholdi et al. [2], we will say that a binary vector is circular

if its ones occur consecutively, where the first entry and the last entry of the
vector are considered to be consecutive, or, alternatively, if either the ones
are all consecutive or the zeroes are all consecutive. A binary matrix is said
to be row circular if all its rows are circular.

To deal with circular vectors of Bn, it is convenient to consider circular
arcs of [n]: for i, j ∈ [n], the (directed) circular arc [i, j]n is defined as

[i, j]n =

{
{i, . . . , j} if i ≤ j,

{i, . . . , n} ∪ {1, . . . , j} if j < i.

Thus, the rows of a row circular matrix A ∈ Bm×n may be considered as the
characteristic vectors of circular arcs of [n].

Example 5.1. A particularly interesting case of row circular matrices is that
of the consecutive ones circulant matrices C k

n , where the sets in the clutter
C are of the form

Ct = {t, t+ 1, . . . , t+ k − 1}, t ∈ [n],

(sums are taken modulo n with values in [n]) so that C k
n is also circulant.

For example,

C 2
3 =

1 1 0
0 1 1
1 0 1

 = C (1, 1, 0).

In the remainder of this section, we will make the following assumptions:

Assumptions 5.2. The matrix A is row circular and satisfies Assump-
tions 2.3, and C is the associated clutter (as described in Section 2).

Thus, in particular we have m = |C| ≥ 2, 2 ≤ |Ct| ≤ n− 1 for all t ∈ [m],
and 2 ≤ v · 1 ≤ n− 1 for every vertex v of Q∗(A).

We will also use the following convention:

Notation 5.3. For v ∈ Bn we will write supp v = {p1, p2, . . . , pr}, with
p1 < p2 < · · · < pr; and for h /∈ [r] we let ph = pi with i ∈ [r] and h ≡ i
(mod r). Similarly, for v′ ∈ Bn we will write supp v′ = {p′1, . . . , p′r′} with
p′1 < · · · < p′r′ , etc.

We will also consider that operations involving elements of the support
of a vector of Bn, such as pi + 1, are taken modulo n with values in [n].
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Remark 5.4. When A is row circular, if p ↔ p′ (i.e., (3.1) is satisfied),
exactly one of the circular arcs [p, p′]n or [p′, p]n is such that its intersection
with supp v ∪ supp v′ is {p, p′}. Indeed, by Remark 2.4 we know that supp v
has at least two elements, and so there exists q ∈ supp v such that q 6= p
(note that we also have q 6= p′ because p′ ∈ supp v′\supp v by Definition 3.1).
Besides, since A is row circular, the circular arc Ct satisfying (3.1) contains
either [p, p′]n or [p′, p]n. Then, if q ∈ [p, p′]n, we have {q, p, p′} ⊂ (supp v ∪
supp v′)∩ [p, p′]n, and so by (3.1) we conclude that [p′, p]n ⊂ Ct and {p, p′} =
(supp v∪ supp v′)∩ [p′, p]n. Otherwise, i.e., if q ∈ [p′, p]n, we have {q, p, p′} ⊂
(supp v ∪ supp v′)∩ [p′, p]n, and so from (3.1) it follows that [p, p′]n ⊂ Ct and
{p, p′} = (supp v ∪ supp v′) ∩ [p, p′]n.

Let us state now some simple results.

Lemma 5.5. Suppose Ct ∈ C and v is a vertex of Q∗(A). Then

1 ≤ |Ct ∩ supp v| ≤ 2.

Moreover, if |Ct ∩ supp v| = 2, then Ct ∩ supp v = {pi, pi+1} for some i.

Proof. We obviously have |Ct ∩ supp v| ≥ 1 because supp v is a transversal.
If we had |Ct ∩ supp v| ≥ 3, since Ct is a circular arc, there would exist
three different elements pi, pj and ph of supp v such that pj ∈ [pi, ph]n ⊂ Ct.
Besides, as supp v is a minimal transversal, there exists Cs ∈ C such that
Cs ∩ supp v = {pj}. Then, since Cs is a circular arc which contains pj but
does not contain pi nor ph, we would have Cs ( [pi, ph]n ⊂ Ct, contradicting
the fact that A has no dominating rows (by Assumptions 2.3). Thus, we
necessarily have |Ct ∩ supp v| ≤ 2.

The last part follows from the fact that Ct is a circular arc.

Lemma 5.6. Let v and v′ be distinct vertices of Q∗(A). Suppose pi ∈ supp v\
supp v′ is an isolated node of the joint saturation graph G(v, v′). If Ct ∈ C
and Ct ∩ supp v = {pi}, then |Ct ∩ (supp v′ \ supp v)| = 2 and Ct ∩ supp v′ =
Ct ∩ (supp v′ \ supp v).

Proof. In the first place, observe that Ct ∩ supp v′ = Ct ∩ (supp v′ \ supp v)
because Ct ∩ supp v = {pi} and pi ∈ supp v \ supp v′. Then, by Lemma 5.5,
we have 1 ≤ |Ct ∩ (supp v′ \ supp v)| ≤ 2. Now, note that we cannot have
|Ct∩(supp v′\supp v)| = 1, because by Definition 3.1 (see in particular (3.1))
that would mean that there exists an edge in G(v, v′) connecting pi with the
unique element of Ct ∩ (supp v′ \ supp v), contradicting the fact that pi is an
isolated node of G(v, v′).
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The next lemmas provide simple properties of the joint saturation graph
when A is row circular, which we will need to establish the characterization
of vertex adjacency for Q∗(A).

Lemma 5.7. The joint saturation graph G(v, v′) of two distinct vertices v
and v′ of Q∗(A) has the following properties:

(a) If pi ↔ p′j and ph ↔ p′j in G(v, v′), with h 6= i, then we must have
either h = i− 1 or h = i+ 1.

(b) If pi ↔ p′j, pi+1 ↔ p′j and |supp v| > 2, then p′j ∈ [pi, pi+1]n and there
are no other elements of supp v′ (or supp v) in [pi, pi+1]n.1

(c) The nodes of G(v, v′) have degree at most 2.

(d) Each component of G(v, v′) must be either a cycle or a path (including
isolated nodes).

(e) If a component of G(v, v′) is a cycle, then its set of nodes is equal
to supp v ∪ supp v′, and we have supp v ∩ supp v′ = ∅. In particular,
G(v, v′) is connected.

Proof. Let us assume that Cs ∈ C is such that

Cs ∩ supp v = {pi} and Cs ∩ supp v′ = {p′j} (5.1)

and Cr ∈ C such that

Cr ∩ supp v = {ph} and Cr ∩ supp v′ = {p′j}. (5.2)

Since p′j ∈ Cs∩Cr, it follows that Cs∪Cr is a circular arc. By (5.1) and (5.2),
this circular arc intersects supp v only at pi and ph, and hence these are
consecutive elements of supp v. This shows (a).

