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A Parallel Quantized State System Solver for ODEs

Joaqúın Fernandeza,∗, Ernesto Kofmana, Federico Bergeroa

aLaboratorio de Sistemas Dinámicos, CIFASIS-CONICET, Rosario, Argentina

Abstract

This work introduces novel parallelization techniques for Quantized State System (QSS)
simulation of continuous time and hybrid systems and their implementation on a multi-
core architecture. Exploiting the asynchronous nature of QSS algorithms, the novel
methodologies are based on the use of non–strict synchronization between logical pro-
cesses. The fact that the synchronization is not strict allows to achieve large speedups
at the cost of introducing additional numerical errors that, under certain assumptions,
are bounded depending on some given parameters.

Besides introducing the parallelization techniques, the article describes their imple-
mentation on a software tool and it presents a theoretical analysis of the aforementioned
additional numerical error. Finally, the performance of the novel methodology and its
implementation is deeply evaluated on four large scale models.
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1. Introduction

The modeling and simulation (M&S) of continuous systems is at the core of scientific
research and different engineering areas. Every year, M&S practitioners develop larger
and more complex models and their simulations carry high computational costs. With
the advent of multi–core processors and multi–node clusters of computers, the parallel
simulation of continuous time systems became the usual way to reduce execution times
of these simulations.

Continuous time models are usually expressed as (or transformed to) sets of Ordinary
Differential Equations (ODE), where numerical integration algorithms must be applied
in order to solve them. Most of these algorithms are based on time–discretization [1, 2],
i.e. they compute the value of all state variables at some given time points.

There are certain problems in which the usage of these classic numerical algorithms
yields huge computational costs. In particular, in very large systems (millions of state
variables) the evaluations of the model functions may require millions of computations.
In addition, if the system is stiff (i.e, in presence of fast and slow dynamics), implicit
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algorithms must be used that call for huge matrix inversions on several simulation steps.
These problems are worsened in ODEs having frequent discontinuities, where the algo-
rithms must detect their occurrence and restart after each of them.

Over the years, in order to mitigate the huge computational costs associated to these
types of problems, various approaches for the parallel implementation of the numerical
algorithms have been proposed [3, 4, 5, 6].

There is a newly developed family of ODE numerical integration methods called
QSS that replace the time discretization of the classic algorithms by the quantization
of the state variables [7, 1]. QSS integration methods have certain features (sparsity
exploitation, efficient discontinuities handling [8], explicit stiff integration [9]) that reduce
the computational costs in the simulation of large scale systems [10, 11, 12]. These facts
motivated the usage of QSS methods in several applications, including Building and
Power Systems simulation [13, 14] (where there are also plans to include these algorithm
in the EnergyPlus software package [15]), as well as large biological models [16], water
distribution models [17], wildfire propagation [18], and simulation of high energy particles
[19] (where there is also a preliminary implementation of QSS algorithms in the software
Geant4).

QSS methods are asynchronous in the sense that each state variable evolves at a
different pace. Thus, if a loosely coupled large scale model is split in two or more parts,
they only need to interact at the steps corresponding to changes in variables that are
common to different sub-models. This fact enables to spread the simulation over different
computing units so that each one integrates a different sub–model.

Based on this idea, a parallel implementation of QSS methods for a multi–core ar-
chitecture was presented in [20]. That work used a discrete event implementation of the
QSS algorithms on a software called PowerDEVS [21], and the synchronization between
different sub-models was achieved using a real–time clock. A limitation of that approach
was that discrete event implementations of QSS are inefficient [22] and the technique re-
quired the usage of a real time operating system, what restricted their usage on general
purpose computers.

In this work, we present two novel techniques for parallel simulation with QSS al-
gorithms that do not require the usage of real–time OS. Here, the synchronization be-
tween sub-models is non–strict, allowing a bounded difference between the local simula-
tion times. We formally show that this bounded de–synchronization only introduces a
bounded numerical error additional to that introduced by the QSS approximation.

We also describe the implementation of these techniques on the Stand Alone Quan-
tized State System Solver [22], a tool implementing the whole family of QSS algorithms
that is more than one order of magnitude faster than PowerDEVS. This implementation,
based on native POSIX threads, targets shared memory architectures.

In order to evaluate the performance of the implementation, we perform a deep anal-
ysis on four large scale problems where it had been shown that the sequential implemen-
tation of QSS algorithms is very efficient.

The article is organized as follows. Section 2 introduces the main concepts used along
the article and reviews the state of the art and related work in the area of parallel ODE
simulation. Then, Section 3 presents a new parallelization technique and its implemen-
tation on the QSS Stand Alone Solver. Later, Section 4 analyzes the numerical error
introduced by this technique and, based on this analysis, Section 5 proposes a second
synchronization technique that performs an adaptive adjustment of the synchronization
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parameter. Section 6 presents the application of these two techniques to four large scale
models, and Section 7 concludes the article and discusses about future work.

2. Background

2.1. Quantized State System Methods
Quantized State System (QSS) methods replace the time discretization of classic

numerical integration algorithms by the quantization of the state variables.
Given the ODE

ẋa(t) = f(xa(t), t) (1)

with xa ∈ Rn, the first order Quantized State System method (QSS1) [7] approximates
it by

ẋ(t) = f(q(t), t) (2)

Here, x is the state vector (of the numerical solution), and q is the quantized state vector.
Each entry qj(t), with j = 1, . . . , n, is related to that of the state vector xj(t) by the
following hysteretic quantization function:

qj(t) =
{
xj(t) if |xj(t)− qj(t−)| ≥ ∆Qj
qj(t−) otherwise (3)

where ∆Qj is called quantum and qj(t−) denotes the left-sided limit of qj(·) at time t.
It can be easily seen that qj(t) follows a piecewise constant trajectory that only

changes when the difference between qj(t) and xj(t) becomes equal to the quantum.
After each change in the quantized variable, it results that qj(t) = xj(t).

Due to the particular form of the trajectories, the solution of Eq. (2) is straightforward
and can be easily translated into a simple simulation algorithm.

For j = 1, . . . , n, let tj denote the next time at which |qj(t)− xj(t)| = ∆Qj . Then,
the QSS1 simulation algorithm works as follows:

Algorithm 1: QSS1.

1 while(t < tf ) // s i m u l a t e u n t i l f i n a l time tf

2 t = min(tj), j ∈ [1, n] // a d a v a n c e s i m u l a t i o n time

3 i = argmin(tj), j ∈ [1, n] // the i - th q u a n t i z e d s t a t e c h a n g e s f i r s t

4 exi = t− txi // e l a p s e d time s i n c e last xi u p d a t e

5 xi = xi + ẋi · exi // u p d a t e i - th s t a t e v a l u e

6 qi = xi // u p d a t e i - th q u a n t i z e d s t a t e

7 ti = min(τ > t) subject to |qi − xi(τ)| = ∆Qi // c o m p u t e next i - th q u a n t i z e d

s t a t e c h a n g e . Here xi(τ) = xi + ẋi · (τ − t)
8 for each j ∈ [1, n] such that ẋj depends on qi
9 exj = t− txj // e l a p s e d time s i n c e last xj u p d a t e

10 xj = xj + ẋj · exj // u p d a t e j - th s t a t e v a l u e

11 txj = t // last xj u p d a t e

12 ẋj = fj(q, t) // r e c o m p u t e j - th s t a t e d e r i v a t i v e

13 tj = min(τ > t) subject to |qj − xj(τ)| = ∆Qj // r e c o m p u t e j - th q u a n t i z e d

s t a t e c h a n g i n g time . Here xj(τ) = xj + ẋj · (τ − t)
14 end for

15 txi = t // last xi u p d a t e

16 end while
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Notice that line 8 requires that the algorithm knows which state derivatives depend on
each state variable, i.e., the implementation of a QSS1 solver needs structural information
about the model.

The QSS1 method has the following features:

• The quantized states qj(t) follow piecewise constant trajectories, and the state
variables xj(t) follow piecewise linear trajectories.

• The state and quantized variables never differ more than the quantum ∆Qj . This
fact ensures stability and global error bound properties [7].

• The quantum ∆Qj of each state variable can be chosen to be proportional to the
state magnitude, leading to an intrinsic relative error control [23].

• Each step is local to a state variable xj (the one which reaches the quantum change),
and it only provokes evaluations of the state derivatives that explicitly depend on
it.

• The fact that the state variables follow piecewise linear trajectories makes very easy
to detect discontinuities. Moreover, after a discontinuity is detected, its effects are
not different to those of a normal step. Thus, QSS1 is very efficient to simulate
discontinuous systems [8].

However, QSS1 has some limitations as it only performs a first order approximation, and
it is not suitable to simulate stiff systems.

The first limitation was solved with the introduction of higher order QSS methods like
the second order accurate QSS2 [24], where the quantized state follow piecewise linear
trajectories, and the third order accurate QSS3 [25], where the quantized state follow
piecewise parabolic trajectories.

Regarding stiff systems, a family of Linearly Implicit QSS (LIQSS) methods of order
1 to 3 was proposed in [9]. LIQSS methods are explicit algorithms that can efficiently
integrate stiff systems provided that they have certain structure.

All QSS and LIQSS methods share the representation of Eq.(2). They only differ in
the way that qi is computed from xi. Thus, their simulation algorithms are very similar
to that of Algorithm 1.

2.2. The Stand–Alone QSS Solver
As mentioned above, QSS methods replace time discretization of classic integration

algorithms by the quantization of the state variables leading to a discrete event approxi-
mation of the original model. As a consequence, most QSS implementations are based on
DEVS (Discrete EVent System Specification) [21]. Although these implementation are
simple, the overhead imposed by the synchronization and event transmission mechanism
of the DEVS simulation engine makes them inefficient. The stand–alone QSS solver pre-
sented in [22] implements the entire family of QSS methods in an efficient way without
using a DEVS simulation engine improving simulation times in more than one order of
magnitude.

The stand–alone QSS solver simulates models that can contain discontinuities. These
models are represented as follows:

ẋ(t) = f(x,d, t) (4)
4



where d is a vector of discrete variables that can only change when a condition

ZCi(x,d, t) = 0 (5)

for some i ∈ {1, · · · , z} is met. The components ZCi form a vector of zero–crossing
functions ZC(x,d, t). When a zero–crossing condition of Eq.(5) is verified, the state and
discrete variables can change according to the corresponding event handler:

(x(t),d(t)) = Hi(x(t−),d(t−), t) (6)

These models are simulated using QSS methods that approximate Eq.(4) by

ẋ(t) = f(q,d, t) (7)

where each component qi(t) is a piecewise polynomial approximation of the corresponding
component of the state xi(t).

The simulation is performed by three modules interacting at runtime:

1. The Integrator, that integrates Equation (7) assuming that the piecewise poly-
nomial quantized state trajectory q(t) is known.

2. The Quantizer, that computes q(t) from x(t) according to the QSS method in use
and their tolerance settings (there is a different Quantizer for each QSS method).
That way, it provides the polynomial coefficients of each quantized state qi(t) and
computes the next time at which a new polynomial section starts (i.e., when the
condition |qi(t)− xi(t)| = ∆Qi is met).

3. The Model, that computes the scalar state derivatives ẋi = fi(q,d, t), the zero–
crossing functions ZCi(x,d, t), and the corresponding event handlers Hi(q,d, t).
Besides, it provides the structural information required by the algorithms.

The structure information of the Model is automatically extracted at compile time by a
Model Generator module. This module takes a standard model described in a subset
of the Modelica language [26] and produces an instance of the Model module as required
by the QSS solver including the structure information and the possibility of separately
evaluating scalar state derivatives.

Figure 1 shows the basic interaction scheme between the three modules mentioned
above.

The structural information is comprised in four binary incidence matrices:

• SD (states to derivatives) is such that SDi,j = 1 indicates that xi is involved in
the calculation of ẋj .

• SZ (states to zero–crossing functions) is such that SZi,j = 1 indicates that xi is
involved in the calculation of ZCj .

• HD (handlers to state derivatives) is such that HDi,j = 1 indicates that the
execution of handler Hi changes some state or discrete variable involved in the
calculation of ẋj .
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Figure 1: Stand Alone QSS Solver – Basic Interaction Scheme

• HZ (handlers to zero–crossing functions) is such that HZi,j = 1 indicates that
the execution of handler Hi changes some state or discrete variable involved in the
calculation of ZCj .