To prove (b), let Cs and Cr be circular arcs satisfying (5.1) and (5.2), with
h = i+1 in (5.2). Then, as above, we can conclude that Cs∪Cr is a circular arc
which intersects supp v only at pi and pi+1, and supp v′ only at p′j. Besides,
since |supp v| > 2, there exists an element pk in [pi+1, pi]n ∩ supp v which
is different from pi and pi+1. Observe that Remark 5.4 would not hold for

1Notice that if |supp v| = 2, then p′j could be in either [p1, p2]n or [p2, p1]n.
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pi ↔ p′j if p′j belonged to [pi+1, pk]n. Analogously, note that Remark 5.4 would
not hold for pi+1 ↔ p′j if p′j belonged to [pk, pi]n. Therefore, we conclude that
p′j ∈ [pi, pi+1]n. Finally, since pk ∈ [pi+1, pi]n and Cs∪Cr is a circular arc which
contains pi and pi+1 but does not contain pk, we have [pi, pi+1]n ⊂ Cs ∪ Cr.
Thus, from (5.1) and (5.2) (recall that h = i+ 1 in (5.2)), it follows that pi,
pi+1 and p′j are the only elements of supp v ∪ supp v′ in [pi, pi+1]n.

Assume that a node of G(v, v′), for instance p′j, has degree strictly greater
than 2. Let pi, ph and pk be three different elements of supp v \ supp v′ such
that pi ↔ p′j, ph ↔ p′j and pk ↔ p′j. By (a) we can assume, without loss of
generality, that h = i− 1 and k = i+ 1. Then, by (b) we have p′j ∈ [pi−1, pi]n
and p′j ∈ [pi, pi+1]n, which is a contradiction because p′j ∈ supp v′ \ supp v
by Definition 3.1 and [pi−1, pi]n ∩ [pi, pi+1]n = {pi} (recall that pi−1 = ph 6=
pk = pi+1). This proves (c).

Note that (d) follows readily from (c).
By (a) and (b), any (simple) path of G(v, v′) connecting two nodes of

supp v \ supp v′ is of the form pi, p
′
j, pi+1, p

′
j+1, . . . , pi+` for some ` ∈ N,

i ∈ [r] and j ∈ [r′], where pi+h ∈
[
p′j+h−1, p

′
j+h

]
n

for any h ∈ [`− 1], and
p′j+h−1 ∈ [pi+h−1, pi+h]n and

[pi, pi+h]n ∩ (supp v ∪ supp v′) = {pi, p′j, pi+1, p
′
j+1, . . . , pi+h} (5.3)

for any h ∈ [`] (see Example 5.8). Thus, if a component of G(v, v′) is a cycle,
we can take pi+` = pi in (5.3), which then implies [n] ∩ (supp v ∪ supp v′) =
{pi, p′j, pi+1, p

′
j+1, . . . , p

′
i+l−1}, that is, the set of nodes of the cycle is equal

to supp v ∪ supp v′. Finally, since by Definition 3.1 the nodes of G(v, v′)
belong either to supp v \ supp v′ or to supp v′ \ supp v, we conclude that
supp v ∩ supp v′ = ∅. This shows (e).

Example 5.8. Let us consider the set covering polyhedron associated with
the clutter C = {C1, . . . , C8}, where C1 = [1, 4]n, C2 = [5, 6]n, C3 = [6, 9]n,
C4 = [8, 13]n, C5 = [11, 15]n, C6 = [14, 16]n, C7 = [17, 18]n, C8 = [18, 3]n
and n = 21 (this clutter is represented in Figure 1). The joint saturation
graph G(v, v′) of two vertices of this polyhedron is depicted in Figure 2 (the
supports supp v = {p1, . . . , p6} and supp v′ = {p′1, . . . , p′6} of these vertices
are represented in Figure 1). By properties (a) and (b) of Lemma 5.7, with
each path of G(v, v′) it is possible to associate a sequence of consecutive
circular arcs of [n] such that in this sequence there is precisely one circular
arc for each edge of the path and the endpoints of each circular arc are the
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[n]

C

p′4 p′6p′5p′2 p′3p′1

C1 C3 C5 C7

p1 p2 p3 p4 p5 p6 n = 211

C2 C6 C8C4

Figure 1: The clutter and the supports of the vertices v and v′ considered in Example 5.8.

p′6

p1

p3

p5

p4

p′4

p′3

p′1

Figure 2: The joint saturation graph G(v, v′) of the vertices v and v′ of Example 5.8.
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nodes defining the corresponding edge of G(v, v′) (here, we call i and j the
endpoints of the circular arc [i, j]n of [n], and we say that two circular arcs
are consecutive if their intersection is one of their endpoints). Besides, each
circular arc of this sequence has the property that only its endpoints belong
to supp v ∪ supp v′ (one of the endpoints belongs to supp v \ supp v′ and the
other one to supp v′ \ supp v). For the path p3, p

′
3, p4, p

′
4, p5 of Figure 2,

the associated sequence of circular arcs is [p3, p
′
3]n, [p′3, p4]n, [p4, p

′
4]n, [p′4, p5]n,

and for the path p′6, p1, p
′
1, the associated sequence of circular arcs is [p′6, p1]n,

[p1, p
′
1]n (see Figure 1). We refer the reader to Example 5.15 below for more

examples.

Lemma 5.9. Let v and v′ be distinct vertices of Q∗(A). Suppose pi and pi+1

are in the same component F of the joint saturation graph G(v, v′), but do
not have a common neighbor in supp v′ \ supp v. Then, supp v ⊂ F , and so
in particular supp v ∩ supp v′ = ∅.

Proof. By properties (a) and (b) of Lemma 5.7, the path from pi to pi+1 must
contain all the elements of supp v, and so these must be in supp v\supp v′.

Lemma 5.10. Let v and v′ be distinct vertices of Q∗(A). Suppose the inclu-
sion

[
p′j, p

′
j+1

]
n
⊂ [pi, pi+1]n is satisfied. Then, if pi ↔ p′j−1, we must have

pi ↔ p′j. Similarly, if pi+1 ↔ p′j+2 then pi+1 ↔ p′j+1.

Proof. Assume pi ↔ p′j−1. As
[
p′j, p

′
j+1

]
n
⊂ [pi, pi+1]n, observe that if Ct ∈ C

is such that {pi, p′j+1} ⊂ Ct, then {pi+1, p
′
j}∩Ct 6= ∅. Thus, we conclude that

pi 6↔ p′j+1, and so p′j−1 6= p′j+1.

Since p′j−1 6= p′j+1, we must have p′j−1 6∈
[
pi, p

′
j

]
n
, because otherwise we

would have
[
p′j−1, p

′
j+1

]
n
⊂ [pi, pi+1]n, and so Ct ∩ supp v = ∅ for any Ct ∈ C

satisfying Ct∩supp v′ = {p′j} (at least one of such Ct exists), contradicting the
fact that supp v is a transversal. As pi is different from p′j−1 and p′j (because

pi ↔ p′j−1, and so pi ∈ supp v \ supp v′), observe that p′j−1 6∈
[
pi, p

′
j

]
n

is

equivalent to p′j 6∈
[
p′j−1, pi

]
n
.