Taking into account that most large systems are loosely coupled, the structure ma-
trices are stored in a sparse form.

The simulation is carried on by the Integrator module, that advances the simulation
time executing the simulation steps. Each simulation step may correspond to a change
in a quantized variable qi or to the execution of an event handler Hi triggered by a
zero–crossing condition ZCi(t) = 0. The integrator stores the state, quantized state
and discrete state values xi, qi, and di, respectively. It also stores the time of the next
change in each quantized state txi and the time of the next crossing of each zero–crossing
function tzi.

The main simulation routine at the Integrator module looks as follows

Algorithm 2: QSS Integrator Module

1 while t < tf // w h i l e s i m u l a t i o n time t is less than the f i n a l time tf

2 tx = min(txj) // time of the next c h a n g e in a q u a n t i z e d v a r i a b l e

3 tz = min(tzj) // time of the next zero - - c r o s s i n g time

4 t=min(tx, tz) // a d v a n c e s i m u l a t i o n time

5 if t = tx then // q u a n t i z e d s t a t e c h a n g e

6 i = argmin(txj) // the i - th q u a n t i z e d s t a t e c h a n g e s f i r s t

7 Quantized_State_Step(i) // e x e c u t e a q u a n t i z e d s t a t e c h a n g e on

v a r i a b l e i

8 else // zero - - c r o s s i n g

9 i = argmin(tzj) // the i - th e v e n t h a n d l e r is e x e c u t e d f i r s t

10 Event_Handler_Step(i) // e x e c u t e the p r o c e d u r e for the i - th e v e n t

h a n d l e r

11 end if

12 end while
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When the next step corresponds to a change in a quantized variable qi at time t, the
Integrator proceeds as follows:

Algorithm 3: QSS Integrator Module - Quantized State Change

1 Quantized_State_Step(i)

2 {

3 integrateState(xi, ẋi, t) // i n t e g r a t e i - th s t a t e up to time t.
4 Quantizer.update(xi, qi) // u p d a t e i - th q u a n t i z e d s t a t e qi
5 txi = Quantizer.nextTime(xi, qi) // c o m p u t e next i - th q u a n t i z e d s t a t e c h a n g e

time

6 for each j such that SDi,j = 1
7 integrateState(xj , ẋj , t) // i n t e g r a t e j - th s t a t e up to time t.
8 ẋj = Model.fj(q(t),d(t), t) // r e c o m p u t e j - th s t a t e d e r i v a t i v e

9 txj = Quantizer.nextTime(xj(t), qj(t)) // r e c o m p u t e next j - th q u a n t i z e d

s t a t e c h a n g e time

10 end for

11 for each j such that SZi,j = 1
12 zcj = Model.zcj(q,d(t), t) // r e c o m p u t e j - th zero - - c r o s s i n g f u n c t i o n

13 tzj = nextEventTime(zcj) // r e c o m p u t e next j - th zero - - c r o s s i n g time

14 end for

15 }

Similarly, when the next step corresponds to the execution of an event handler Hi at
time t, the Integrator proceeds as follows:

Algorithm 4: QSS Integrator Module - Event Handler Execution

1 Event_Handler_Step(i)

2 {

3 Model.Hi(q(t),d(t), t) // e x e c u t e i - th e v e n t h a n d l e r

4 for each j such that HDi,j = 1
5 integrateState(xj , ẋj , t) // i n t e g r a t e j - th s t a t e up to time t.
6 ẋj = Model.fj(q(t),d(t), t) // r e c o m p u t e j - th s t a t e d e r i v a t i v e

7 txj = Quantizer.nextTime(xj(t), qj(t)) // r e c o m p u t e next j - th q u a n t i z e d

s t a t e c h a n g e time

8 end for

9 for each j such that HZi,j = 1
10 zcj = Model.zcj(q,d(t), t) // r e c o m p u t e j - th zero - - c r o s s i n g f u n c t i o n

11 tzj = nextEventTime(zcj) // r e c o m p u t e next j - th zero - - c r o s s i n g time

12 end for

13 }

2.3. Parallel Simulation
Simulations often require performing several expensive calculations. In order to obtain

faster results, the usage of parallel computations is a common solution. As the current
work deals with parallel simulation of ODEs using discrete event approximations, we
shall mention some existing solutions in both fields: parallel simulation of ODEs and
discrete event systems. Also, existing approaches for the parallel simulation with QSS
methods are described as the most related results to our methodology.
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2.3.1. Parallel ODE Simulation
Different strategies have been proposed over the years for parallel ODE simulation

based on classic numerical integration algorithms. These strategies are characterized
according to the computations that they parallelize. The main categories are:

• parallelism across the model : This technique is based on partitioning the math-
ematical model in a way that different components of function f in Eq.(1) are
computed in parallel.

• parallelism across the method : In this approach, parallelism is achieved by execut-
ing the intrinsic calculations of the numerical method in parallel. In most imple-
mentations, this approach is combined with the parallelization across the model.

• parallelism across the time steps: Here, the successive integration steps of the
simulation are computed in parallel.

A comparative analysis between the two first approaches is presented in [27].
An implementation that exploits efficient memory access using Iterated Runge Kutta

methods in shared memory architectures can be found in [4, 5, 28]. In these works,
parallelizing simultaneously across the methods, models and time steps, speedups of up
to 300 times are achieved using 480 cores of a supercomputer in the simulation of ODEs
with up to 8,000,000 state variables.

In [29] different integration methods are benchmarked on both CPU and GPU plat-
forms. Similarly in [30] two Runge-Kutta methods are tested on CPU and GPU achieving
speed-ups up to 115x for the GPU case.

Different applications of the parallelism across steps approach for classic numerical
methods are presented and studied in [6, 31, 32, 33, 34].

2.3.2. Parallel Simulation of Discrete Event Systems
Parallelization of Discrete Event System simulations has been studied for some years

now [35, 36]. The basic idea is to split the model into several sub-models and to simulate
them concurrently on different logical processors (LPs), each one having its own logical
time. As the sub-models are usually inter-dependent, the logical time of the different
sub–simulations must be synchronized in order to satisfy the causality constraint, i.e.,
the preservation of the chronological order of the events.

The literature divides the different approaches into three categories:

• Conservative algorithms, like CMB [37], where there is a synchronization mecha-
nism that forces each LP to wait until it is sure that it will not receive messages
from “the past”. Conservative approaches usually achieve small speedups and suf-
fer from certain issues (like possible deadlocks). They can be enhanced with the
usage of LookAhead strategies [38].

• Optimistic algorithms, where each LP advances its logical time as much as it can
and it rolls-back when an inconsistency among the interchanged messages is found.
Optimistic approaches allow more parallel computations than conservative tech-
niques at the expense of having to save intermediate simulation states and costly
roll-back mechanisms. Algorithms like TimeWarp [39, 40] are examples of the
optimistic approach. A recent work [41] shows results for TimeWarp running a

8



MPI based parallel simulation on almost two million cores obtaining super-linear
speed-ups.

• Finally in [42], the idea of completely avoiding the synchronization is studied, i.e.
each LP advances its logical time as fast as it can disregarding of what the other LP
logical time is. The results show that this approach achieves larger speedups than
the previous ones at the cost of introducing errors due to violation of the causality
constraint.

2.3.3. Parallel Simulation with QSS methods
The asynchronous nature of QSS methods simplifies the parallelization of their com-

putations. As it was mentioned in Section 2.2, QSS methods can be represented as
discrete events system, thus the corresponding parallelization techniques of Section 2.3.2
could be used, in principle.

However, neither of these approaches fits well in the context of QSS algorithms. In
this case, strict synchronization does not allow almost any concurrent computations as it
was shown in [20]. Also, optimistic methods would require huge amounts of memory to
implement the roll–back mechanisms on large systems. Finally totally unsynchronized
techniques would introduce unacceptable numerical errors.

An initial study was done in [43] applying optimistic algorithm to parallelize QSS over
a distributed-memory cluster showing a two-fold speedup simulating on four processors.
Then, in [44] the authors present an implementation of QSS methods over shared-memory
GPU architectures (Nvidia Tesla C1060, and Nvidia GeForce 8600). Preliminary results
report speedups of up to eight times for models with 64 state variables. The results were
not extended to larger models due to limitations on the GPU architecture (diverging
branches, lack of synchronization, etc.).

Another related work was presented in [21] where two parallelization techniques,
SRTS and ASRTS, are introduced for a shared-memory multi-core architecture. The
synchronization amongst the different sub-simulations in this case is achieved using a
real-time clock. Results show an almost linear scaling of speed-up with respect to the
number of logical processors achieving speed-ups of up to 9 times for 12 logical processors.
The cited work also analyzes the error introduced by these techniques showing that for a
bounded difference between the logical time of each sub-simulation a bounded numerical
error is introduced. This implementation was based on the PowerDEVS tool [21].

In conclusion, previous to the current work, the parallelization of QSS methods was
limited to relatively small problems (a few thousands of state variables, at most) and
implemented over different architectures using small numbers of processors.

3. A Novel Parallel QSS Simulation Methodology

In this section we describe a novel technique for parallel simulation with QSS algo-
rithms and its implementation in the Stand-Alone QSS Solver. We first present the basic
idea, and then we introduce the algorithms and implementation issues corresponding to
the different components of the parallel solver.
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3.1. Basic Idea
The presented parallelization technique is based on partitioning the model into P

sub-models, so that each sub-model is simulated by a different logical process.
At each simulation step of every sub-model, the corresponding LP checks if the vari-

able that changed must be communicated to other LPs using structural information. If
so, the new values and the corresponding time–stamp are informed through an inter-
process communication mechanism.

In order to avoid large errors introduced by new values of a quantized variable arriving
at wrong time instants, the technique enforces the different processes to have a bounded
difference between their logical simulation times. This difference is bounded by a user
defined parameter ∆t.

This non–strict synchronization is achieved by computing a global virtual time gvt
(equal to the minimum logical time of all LPs) and not allowing the LPs to advance
beyond gvt + ∆t. For that goal, whenever an LP schedules its next simulation step
beyond gvt+ ∆t, it enters a waiting routine until gvt advances or a change in a variable
computed by another LP is detected.

3.2. Basic Structure of the Parallel Solver
The parallel extension of the QSS solver targets a MIMD (multiple instruction multi-

ple data) multi-core architecture. It uses a partitioned model of Eqs.(4)–(6), where each
LP simulates a different sub-model. Every LP is composed of an Integrator module, a
Quantizer module, and a Model module, like in the sequential simulation described in
Section 2.2.

Taking into account that the state derivatives computed in a LP may depend on
the states computed in another LP, it is clear that the different LPs must communicate
during the simulation. Furthermore, the computation of a state derivative ẋi at time t
requires the knowledge of the quantized states involved in the calculation of fi(q,d, t)
at the same time t, thus, a synchronization mechanism between the different LPs is also
necessary.

Towards this goal, the sequential Integrator module is modified with the addition of
communication and synchronization mechanisms. The basic scheme of the parallel QSS
solver is shown in Figure 2

Next, after discussing the model partitioning issues, we describe in detail the commu-
nication and synchronization mechanisms and the resulting parallel simulation algorithm
and their implementation.

3.3. Model Partition
The QSS parallel simulation algorithm requires that the original model is split into

p sub–models, so that each sub–model is simulated by a different LP.
In order to obtain an effective parallelization, the model partitioning should be bal-

anced, and, at the same time, the communication between different LPs must be mini-
mized. In some simple cases, when the system has a regular structure, this partitioning
can be manually done.

In general cases, algorithms for automatic partitioning must be applied. A set of
graph–theoretic sub-optimal partitioning algorithms for QSS parallel simulation was de-
veloped in [45].
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Figure 2: Parallel Stand Alone QSS Solver – Basic Interaction Scheme

In the context of this work, we shall assume that a suitable partition is provided.
The partitioning shall be represented by two arrays PX, and PZ, with their entries

taking values in the set {1, · · · , p}. An entry PXi = k says that the state xi is computed
by the k–th LP. Similarly, an entry PZi = k says that the zero–crossing function ZCi
and its corresponding event handler Hi are evaluated and executed by the k–th LP.