Since pi ↔ p′j−1 and p′j 6∈
[
p′j−1, pi

]
n
, we have

[
p′j−1, pi

]
n
∩ supp v =

{pi} and
[
p′j−1, pi

]
n
∩ supp v′ = {p′j−1} (see Remark 5.4). Thus, we con-

clude that
[
p′j−1, p

′
j

]
n
∩ supp v = {pi} and

[
p′j, p

′
j+1 − 1

]
n
∩ supp v = ∅ be-

cause
[
p′j, p

′
j+1 − 1

]
n
⊂ [pi + 1, pi+1 − 1]n. Then, if Ct ∈ C is such that

Ct∩ supp v′ = {p′j}, we must have Ct∩ supp v = {pi} because Ct is a circular
arc and it must intersect supp v. Therefore, recalling Definition 3.1, we have
pi ↔ p′j.

16



Lemma 5.11. Let v and v′ be distinct vertices of Q∗(A). If supp v is con-
tained in a component of the joint saturation graph G(v, v′), then G(v, v′) is
either connected or almost-connected. Moreover, in the latter case, we have
|supp v| = |supp v′|.

Proof. Suppose G(v, v′) is not connected. Then, if F is the component con-
taining supp v, by Lemma 5.7 we conclude that F must be a path connecting
two consecutive elements of supp v, say pi and pi+1, and these elements do
not have a common neighbor in [pi, pi+1]n.

Observe that [pi, pi+1]n cannot contain more than two elements of supp v′.
Indeed, assuming the contrary we would have

[
p′j−1, p

′
j+1

]
n
⊂ [pi, pi+1]n for

some j (p′j−1 6= p′j+1), and so there would exist Ct ∈ C such that Ct∩supp v =
∅ (this would hold for any Ct ∈ C such that Ct∩supp v′ = {p′j}), contradicting
that supp v is a transversal.

If [pi, pi+1]n did not contain elements of supp v′, by Lemma 5.7 we would
conclude that G(v, v′) is the path F , contradicting our assumption that
G(v, v′) is not connected.

If there were two elements, say p′j and p′j+1, Lemma 5.10 would show that
pi ↔ p′j and pi+1 ↔ p′j+1, contradicting again that G(v, v′) is not connected.

Thus, there can only be exactly one element of supp v′ in [pi, pi+1]n, say
p′j, and this element cannot belong to F since we assume that G(v, v′) is
not connected. Therefore, G(v, v′) consists of the isolated node p′j and the
path F connecting pi with pi+1, and so it is almost-connected and |supp v| =
|supp v′|.

Before proving a characterization of vertex adjacency for Q∗(A) when
A ∈ Bm×n is row circular, we note that with this aim we can restrict our
analysis to the case where A has at most three ones per row, and the vertices
v and v′ of Q∗(A) satisfy supp v ∪ supp v′ = [n] (in this case, observe that
if pi ↔ p′j, then we must have either p′j = pi − 1 or p′j = pi + 1). This
follows from Remark 3.2 and the fact that for a row circular matrix A, the
contraction minor A/I of Remark 3.2 has at most three ones per row, as
shown in the next lemma.

Lemma 5.12. Let v and v′ be distinct vertices of Q∗(A), and let I = [n] \
(supp v∪ supp v′). Then, each row of the contraction minor A/I has at most
three ones.

Proof. Let us denote by C̄t the support of the t-th row of A/I.

17



[n]
1 l h i j k n

Ct

Cs

Figure 3: Illustration of the proof of Lemma 5.12 (the elements of supp v ∪ supp v′ are
represented by dots).

For the sake of simplicity, in this proof we will assume that the t-th
row of A/I corresponds to the t-th row of A (recall that when contracting,
dominating rows are eliminated, so this does not necessarily hold, but it can
be assumed without loss of generality).

Since by Lemma 5.5 each circular arc Ct ∈ C can contain at most two
elements of the support of each vertex of Q∗(A), after the contraction, the
resulting arc C̄t can contain at most four elements, two of them corresponding
to elements of supp v, and two corresponding to elements of supp v′.

Assume that an arc C̄t with four elements exists, and let h, i, j and k be
the corresponding elements of supp v ∪ supp v′. Without loss of generality,
suppose that [i, j]n ⊂ [h, k]n ⊂ Ct, and that i ∈ supp v (see Figure 3 for an
illustration of the relative positions of the main elements that appear in this
proof).

Let Cs ∈ C be such that Cs ∩ supp v = {i}. Note that (Cs \Ct) ∩ supp v′

cannot be empty because Cs ∩ supp v = {i} ( Ct ∩ supp v and A/I has
no dominating rows. So, let l be an element of (Cs \ Ct) ∩ supp v′. As
Cs is a circular arc and {l, i} ⊂ Cs, we either have {l, h, i} ⊂ [l, i]n ⊂ Cs
or {i, j, k, l} ⊂ [i, l]n ⊂ Cs (recall that [i, j]n ⊂ [h, k]n and l 6∈ Ct ⊃ [h, k]n).
Then, by the choice of Cs (i is the only element of supp v which belongs to Cs),
we either have {l, h} ⊂ Cs∩ supp v′ or {j, k, l} ⊂ Cs∩ supp v′. It follows that
{l, h} ⊂ Cs∩ supp v′, because {j, k, l} ⊂ Cs∩ supp v′ contradicts Lemma 5.5.
We conclude that {l, h, i} ⊂ [l, i]n ⊂ Cs and h ∈ supp v′.

Now, let Cr ∈ C be such that Cr ∩ supp v′ = {h}. Note that l 6∈ Cr,
because l 6= h and l ∈ supp v′ by the definition of l (see the previous para-
graph). Besides, since Cr is a circular arc and l 6∈ Cr, we have k 6∈ Cr.
Indeed, otherwise (i.e., if k ∈ Cr) we would have {h, i, j, k} ⊂ Cr (recall that
[i, j]n ⊂ [h, k]n, h ∈ Cr and l 6∈ [h, k]n), and then by the choice of Cr (h is the
only element of supp v′ in Cr) we could conclude that {i, j, k} ⊂ Cr ∩ supp v,

18



contradicting Lemma 5.5.
Note that [l, k]n ⊂ Cs ∪ Ct because h ∈ [l, i]n ⊂ Cs and [h, k]n ⊂ Ct. Be-

sides, we have [l, k]n∩(supp v∪supp v′) = {l, h, i, j, k}. Indeed, {l, h, i, j, k} ⊂
[l, k]n ∩ (supp v ∪ supp v′) due to the fact that l 6∈ Ct ⊃ [h, k]n ⊃ [i, j]n, and
if this intersection contained another element, this element should belong to
Cs (by our assumption we know that Ct ∩ (supp v ∪ supp v′) = {h, i, j, k}),
and then also to supp v′ (i is the only element of supp v which belongs to
Cs), which together with the fact that {l, h} ⊂ Cs ∩ supp v′ would contra-
dict Lemma 5.5. Finally, observe that Cr ⊂ [l, k]n because Cr is a circular
arc which contains h but, by the previous paragraph, does not contain l nor
k. Thus, we conclude that Cr ∩ (supp v ∪ supp v′) ⊂ {h, i, j} ( {h, i, j, k} =
Ct∩(supp v∪supp v′), which contradicts the fact that A/I has no dominating
rows.

We need finally the next lemma to prove a characterization of vertex
adjacency for Q∗(A).

Lemma 5.13. Two vertices v and v′ of Q∗(A) are not adjacent in Q∗(A) if
their joint saturation graph G(v, v′) has no edges.

Proof. As explained above, to prove this result we may assume that A has
at most three ones per row and supp v ∪ supp v′ = [n].

By Remark 3.3, G(v, v′) has at least three nodes, so let us fix pi ∈ supp v\
supp v′ and Ct ∈ C satisfying Ct ∩ supp v = {pi}. Then, by Lemma 5.6 we
have |Ct ∩ (supp v′ \ supp v)| = 2 and Ct ∩ (supp v′ \ supp v) = Ct ∩ supp v′.
Since supp v ∪ supp v′ = [n], it follows that at least one of pi − 1 or pi + 1
is in supp v′ \ supp v. Without loss of generality, assume p′j = pi + 1 is in
supp v′ \ supp v.

We claim that the sets

X = (supp v \ {pi}) ∪ {p′j} and X ′ = (supp v′ \ {p′j}) ∪ {pi}

are transversals. To see this, assume on the contrary that, for example,
X ∩ Cs = ∅ for some Cs ∈ C. Then, since supp v is a transversal, we
must have Cs ∩ supp v = {pi}. Using the fact that A has at most three
ones per row and that p′j = pi + 1 6∈ Cs, by Lemma 5.6 it follows that
{pi − 2, pi − 1} = (supp v′ \ supp v) ∩ Cs. Now, taking Cr ∈ C such that
Cr ∩ supp v′ = {pi − 1}, we necessarily have Cr ∩ supp v = {pi} because A is
row circular and {pi− 2, pi + 1} ⊂ supp v′ \ supp v. This implies pi ↔ p′j−1 =
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pi − 1, which contradicts that G(v, v′) has no edges. This proves that X is a
transversal. Similarly, it can be shown that X ′ is also an transversal.

Observe that X cannot coincide with supp v′ since we are exchanging just
one element of supp v′ \ supp v, but |supp v′ \ supp v| ≥ 2 by Lemma 5.6.

The lemma follows now from Proposition 2.6 defining x = χn(X), x′ =
χn(X ′), d = χn({pi}) and d′ = χn({p′j}).

We are now ready to prove a characterization of vertex adjacency for
Q∗(A).

Theorem 5.14. Let A ∈ Bm×n be a row circular matrix. Let v and v′ be
distinct vertices of Q∗(A), and G(v, v′) be their joint saturation graph.

The vertices v and v′ are adjacent in Q∗(A) if, and only if, one of the
following conditions is satisfied:

• G(v, v′) is connected.

• G(v, v′) is almost-connected and supp v ∩ supp v′ = ∅.

Proof. If one of the conditions above is satisfied, then G(v, v′) is partite-
connected, and so v and v′ are adjacent in Q∗(A) by Theorem 4.3.

Assume now that none of the conditions above is satisfied, and let us
show that v and v′ are not adjacent in Q∗(A). With this aim, as in the
proof of Lemma 5.13, we may assume that A has at most three ones per row
(thus, by Assumptions 2.3, A has between two and three ones per row) and
supp v ∪ supp v′ = [n].

If G(v, v′) has no edges, the result follows from Lemma 5.13, so we next
assume that G(v, v′) contains at least one edge.

Let F be a component containing an edge of G(v, v′). Since G(v, v′) is not
connected, by Lemma 5.7 we know that F is a path, not a cycle.

In order to show that v and v′ are not adjacent we will use Proposition 2.6.
For doing this, we let R = supp v ∩ supp v′ and define D and T by

D = F ∩ supp v, T = supp v \ (R ∪D). (5.4a)

Similarly, we set

D′ = F ∩ supp v′, T ′ = supp v′ \ (R ∪D′). (5.4b)

Finally, we define X and X ′ by

X = R ∪ T ∪D′, X ′ = R ∪ T ′ ∪D. (5.4c)
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Our first aim is to prove that X and X ′ are transversals, and we no-
tice that it is enough to prove this only for X, given the symmetry of the
definitions in (5.4).

So let us show that
Ct ∩X 6= ∅ (5.5)

for any Ct ∈ C.
Since supp v = R ∪ T ∪D is a transversal, it will be enough to consider

just the case where Ct intersects supp v at some element pi of D, i.e., assume

pi ∈ Ct ∩D. (5.6)

If pi is connected in G(v, v′) to two elements of supp v′\supp v (and hence
of D′), then these are p′j = pi−1 and p′j+1 = pi+1 because supp v∪supp v′ =
[n], and since Ct is a circular arc that contains pi and must intersect supp v′,
we have

∅ 6= {pi − 1, pi + 1} ∩ Ct = {p′j, p′j+1} ∩ Ct ⊂ D′ ∩ Ct ⊂ X ∩ Ct ,

and (5.5) holds.
Suppose now that pi is a leaf of the path F , and let

p′j ∈ D′

be its only neighbor.
If p′j ∈ Ct we are done, so we next consider the case

p′j 6∈ Ct . (5.7)

Let us assume that p′j = pi − 1, the case p′j = pi + 1 being similar.
We claim that pi and pi+1 cannot have a common neighbor in G(v, v′).

To see this, assume the contrary. Then, if |supp v| > 2, by Lemma 5.7(b)
we know that the common neighbor must belong to [pi, pi+1]n, but we have
assumed that the only neighbor of pi is p′j, and that p′j = pi − 1, so it does
not belong to [pi, pi+1]n. Thus, if pi and pi+1 had a common neighbor, we
must have |supp v| = 2, i.e., supp v = {pi, pi+1}. Note that in this case
we have supp v ∩ supp v′ = ∅ (because pi and pi+1 are nodes of G(v, v′),
and so they belong to supp v \ supp v′), and from Lemma 5.11 we conclude
also that G(v, v′) is either connected or almost-connected (because supp v =
{pi, pi+1} ⊂ F ). This proves our claim, since it contradicts our assumption
that none of the conditions of the theorem is satisfied.
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Since pi and pi+1 do not have a common neighbor in G(v, v′) by the pre-
vious paragraph, observe that pi+1 cannot belong to F , because otherwise by
Lemma 5.9 we could conclude that supp v ⊂ F and supp v∩ supp v′ = ∅, and
then by Lemma 5.11 we could also conclude that G(v, v′) is either connected
or almost-connected, contradicting again our assumption that none of the
conditions of the theorem is satisfied. Therefore, given that pi+1 ∈ supp v,
we have

pi+1 ∈ X.
In order to show that pi+1 is also in Ct, and therefore (5.5) holds, let us

see that the assumption
pi+1 /∈ Ct (5.8)

leads to a contradiction.
Since the t-th row of A has between two and three ones, and we have

assumed pi ∈ Ct in (5.6) and p′j = pi − 1 6∈ Ct in (5.7), it follows that
either Ct = {pi, pi + 1} or Ct = {pi, pi + 1, pi + 2}. What is more, as
supp v ∪ supp v′ = [n], p′j = pi − 1, pi ∈ supp v \ supp v′ (since pi is a node
of G(v, v′)) and we have assumed pi+1 /∈ Ct in (5.8), we conclude that either
Ct = {pi, pi + 1} = {pi, p′j+1} or Ct = {pi, pi + 1, pi + 2} = {pi, p′j+1, p

′
j+2}.