In the actual implementation of the parallel QSS solver, the end user can choose be-
tween the different automatic partitioning algorithms described in [45] or he can provide
a manually generated partition.

3.4. Inter–Process Structure
As we explained in Section 2.2, the structure information of the model is comprised

in matrices SD, SZ, HD, and HZ. These structural matrices represent the direct
influences of states and event handlers in state derivatives and zero–crossing functions.

Once the model is partitioned into p sub-models (according to arrays PX and PZ),
it can happen that a change in a state variable –or the execution of an event handler–
computed at the k–th sub-model has a direct influence on some state derivatives or
zero–crossing functions computed at different sub-models.

Thus, an inter–process communication mechanism is necessary, which in turn requires
the knowledge of inter–process structure information.

In our implementation, this information is provided by two incidence matrices at each
LP:

• SOk is such that SOki,l = 1 indicates that the i–th state of the k–th sub-model
influences on some state derivative or zero–crossing function computed by the l–th
sub-model.

• HOk is such that HOki,l = 1 indicates that the variables changed by the i–th event
handler execution at the k–th sub-model influences on some state derivative or
zero–crossing function computed by the l–th sub-model.
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Matrices SOk and HOk are computed at initialization time based on the structure
matrices SD, SZ, HD, HZ, and the partition arrays PX and PZ. Like the remaining
structure matrices, SOk and HOk are stored in a sparse format.

3.5. Simulation Algorithm
The parallel simulation algorithm is locally implemented at each logical process. As

we already explained, each LP contains an Integrator, a Quantizer, and a Model
module. The Quantizer and Model modules are identical to their sequential coun-
terparts, while the Integrator now includes the communication and synchronization
mechanisms.

The communication involves informing the new values of states and discrete variables
to other LPs after state changes or event handler executions that, according to the inter-
process structure, affect state derivatives or zero–crossing functions calculated at other
LPs. On the other side, the LPs must check if those new values were changed

As we explained before, the synchronization mechanism limits the advance of the
simulation at each process in order to keep a bounded difference between the logical
simulation times of the different LPs.

Later on, we shall explain in more detail the communication and synchronization
procedures.

Taking into account these modifications, the parallel k–th Integrator algorithm
works as follows:

Algorithm 5: QSS Parallel Integrator Module

1 while tk < tf // w h i l e s i m u l a t i o n time of the k - - th LP is less than the

f i n a l time tf

2 tkx = min(txj |PXj = k) // time of the next c h a n g e in a q u a n t i z e d v a r i a b l e

c o m p u t e d by the k - th LP

3 tkz = min(tzj |PZj = k) // time of the next zero - - c r o s s i n g time c o m p u t e d by

the k - - th LP

4 tkm = ChangesList.First().time() // t i m e s t a m p of the f i r s t i n f o r m e d

c h a n g e

5 tk = min(tkx, t
k
z , t

k
m) // a t t e m p t to a d v a n c e LP s i m u l a t i o n time

6 gvt = min(tl) // r e c o m p u t e g l o b a l v i r t u a l time

7 Synchronize () // call s y n c h r o n i z a t i o n p r o c e d u r e

8 if tk = tkx then // s t a t e c h a n g e

9 i = argmin(txj) // the i - th q u a n t i z e d s t a t e c h a n g e s f i r s t

10 Parallel_Quantized_State_Step(i) // e x e c u t e a q u a n t i z e d s t a t e c h a n g e

on v a r i a b l e i

11 elseif tk = tkz then // zero - - c r o s s i n g

12 i = argmin(tzj) // the i - th e v e n t h a n d l e r is e x e c u t e d f i r s t

13 Parallel_Event_Handler_Step(i) // e x e c u t e the p r o c e d u r e for the i - th

e v e n t h a n d l e r

14 else

15 Process_External_Change () // p r o c e s s the f i r s t e n q u e u e d c h a n g e

16 end if

17 end while

This algorithm is similar to its sequential counterpart (Algorithm 2). It adds the
calculation of the global virtual time gvt as the minimum between the local simulation
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times of all LPs and a synchronization routine to avoid that the local time tk advances
much beyond gvt. Additionally, it takes into account the incoming changes in the input
variables informed by different LPs.

When the next step in the k–th LP corresponds to a change in a quantized variable
qi at time t, the Integrator proceeds as follows:

Algorithm 6: QSS Parallel Integrator Module - Quantized State Change

1 Parallel_Quantized_State_Step(i)

2 {

3 integrateState(xi, ẋi, tk) // i n t e g r a t e i - th s t a t e up to time tk .

4 Quantizer.update(xi, qi) // u p d a t e i - th q u a n t i z e d s t a t e qi
5 txi = Quantizer.nextTime(xi, qi) // c o m p u t e next i - th q u a n t i z e d s t a t e c h a n g e

time

6 for each l such that SOk
i,l = 1

7 ChangesList.InsertState(l,i,qi,t_k) // i n f o r m new q u a n t i z e d s t a t e and

time s t a m p to l -- th LP

8 end for

9 for each j such that SDi,j = 1 and PXj = k
10 integrateState(xj , ẋj , t) // i n t e g r a t e j - th s t a t e up to time t.
11 ẋj = Model.fj(qk(t),dk(t), t) // r e c o m p u t e j - th s t a t e d e r i v a t i v e

12 txj = Quantizer.nextTime(xj(t), qj(t)) // r e c o m p u t e next j - th q u a n t i z e d

s t a t e c h a n g e time

13 end for

14 for each j such that SZi,j = 1 and PZj = k
15 zcj = Model.zcj(qk,dk(t), t) // r e c o m p u t e j - th zero - - c r o s s i n g f u n c t i o n

16 tzj = nextEventTime(zcj) // r e c o m p u t e next j - th zero - - c r o s s i n g time

17 end for

18 }

This algorithm is very similar to the sequential one (Algorithm 3). The difference
is that it only updates the state derivatives that are calculated by the current LP, and,
additionally, it informs the values and the corresponding time–stamp to the other LPs
that compute the remaining state derivatives affected by the quantized state change.