Besides, note that p′j+1 ∈ supp v′ \ supp v in both cases, because p′j+1 =
pi + 1 6∈ supp v due to the fact that pi+1 6∈ Ct. Then, if Ct = {pi, p′j+1}, we
have pi ↔ p′j+1 by Definition 3.1. Similarly, assuming Ct = {pi, p′j+1, p

′
j+2}, if

Cr ∈ C is such that Cr ∩ supp v′ = {p′j+1}, we must have Cr ∩ supp v = {pi}
(more precisely, we must have Cr = {pi, p′j+1} because p′j+1 − 2 = p′j 6∈ Cr
and p′j+1 + 1 = p′j+2 6∈ Cr by the choice of Cr, and the r-th row of A has at
least two ones), and so again we have pi ↔ p′j+1 by Definition 3.1. Thus, we
can always conclude that pi ↔ p′j+1, which contradicts the fact that p′j is the
only neighbor of pi.

Thus, the assumption (5.8) leads to a contradiction and (5.5) holds, show-
ing that X and X ′ are transversals.

Finally, we set

d = χn(D), d′ = χn(D′), x = v − d+ d′, x′ = v′ − d′ + d,

so that X = suppx and X ′ = suppx′.
We notice now that D and D′ are not empty and different from supp v

and supp v′ (respectively), as otherwise supp v ∩ supp v′ = ∅ and G(v, v′)
would be connected or almost-connected by Lemma 5.11, and therefore

0 � d � v and 0 � d′ � v′.
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type supp v supp v′ component/s

1 {1, 7, 13} {6, 8, 14, 15} 15, 1, 6, 7, 8, 13, 14 (even path)
2 {6, 12, 15} {5, 11, 14} 14, 15, 5, 6, 11, 12 (odd path)
3 {6, 12, 15} {5, 8, 14} 5, 6, 8, 12, 14, 15, 5 (cycle)
4 {6, 12, 15} {3, 9, 14} 15, 3, 6, 9, 12 (even path) + 14 (node)
5 {6, 12, 15} {6, 8, 14, 15} 8, 12, 14 (even path)
6 {6, 12, 15} {6, 11, 15} 11, 12 (odd path)

Table 1: Examples showing each of the six possible behaviors of the joint saturation graph
G(v, v′) of adjacent vertices v and v′ of Q∗(C 6

15).

Also, x 6= v since D 6= ∅ and D ∩ X = ∅, and x 6= v′ since otherwise we
would have T = T ′ = ∅ and then G(v, v′) would be connected.

The fact that v and v′ are not adjacent in Q∗(A) follows now from Propo-
sition 2.6.

Example 5.15. There are six types of joint saturation graphs of adjacent
vertices of Q∗(A) when A is row circular. Among consecutive ones circulant
matrices (see Example 5.1), C 6

15 is one of the smallest exhibiting all of these
types as shown in Table 1: disjoint supports and even path (type 1) or
odd path (type 2), cycle (type 3), almost-connected (type 4), and finally
overlapping supports and even path (type 5) or odd path (type 6).

Table 1 also exhibits a simple consequence of our discussions:

Corollary 5.16. If v and v′ are adjacent vertices of Q∗(A), then the cardi-
nalities of their supports differ by at most one.

Proof. If the joint saturation graph G(v, v′) of v and v′ is connected, then
by Lemma 5.7 it is either a path or a cycle. Since G(v, v′) is bipartite with
partite sets supp v \ supp v′ and supp v′ \ supp v, we conclude that the cardi-
nalities of supp v and supp v′ differ by at most one.

If G(v, v′) is almost-connected and supp v ∩ supp v′ = ∅, either supp v or
supp v′ is contained in a component of G(v, v′). Then |supp v| = |supp v′|
by Lemma 5.11.

The previous corollary is also a consequence of a technique by Bartholdi
et al. [2], which Eisenbrand et al. [7] employed to show that if A is row
circular, then the slices {x ∈ Q(A) | 1 · x = β} are integral polytopes for
β ∈ Z.
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When the matrix A is not row circular, the behavior of the joint saturation
graphs may be quite different, as shown by the following example, which in
particular shows that being partite-connected is not a necessary condition
for adjacency in the case of circulant matrices.

Example 5.17. Let us consider the circulant matrix

A = C (1, 1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0) ∈ R13×13,

which is the line-point incidence matrix of a non-degenerate finite projective
plane of order 3, and so it is a circulant matrix not isomorphic to any C k

n .
It turns out that if v and v′ are adjacent vertices of Q∗(A), then their

supports cannot be disjoint, and the components of their joint saturation
graph G(v, v′) are isomorphic to a complete bipartite graph: either K1,1 (one
edge), or K2,1 (path with two edges), or K3,1, or K3,3. In particular, the
nodes of G(v, v′) may have degree more than 2 (compare with Lemma 5.7).

For instance, consider the vertex v with support {6, 10, 11, 13}, and the
following choices for an adjacent vertex v′:

• v′ with support {5, 9, 10, 12}. Then G(v, v′) is isomorphic to K3,3.

• v′ with support {4, 5, 9, 10, 11, 13}. In this case, G(v, v′) is isomorphic
to K3,1.

• v′ with support {5, 7, 8, 10, 12, 13}. Then G(v, v′) has two components,
each isomorphic to K2,1, so it is not partite-connected (and hence
almost-connected), and the supports of v and v′ are not disjoint.

Moreover, the supports of the vertices of Q∗(A) have cardinality either 4
or 6, so that the conclusions of Corollary 5.16 do not hold (for instance, the
previous choice of v and the second choice for v′).

6. Minimally nonideal matrices

A matrix A ∈ Bm×n is said to be ideal if Q(A) = Q∗(A), and minimally
nonideal (mni for short) if it is not ideal but Q(A) ∩ {x ∈ Rn | xi = 0} and
Q(A) ∩ {x ∈ Rn | xi = 1} are integral polyhedra for all i ∈ [n].

There are still several interesting open questions regarding mni matrices.
On one hand, there is no good characterization of them and many studies
revolve around Lehman’s fundamental ideas [12–14]. On the other hand,
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few infinite families of mni matrices are known: C 2
n for odd n, the matrices

corresponding to degenerate finite projective planes, the family described by
Wang [21], as well as all of the corresponding blockers of these families.

Cornuéjols and Novick [6] stated that, for n odd and greater than 9, it
is always possible to add to C 2

n one row so that the resulting matrix is still
mni, obtaining another infinite family of mni matrices. In this section we
will apply our findings to prove this result, showing in addition other more
elaborate infinite families of mni matrices based on the family C 2

n . Let us
start with the following definition.

Definition 6.1. If a binary matrix A with no dominating rows and n columns
contains a row submatrix A1 ∈ Bn×n which is nonsingular and has r (where
r ≥ 2) ones per row and per column, and the other rows of A have more
than r ones, then A1 is called a core of A.

Notice that if A has a core then it is unique (up to the permutation of
rows). On the other hand, A may coincide with its core.

We summarize some of Lehman’s results [12–14] on mni matrices and
their consequences in the next two theorems. With this aim, let us recall
that the matrix associated with the degenerate projective plane with t + 1
points and lines is

Jt =



0 1 1 . . . 1 1
1 1 0 . . . 0 0
1 0 1 . . . 0 0
...

...
...

. . .
...

...
1 0 0 · · · 1 0
1 0 0 · · · 0 1


∈ B(t+1)×(t+1).

Theorem 6.2 ([12–14]). If A ∈ Bm×n is a mni matrix, then Q(A) has a
unique fractional vertex and the blocker of A, b(A), is mni.

Theorem 6.3 ([12–14]). Let A ∈ Bm×n be a mni matrix which is not iso-
morphic to Jt for any t ≥ 2. Then A has a core, say A1, and its blocker
b(A) has a core, say B1, such that:

(a) A11 = r 1 and B11 = s1.

(b) The rows of A1 and B1 may be permuted so that

A1B
T
1 = J + (rs− n) I, (6.1)
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where J is the matrix of all ones and I is the identity matrix.

(c) f ∗ = 1
r
1 is a fractional vertex of Q(A).

(d) f ∗ is in exactly n edges of Q(A). More precisely, f ∗ is adjacent in
Q(A) to exactly n vertices which make up the rows of B1.

(e) x · 1 ≥ s defines a facet of Q∗(A), and Q(A) ∩ {x ∈ Rn | x · 1 ≥ s} =
Q∗(A).

Lütolf and Margot [15] gave a condition which ensures that a binary
matrix is mni.

Lemma 6.4 ([15, Lemma 2.8]). Suppose that A ∈ Bm×n has core A1, with
r ones per row, that its blocker b(A) has core B1, with s ones per row, and
that (6.1) holds. Then, if Q(A) has just one fractional vertex, A must be
mni.

Despite the “minimal” in mni, a mni matrix may have a row submatrix
which is also mni. Cornuéjols and Novick [6], and later Lütolf and Margot
[15], used this fact to construct many new mni matrices by adding rows to
known ones. Of interest to us here is the possibility of adding one or more
rows to C 2

n , which is a mni matrix for n odd, to obtain another mni matrix.
One of the main tools for studying the vertices of the polyhedron which

results from the addition of an inequality to the system of inequalities de-
scribing a given polyhedron is the following variant of Lemma 8 of Fukuda
and Prodon [9], which essentially says that the new vertices are obtained by
intersecting the edges of the original polyhedron with the hyperplane associ-
ated with the new inequality.

Proposition 6.5 (variant of [9, Lemma 8]). Let A ∈ Rm×n be a matrix with
non-negative entries, and suppose P = {x ∈ Rn | Ax ≥ b, x ≥ 0} is a full
dimensional polyhedron. Let us further assume that the inequality a · x ≥ c
is independent of those defining P , where a ≥ 0 and c > 0.

Then, any vertex v of the polyhedron P ′ = P ∩ {x ∈ Rn | a · x ≥ c} must
satisfy one (and only one) of the following:

• v is a vertex of P satisfying a · v ≥ c,

• v is a convex combination v = αw + (1 − α)w′ of adjacent vertices w
and w′ of P , satisfying a · w > c, a · w′ < c, and a · v = c, that is,
α = (c− a · w′)/(a · w − a · w′),
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• v = w + βeh for some vertex w of P , β > 0 and h ∈ [n], such that
{w + γeh | γ ≥ 0} is an (infinite) edge of P , a · w < c and a · v = c,
that is, β = (c− a · w)/ah (necessarily ah 6= 0).

Suppose the mni matrix A has core A1 and its blocker B = b(A) has core
B1, so that the properties of Theorem 6.3 are satisfied, in particular (6.1).
Let B be the set consisting of the fractional vertex f ∗ and the binary vertices
of Q(A) which are adjacent to it (i.e., the rows of B1, see Theorem 6.3).
Suppose furthermore that the binary matrix M has more than r ones per
row, and we add to A the rows of M obtaining the matrix E, which has no
dominating rows. Schematically,

E =

[
A
M

]
. (6.2)

Then, we have:

Lemma 6.6. If Mu ≥ 1 for all u ∈ B, and any vertex of Q(E) which is not
in B is binary and has more than s ones, then E is mni.

Proof. Since Q(E) ⊂ Q(A), if v ∈ Q(E) is a vertex of Q(A), then it is also
a vertex of Q(E). Thus, the elements of B are vertices of Q(E) because
Mu ≥ 1 for u ∈ B. Since any vertex of Q(E) which is not in B is binary, we
conclude that Q(E) has just one fractional vertex.

By Lemma 6.4, it is enough to show now that E has core A1 and b(E)
has core B1. The first condition is clear (M has more than r ones per row),
and the second one follows from the fact that the rows of b(E) are exactly
the binary vertices of Q(E), and that any vertex of Q(E) which is not in B
has more than s ones.

The following result relates vertex adjacency in Q(A) with vertex
adjacency in Q∗(A) when A is mni.

Lemma 6.7. Let A be a mni matrix not isomorphic to any Jt (t ≥ 2).
Suppose the core A1 of A has r ones per row, and the core B1 of its blocker
has s ones per row. Let v and v′ be binary vertices of Q(A). Then, we have:

(a) If max {v · 1, v′ · 1} > s, the vertices v and v′ are adjacent in Q(A) if
and only if they are adjacent in Q∗(A).
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(b) If v ·1 = v′ ·1 = s, the vertices v and v′ are always adjacent in Q∗(A),
and they are adjacent in Q(A) if and only if supp v ∪ supp v′ 6= [n].

Proof. By Theorem 6.3(e), we know thatQ(A)∩{x ∈ Rn | x·1 ≥ s} = Q∗(A).
If max {v · 1, v′ · 1} > s, at least one of the vertices v and v′ does not satisfy
the inequality x · 1 ≥ s tightly. Therefore, when we add this inequality to
the system Ax ≥ 1, the adjacency relation between these vertices does not
change. This shows (a).

For the first part of (b), we notice that v satisfies with equality n− 1 of
the inequalities corresponding to the rows of A1, as v is adjacent to f ∗ = 1

r
1

by Theorem 6.3(d). Since this is also true for v′, v and v′ satisfy tightly n−2
inequalities coming from A1 and the equality x · 1 = s which defines a facet
of Q∗(A) and is linearly independent with those of A1 (as f ∗ does not satisfy
it). Thus, v and v′ are adjacent in Q∗(A).

For the last part of (b), assume first that supp v ∪ supp v′ 6= [n].
Let y =

∑
k∈[`] λku

k be a strict convex combination of vertices of

Q(A), and suppose y ≤ 1
2

(v + v′). Observe that yh = 0 for any
h ∈ supp v ∪ supp v′. Then for any of such h and any k ∈ [`], we have
ukh = 0, and so uk 6= f ∗, because y is a strict convex combination of
u1, . . . , u`. Therefore uk is a binary vertex of Q(A), and so of Q∗(A),
for all k ∈ [`]. Since v and v′ are adjacent in Q∗(A) by the previous
paragraph, from the equivalence of (a) and (c) of Proposition 2.5
when P = Q∗(A), it follows that ` = 2 and, without loss of generality,
u1 = v and u2 = v′. Using again the equivalence of (a) and (c) of
Proposition 2.5 but in this case when P = Q(A), we conclude that
v and v′ are adjacent in Q(A).