Notice that the entire quantized state vector q(t) used to calculate state derivatives
and zero–crossing functions can contain components qj(t) computed at different LPs. In
that case, the k–th LP has a local copy (possibly outdated) of its actual value. Thus,
the vector is denoted as qk(t), comprising the components calculated at the LP and the
local copies of the remaining entries. A similar remark can be done regarding the discrete
state d(t).

When the next step corresponds to the execution of an event handler Hi at time t,
the Integrator proceeds like Algorithm 4 with identical modifications.

As we mentioned above, when a Logical Process informs changes in quantized states
or discrete variables, the new values are stored in a time–stamp–sorted list. Additionally,
on each simulation step, every LP checks the time–stamp of the first element of the list
and, in case the time–stamp (m1.t) is less than the time of the scheduled next local
change, the Integrator processes the external change as follows (assuming that the
incoming new values are provoked by a quantized state change):
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Algorithm 7: QSS Parallel Integrator Module - External Quantized State Change

1 Process_External_Change ()

2 {

3 m1=ChangesList.RetrieveState () // get the f i r s t e l e m e n t of the list .

4 i=m1.index() // i n d e x of the q u a n t i z e d v a r i a b l e that c h a n g e d

5 qk
i = m1.q // u p d a t e l o c a l copy of q u a n t i z e d s t a t e qi .

6 for each j such that SDi,j = 1 and PXj = k
7 integrateState(xj , ẋj , t) // i n t e g r a t e j - th s t a t e up to time t.
8 ẋj = Model.fj(q(t),d(t), t) // r e c o m p u t e j - th s t a t e d e r i v a t i v e

9 txj = Quantizer.nextTime(xj(t), qj(t)) // r e c o m p u t e next j - th q u a n t i z e d

s t a t e c h a n g e time

10 end for

11 for each j such that SZi,j = 1 and PZj = k
12 zcj = Model.zcj(q,d(t), t) // r e c o m p u t e j - th zero - - c r o s s i n g f u n c t i o n

13 tzj = nextEventTime(zcj) // r e c o m p u t e next j - th zero - - c r o s s i n g time

14 end for

15 }

When the incoming variables that changed corresponds to a handler execution, the
procedure is similar to the previous one.

3.6. Inter–Process Synchronization
As we mentioned before, the parallel implementation of the QSS solver uses a non–

strict synchronization mechanism that is necessary to ensure that calculations are actu-
ally performed in parallel.

This synchronization mechanism requires that, before each simulation step, the LPs
calculate

gvt = min
1≤l≤P

(tl) (8)

as the minimum logical simulation time of all LPs. Then, each LP limits the advance of
its local simulation time tk to the value gvt+ ∆t, where ∆t is a user defined parameter.
Notice that ∆t is an upper bound for the difference between the local simulation times
of all the LPs and it defines how strict the synchronization is.

The synchronization procedure of each LPs implements a waiting routine while the
condition

tk > gvt+ ∆t (9)

is verified. When gvt advances (because other LPs update their local simulation time) or
when tk goes back (because the k–th LP detected an external change), and the condition
of Eq.(9) is no longer accomplished, the simulation at the k–th LP continues. That way,
the synchronization routine works as follows:
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Algorithm 8: LP Synchronization

1 Synchronize()
2 {

3 while(tk − gvt > ∆t)
4 rcv = ChangesList.First().time() // t i m e s t a m p of the f i r s t i n f o r m e d

c h a n g e

5 if (rcv < tk)
6 tk = rcv
7 gvt = min(tl) // r e c o m p u t e the m i n i m u m g l o b a l v i r t u a l time

8 end while

9 }

Notice that the line 7 of this code explicitly computes the minimum global virtual
time depending on the local logical times tl of all processes. This calculation is the
reason that restricts the usage of the whole strategy to shared memory architectures.
Any attempt to use this algorithm on a distributed memory architecture would result
in a huge traffic through the network communicating the logical times of the different
processors at each step.

Figure 3 illustrates the synchronization mechanism during a parallel simulation with
two LPs.

Figure 3: Parallel QSS solver synchronization scheme example

There, the maximum simulation time to which a LP can advance is limited by gvt+∆t,
represented by the gray region above gvt.

At the beginning of the simulation, the second logical process (LP2) schedules its
next change t2 to a value that is larger than gvt+ ∆t, so it must wait until gvt advances
(i.e., the simulation time t1 of LP1 advances).

Then, at the instant of CPU time ta, the simulation time t1 (and also gvt) is such
that t2 < gvt + ∆t and LP2 can resume the simulation steps. During the interval
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(ta, tb), the distance between t1 and t2 is less than ∆t and so both processes simulate
in parallel without waiting for synchronization. Then, at time tb, the first process LP1
schedules its next simulation step for time t1 > gvt+ ∆t, and now it must wait until the
synchronization point is reached again.

Notice that if we had taken ∆t = 0, then each LP can only advance when gvt = tk,
leading to a sequential simulation and there is no parallelization at all. On the contrary,
if we set ∆t ≥ tf (where tf is the final simulation time) there is no synchronization at all
and each LP simulates as fast as it can, like in a No-Time strategy, but the numerical
error introduced would possibly result unacceptable.

Thus, a good value for ∆t should be such that the error is acceptable and enough
parallelization is achieved. We shall deeply analyze this problem later, proposing also an
adaptive strategy for finding an adequate value for ∆t.

3.7. Inter–Process Communication
As we mention above, the different LPs informs changes in state and discrete variables

during the simulation. For that purpose, each logical process has a list of the changes
occurred in the variables computed at the other LPs that are needed for the local com-
putations. This list is sorted by their corresponding time–stamps and it provides the
following services:

• InsertState(l,i,qi,tk): Inserts the new value of the i–th quantized state qi
that changed at time tk computed by the k–th LP into the l–th LP list of changes.

• InsertEvent(l,i,{dj},{xj},tk), Inserts the new values of the set of discrete
states {dj} and the set of continuous states {xj} that changed after the execution
of the i–th event handler at time tk computed by the k–th LP into the l–th LP list
of changes.

• RetrieveState(), Gets the first element of the list of changes caused by an external
quantized state update.