Finally, if we assume that supp v∪supp v′ = [n], we have 1
2

(v+v′) ≥
f ∗ (since r ≥ 2, see Definition 6.1), and then by the equivalence
of (a) and (c) of Proposition 2.5 when P = Q(A), we conclude that
v and v′ are not adjacent in Q(A).

In the remainder of this section we will focus our attention on the (mni)
matrix C 2

n for n odd. This matrix coincides with its core, having exactly 2
ones per row and per column, and the core of b(C 2

n ) has s = (n+ 1)/2 ones
per row and per column.

It is convenient to observe that C 2
n is the edge-node incidence matrix of

the cycle graph Cn with n nodes, and that for any pair of binary vertices
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v and v′ of Q(C 2
n ), the joint saturation graph G(v, v′) coincides with the

subgraph of Cn induced by supp v4 supp v′.
We now present two results providing properties of the vertices

of Q(C 2
n ).

Corollary 6.8. Let v and v′ be two binary vertices of Q(C 2
n ). If v and

v′ are adjacent in Q(C 2
n ), then their joint saturation graph G(v, v′)

is connected. Moreover, if max {v · 1, v′ · 1} > s = (n+ 1)/2, then also
the reverse implication holds.

Proof. To prove the first part of the corollary, observe that for any
A ∈ Bm×n, two binary vertices of Q(A) are adjacent in Q(A) only if
they are adjacent in Q∗(A). Then, as a consequence of the “only if”
part of Corollary 2.2, v and v′ are adjacent in Q(C 2

n ) only if G(v, v′) is
connected (recall that the subgraph of Cn induced by supp v4supp v′

coincides with G(v, v′)).
The second part of the corollary follows readily from Lemma 6.7(a)

and the “if” part of Corollary 2.2 (or Theorem 5.14).

Lemma 6.9. The only fractional vertex of Q(C 2
n ) is f ∗ = 1

2
1. Any binary

vertex of Q(C 2
n ) is the characteristic vector of a minimal node cover of Cn,

thus it has at least s = (n+1)/2 ones. A point v ∈ Bn is a vertex of Q(C 2
n ) if

and only if it has neither three consecutive ones, nor two consecutive zeros.

Proof. We omit the proof, since the only non-trivial part of the lemma follows
from Theorem 6.2.

In [6], Cornuéjols and Novick remark that C 2
n can be extended to another

mni matrix by appending to it one row of a specific form. Next, we prove
this fact.

Proposition 6.10 ([6]). For n ≥ 9 odd, let {i, j, l} ⊂ [n] be such that
i < j < l, j− i ≥ 3 odd, l− j ≥ 3 odd, and either i 6= 1 or l 6= n. Let a ∈ Bn
be the characteristic vector of the set {i, j, l}. Then, the matrix E obtained
by adding to C 2

n the row vector a is mni.

Proof. By Lemma 6.6 it will be enough to show that:

(a) If B is the set consisting of the fractional vertex f ∗ = 1
2
1 and the

vertices of Q(C 2
n ) which are adjacent to it, then a ·u ≥ 1 for all u ∈ B.
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(b) Any vertex of Q(E) not in B is binary and has more than s = (n+1)/2
ones.

To show (a), notice that a ·f ∗ = 3/2 > 1. Moreover, if u is adjacent to f ∗

in Q(C 2
n ), then u is in the core of b(C 2

n ) by Theorem 6.3(d). Therefore, we
have a · u ≥ 1 due to the fact that b(C 2

n ) = C (1, 1, 0, 1, 0, 1, . . . , 0, 1, 0, 1, 0)
and that |[i, j]n|, |[j, l]n| and |[l, i]n| are even (the latter follows from the fact
that j − i, l − j and n are odd).

To show (b) we rely on Proposition 6.5.
Suppose v is a vertex of Q(E) which is a convex combination of the

adjacent vertices w and w′ of Q(C 2
n ),

v = αw + (1− α)w′,

with
a · v = 1, a · w > 1, a · w′ < 1. (6.3)

Since a·f ∗ = 3/2 and a·u ≥ 1 for any vertex u of Q(C 2
n ) which is adjacent

to f ∗, we conclude that f ∗ is different from both w and w′. Thus, w and w′ are
binary (because f ∗ in the only fractional vertex of Q(C 2

n ) by Theorem 6.2),
and so we must have

a · w′ = 0 .

Now, since w and w′ are adjacent in Q(C 2
n ), by Corollary 6.8 we know

that their joint saturation graph G(w,w′), which coincides with the subgraph
of Cn induced by suppw4suppw′, is connected. As G(w,w′) is bipartite and
n is odd, G(w,w′) cannot be equal to Cn, and so it is a path. Suppose that
|(suppw 4 suppw′) ∩ {i, j, l}| ≥ 2. Then |(suppw \ suppw′) ∩ {i, j, l}| ≥ 1
and |(suppw′ \ suppw)∩{i, j, l}| ≥ 1, because |[i, j]n|, |[j, l]n| and |[l, i]n| are
even, and by Definition 3.1 each edge of the path G(w,w′) connects a node
in suppw \ suppw′ with a node in suppw′ \ suppw. Thus, it is not possible
to have |suppw′ ∩ {i, j, l}| = 0 and |suppw ∩ {i, j, l}| ≥ 2. Therefore, since
a · w′ = 0, we must have

a · w ≤ 1,

which contradicts (6.3). We conclude that the second possibility described
in Proposition 6.5 cannot happen for Q(E) = Q(C 2

n ) ∩ {x ∈ Rn | a · x ≥ 1}.
Suppose now v is a vertex of Q(E) of the form

v = w + βeh,
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where w is a vertex of Q(C 2
n ) satisfying a ·w < 1, and a · v = 1. Once again,

w cannot be either f ∗ or any of the vertices of Q(C 2
n ) which are adjacent to

it. Thus, by Theorems 6.2 and 6.3 it follows that w is binary and s < w · 1.
Then, we have a · w = 0, which implies β = 1 since a · v = 1. Thus, we
conclude that v is binary, and

s < w · 1 ≤ v · 1 ,

proving (b).

One would hope that it is possible to add a circulant matrix M instead
of just a single row, but this is not true in general. For instance, if we add
to C 2

15 the matrix

M =


1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

 ,
the resulting matrix E is not mni, whereas, by Proposition 6.10, adding just
one row of M we obtain a mni matrix.

Let us see how to obtain systematically a mni matrix by adding to C 2
n all

the rows of a circulant matrix. With this aim, let us assume n = 3ν, where
ν ∈ N is greater than or equal to 3. Henceforth, for each i ∈ [3], we denote
by ai the unique row vector of Bn for which

supp ai = {i, i+ 3, . . . , i+ 3(ν − 1)} (6.4)

and by wi the unique point of Bn for which

suppwi = [n] \ supp ai . (6.5)

Thus, we have for example w1 = (0, 1, 1, 0, 1, 1, . . . , 0, 1, 1). We observe that
wi · ai = 0 and (by Lemma 6.9) wi is a vertex of Q(C 2

n ), for each i ∈ [3].
Finally, we let W = {w1, w2, w3}.

We next show:

Theorem 6.11. Let n = 3ν be odd, where ν ≥ 3. If E is the matrix obtained
from C 2

n by appending to it the rows a1, a2 and a3 (defined by (6.4)), then E
is mni.
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The proof of this result is based on the following two lemmas, in which
we preserve the notation.

Lemma 6.12. For each i ∈ [3] the following statements are equiva-
lent:

(a) u is adjacent to wi (defined by (6.5)) in Q(C 2
n ).

(b) u is binary and there exists j ∈ [n] such that suppu \ suppwi =
{j} and suppwi \ suppu = {j − 1, j + 1} (here, as usual, the
operations on the indices should be understood modulo n).

Proof. In the first place, assume that (b) holds. Then, u can be
obtained by replacing in wi a subvector of the form (1, 1, 0, 1, 1) by
one of the form (1, 0, 1, 0, 1), and so by Lemma 6.9 it follows that
u is a vertex of Q(C 2

n ). Besides, since G(wi, u) consists of the path
j − 1, j, j + 1 and wi · 1 = 2ν is strictly greater than the number
s = (3ν + 1)/2 of ones per row in the core of b(C 2

n ), by Corollary 6.8
we conclude that u and wi are adjacent in Q(C 2

n ).
Assume now that (a) hold. Since wi · 1 = 2ν > s = (3ν + 1)/2,

by Theorem 6.3(d) we conclude that u is not equal to the unique
fractional vertex f ∗ = 1

2
1 of Q(C 2

n ), and so u is binary. Then, as u
and wi are adjacent in Q(C 2

n ), by Corollary 6.8 we know that G(wi, u)
is connected. Let j be a node of G(wi, u) contained in suppu\ suppwi

(such a node exists by Remark 3.3). Then, by the definition of
wi, we necessarily have {j − 2, j − 1, j + 1, j + 2} ⊂ suppwi. Since
G(wi, u) is a connected bipartite subgraph Cn of with partite sets
suppu \ suppwi and suppwi \ suppu, it follows that besides j, only
j − 1 and j + 1 can be nodes of G(wi, u). Assume that j − 1 is not a
node of G(wi, u), or equivalently that j−1 ∈ suppu. Since j−2 is not
a node of G(wi, u), we necessarily have j−2 ∈ suppu, and so u would
have three consecutive ones, contradicting Lemma 6.9. It follows
that j−1 6∈ suppu. Similarly, it can be shown that j+1 6∈ suppu. We
conclude that suppu\ suppwi = {j} and suppwi \ suppu = {j−1, j+1},
which completes the proof.

Lemma 6.13. If E is the matrix C 2
n to which we have appended the rows a1,

a2 and a3 (defined by (6.4)), then the vertices of Q(E) are those of Q(C 2
n )

except for w1, w2 and w3 (defined by (6.5)).
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Proof. In the first place, we claim that v · ai ≥ 1 for every vertex v of Q(C 2
n )

different from wi. To see this, assume v is a vertex of Q(C 2
n ) such that

v · ai < 1. Then v is binary (for the unique fractional vertex f ∗ = 1
2
1 of

Q(C 2
n ) we have f ∗ · ai = ν

2
≥ 3

2
) and v · ai = 0, and so v is dominated by

wi. Thus, v and wi must coincide as they are both vertices of Q(C 2
n ). This

proves our claim.
By our claim above we conclude that every vertex of Q(C 2

n ) not in W =
{w1, w2, w3} is a vertex of Q(E).

Conversely, let us see that if we add one row ai at a time then no new
vertices are created, and the points in W are the only vertices that are
eliminated.

In the first place, let us consider the intersection of Q(C 2
n ) with the

half-space {x ∈ Rn | ai · x ≥ 1}. If new vertices are created, then by
Proposition 6.5 they should come from the intersection of the hyperplane
{x ∈ Rn | ai · x = 1} with an edge of Q(C 2

n ). This edge should be incident
to a vertex v satisfying ai · v < 1, and therefore, by our claim above, this
edge is incident to wi. Given that wi is adjacent only to the vertices which
satisfy the condition of Lemma 6.12(b), and that any of such vertices be-
longs to {x ∈ Rn | ai · x = 1}, from Proposition 6.5 we conclude that any
new vertex must come from the intersection of an infinite edge of the form
{wi+γej | γ ≥ 0} with the hyperplane {x ∈ Rn | ai ·x = 1}. Since ai ·wi = 0,
this intersection must be of the form {wi+ej} with j ∈ supp ai = [n]\suppwi.
Let uj be the vertex of Q(C 2

n ) defined by Lemma 6.12(b), i.e., let uj ∈ Bn
be such that suppuj \ suppwi = {j} and suppwi \ suppuj = {j − 1, j + 1}.
We observe that by the definition of uj we have:

wi + ej = uj + ej−1 + ej+1.

It follows that wi + ej dominates uj, and then it cannot be a vertex of
Q(C 2

n ) ∩ {x ∈ Rn | ai · x ≥ 1}. Thus, we conclude that no new vertex is
created and the vertices of Q(C 2

n ) ∩ {x ∈ Rn | ai · x ≥ 1} are the vertices of
Q(C 2

n ) except for wi.
Finally, since ai · wh = ν > 1 for h 6= i, observe that the addition of the

inequality ai ·x ≥ 1 does not modify the adjacency relations for wh (h 6= i) in
the resulting polyhedron, and so Lemma 6.12 still holds if we replace
in its statement Q(C 2

n ) by this polyhedron. Then, we can repeat the
argument above each time we add a new inequality. This completes the
proof.
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Proof of Theorem 6.11. The previous lemmas show that, except for the points
in W , the vertices of Q(C 2

n ) and Q(E) coincide. Moreover, no vertex of
B belongs to W (the former are either the fractional vertex f ∗ or have
s = (3ν + 1)/2 ones, while the latter have 2ν ones). Thus, Lemma 6.6
yields that E is mni.
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[19] Michini, C., Sassano, A., 2014. The Hirsch Conjecture for the fractional
stable set polytope. Math. Programming 147 (1-2), 309–330.

[20] Papadimitriou, C. H., 1978. The adjacency relation on the traveling
salesman polytope is NP-complete. Math. Programming 14 (1), 312–
324.

[21] Wang, J., 2011. A new infinite family of minimally nonideal matrices.
Journal of Combinatorial Theory, Series A 118 (2), 365–372.

[22] West, D., 2001. Introduction to Graph Theory, 2nd Edition. Prentice
Hall.

36


	Introduction
	Notation and preliminary results
	The joint saturation graph
	A sufficient condition for adjacency
	Characterization of vertex adjacency for row circular matrices
	Minimally nonideal matrices