• RetrieveEvent(), Gets the first element of the list of changes caused by an external
handler execution.

If a change with a time–stamp m.t less than the time of the last step performed by
the LP tk− is detected, then the time–stamp is modified to tk−. That way, we avoid that
the simulation goes back in time.

Notice that the modification of this time–stamp is the only effect that synchronization
errors have on the simulation results. Anyway, the difference between m.t and tk− is
always bounded by ∆t.

The communication mechanism between threads is hybrid:

• State changes are asynchronously informed using the previously mentioned lists of
changes.

• Discrete changes are also informed using lists of changes, but in a synchronous way
where the LP that communicates the new values must wait until all the receiver
LPs process them.
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The later case ensures that the new values of all the discrete variables are processed
by all the affected LPs before the LP that is responsible for the change continues with
the simulation. Taking into account that discrete changes can provoke large changes
in discrete and state variables, this policy prevents the introduction of large numerical
errors due to lack of synchronization after discontinuities.

It is worth mentioning that in most models containing discontinuities the number of
continuous changes is significantly larger than the number of discrete changes. Therefore,
in practice, the communication is mostly asynchronous.

3.8. Some Implementation Details
The execution model for each logical processor is implemented using native Linux

POSIX threads. Threads are pinned to specific CPUs using sched setaffinity. The
assignment of threads to CPUs is given by the partition matrices PX and PZ.

Initially, the main thread reads the partition structure and computes the interprocess
structure matrices. Then, it creates P threads where each of them locally implements an
instance of a Parallel Simulator module containing a Parallel Integrator, a Quan-
tizer, and a Model modules.

At this point, there are two alternative implementations. The first one, uses a Model
module identical to that of the sequential implementation. Since the sequential model
computes the state derivatives, handlers and zero crossing functions depending on the
full state, this implementation requires working with arrays containing the full state size.

In this first implementation, the Parallel Integrator module has a data structure
containing the following local data:

• The local logical simulation time tk and a local copy of the global virtual time gvt.

• The corresponding inter-process structure matrices SOk and HOk.

• Two arrays containing the indexes of the state derivatives and zero–crossing func-
tions evaluated at the current LP.

• A sorted list containing changes corresponding to quantized state variables.

• A sorted list containing changes corresponding to event handler executions.

Additionally, a compilation flag allows to keep local copies of

• The full state and quantized state arrays x, and q.

• The full array of zero–crossing function values.

• The full discrete state array d.

Otherwise, those arrays are shared by all the LPs together with the remaining global
data, consisting of:

• An array containing the local simulation times of all LPs tl.

• The four incidence matrices SD, HD, SZ, and HZ.
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The optional usage of local copies for the full state and quantized state allows to
target Non-Uniform Memory Access (NUMA) platforms. Here, the memory latency for
a given address depends on each processor. Thus, by allocating local copies we enforce
that each processor accesses its own memory bank. Independently on this, having local
copies of the full discrete array can help to avoid concurrency problems due to the fact
that each discrete variable can be computed by more than one LP in certain models.

The price paid for using local full array copies is a large increase in the memory
consumption. However, it simplifies the implementation, and, in cases where the memory
usage in not critical, acceptable results can be obtained.

A second implementation uses a different model instance for each LP, so that the
functions defining each sub-models depend only on the local variables of each LP. Also,
the structure information provided by each sub-model is local to that sub-model. Thus,
in this implementation, each LP contains only local copies of the corresponding sub–
arrays, whose size is proportional to the size of the sub-model. That way, as we increase
the number of partitions, the total memory consumption is almost unaffected.

The drawback of this implementation is that it requires the generation of a different
model instance for each LP. Starting from the original model and structure matrices, the
construction of the partitioned sub-models requires remapping the state variable indexes
and to generate the corresponding code for the resulting functions and structure. In
theory, this problem has a straightforward solution, but its automatic implementation
requires to modify the Model Generator module of the QSS Solver.

We are currently working on this last issue. So far, the current version of the parallel
QSS Solver supports the usage of partitioned models, but the sub-model instances must
be manually generated.

The performance of the alternative implementations shall be compared later on an
example in Sec.6.1.

For both implementations, in spite of the fact that all the data is allocated in shared
memory, the only data that is actually updated by the different processes concurrently
are the arrays containing the local simulation times of the LPs (for synchronization
purposes) and the changes lists used for communication.

The array with the local simulation times is accessed for computing the global virtual
time gvt. Anyway, in the implementation, gvt is only updated at the k–th LP when the
local time tk becomes greater than gvt+ ∆t. That way, in most steps, there is no actual
access to that shared array.

4. Synchronization and Numerical Errors

The non strict synchronization mechanism adopted can provoke that when the k–th
LP informs a change in a quantized state qi at time tk, this change is detected late by
the l–th LP, i.e., when the l–th LP has already performed one or more steps at time
tl > tk. In that case, as there is no roll-back mechanism, the l–th LP will just modify
the time–stamp of the incoming values pretending that the change in qi occurred at time
tl.

This implies that, during the interval (tk, tl), the l–th LP integrates using an incorrect
(outdated) local copy of the quantized state qi. Anyway, taking into account that the
difference between tl and tk is bounded by ∆t, and knowing that qi is an approximation of
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a continuously varying signal xi(t), we can expect that the difference between the actual
value of qi (computed at the k–th LP) and the local copy at the l–th LP is not significant
and that it will introduce a bounded numerical error in the subsequent calculations.

The following analysis formally shows this fact.
Consider the QSS approximation of an ODE, given by

ẋ(t) = f(q(t), t)

and suppose that this system is partitioned in two parts as follows:

ẋa(t) = fa(qa(t),qb(t),v(t))
ẋb(t) = fb(qa(t),qb(t),v(t))

(10)

where:
x = [xa xb]T ; q = [qa qb]T ; f = [fa fb]T

Let us consider that we implement the simulation of this system in parallel, such that xa
is computed in one LP and xb is computed in a second LP according to the mechanism
explained in the previous section.

Then, the non strict synchronization implies that the first LP can have a local copy
qcb(t), which is an outdated version of the components of qb(t). Similarly, the second LP
can have a local copy qca(t), containing outdated versions of the components of qa.

Thus, the parallel algorithm simulates the following approximation of Eq.(10):

ẋa(t) = fa(qa(t),qcb(t),v(t))
ẋb(t) = fb(qca(t),qb(t),v(t))

(11)

Let us define ∆a(t) , qca(t) − qa(t), and ∆b(t) , qcb(t) − qb(t). Then, Eq.(11) can be
rewritten as

ẋa(t) = fa(qa(t),qb(t) + ∆b(t),v(t))
ẋb(t) = fb(qa(t) + ∆a(t),qb(t),v(t))

(12)

that constitutes a perturbed version of the original system of Eq.(10), with perturbation
terms ∆a(t) and ∆b(t).

Notice that a component qi(t) computed at the first LP and its local copy qci (t) at
the second LP can have a maximum delay in time given by the parameter ∆t, i.e.,
qci (t) = qi(t− τ) with 0 ≤ τ < ∆t. Then, it results that

|qci (t)− qi(t)| = |qi(t− τ)− qi(t)| ≤ |xi(t− τ)− xi(t)|+ 2∆Qi

where we used the fact that the difference between xi and qi is always bounded by the
quantum ∆Qi. Then, assuming that the state derivative ẋi = fi(q, t) is bounded by a
constant Mi while the quantized states q(t) remains in certain bounded region, it results
that

|xi(t− τ)− xi(t)| < Mi · τ ≤Mi∆t

and then
|qci (t)− qi(t)| ≤Mi ·∆t+ 2∆Qi (13)
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Applying the same analysis to all the components of the array qa and qb, it results
that all the components of the perturbation terms ∆a(t) and ∆b(t) are bounded in their
absolute value for a constant depending on the parameter ∆t and the quantum ∆Q.

When the original system of Eq.(1) is linear time invariant (LTI) and asymptotically
stable, it can be easily proved that the presence of the bounded perturbations ∆a(t)
and ∆b(t) only adds a bounded numerical error proportional to the perturbation bound
[24, 1]. In nonlinear cases, assuming that the perturbation bound is small enough, a
similar property can be derived [7].

If we had more than two processors, the analysis can be easily extended arriving to
the same results.

In conclusion, the parallelization introduces an additional error to that introduced
by the QSS methods. This additional error can be bounded by a quantity that increases
proportional to the parameter ∆t.

Although this conclusion is of qualitative nature (i.e., it does not provide a quanti-
tative bound for the additional numerical error), in the next Section we shall derive an
algorithm for adaptive computation of ∆t in order to ensure a quantitative error bound.

5. Adaptive ∆t Adjustment

The election of the parameter ∆t imposes a trade-off between numerical errors and
the actual parallelization achieved. Obtaining a suitable value for ∆t usually involves
running a set of experiments in order to observe the error introduced by the parameter
and the speedup obtained. Also, a value for ∆t that is suitable at the beginning of the
simulation may be not optimal after some time due to changes in the dynamics of the
model.

In order to overcome these problems, we developed an adaptive algorithm that allows
the dynamic calculation of ∆t in order to keep a bounded numerical error.

As we analyzed in the previous section, the parallel implementation with non strict
synchronization provokes a difference between the quantized states computed in one LP
and their local copies used in other LPs. This difference can be seen as a bounded
perturbation that introduces a bounded numerical error.

The difference between a quantized state qi(t) and a local copy qci (t) is bounded
according to Eq.(13). Thus, if we want to bound this perturbation to be proportional to
the prescribed tolerance, it should be proportional to the quantum ∆Qi:

|qci (t)− qi(t)| ≤Mi ·∆t+ 2∆Qi ≤ α ·∆Qi

Here, Mi is an upper bound for the state derivative ẋi(t) and α is a user defined param-
eter. From this last inequality we obtain

∆t ≤ (α− 2) ·∆Qi
Mi

(14)

That limit on ∆t must be accomplished for all the quantized states that have local copies
in other LPs, i.e, for all the output quantized states.

The set of output quantized states of the k–th LP can be formally defined as Ok ,
{i|∃l such that SOki,l = 1}. Then, the set of all output quantized states results O ,⋃
k Ok.
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As we want that Eq.(14) is satisfied for all the output quantized states, the adaptive
algorithm takes ∆t as

∆t = min
i∈O

(α− 2) ·∆Qi
Mi

(15)

For that goal, each LP computes its minimum ∆tk as

∆tk = min
i∈Ok

(α− 2) ·∆Qi
Mi

(16)

and then ∆t is computed as the minimum of all ∆tk.
The bounds on the state derivatives Mi are numerically estimated as1

Mi ≈
|xi(ti)− xi(tprevi )|

ti − tprevi

(17)

where ti and tprevi are the two last times of change in the quantized state qi.
Notice that the estimate Mi is updated each time the output quantized state qi

changes. That change in Mi may modify the LP minimum ∆tk computed in Eq.(16)
that can in turn change the global ∆t. Thus, ∆t is asynchronously updated. This
fact in turn implies the need of an additional synchronization mechanism that must be
introduced in the Parallel Integrator module.

To achieve this goal, the Parallel Integrator Algorithm 5 must be modified so that
when a simulation step changes an output quantized variable, the local minimum ∆tk

can be updated. If so, the algorithm checks if this update changes the global value ∆t.
If the global parameter is affected, a global synchronization routine is called where all
LPs obtain the new value for ∆t.

For that purpose, the data structure of each LP is extended with the addition of a
local copy of the global ∆t parameter. Also, a global array shared by all LPs contains
the local minimum ∆tk.

Notice that the usage of this strategy only requires to choose the error bound coeffi-
cient α, and then the parameter ∆t is automatically adapted. In principle, the choice
α ≈ 10 seems reasonable, as the error introduced by the lack of synchronization would
be at most one order of magnitude larger than the error introduced by the QSS approx-
imation itself.

Notice that, while the analysis of Section 4 provides a qualitative error bound, the
strategy for adaptation of ∆t provides a quantitative bound for the numerical error,
where we ensure that it cannot become larger than α times the error introduced by
the sequential QSS algorithm. Thus, provided that the quantum ∆Q was adequately
chosen by the user for the sequential case, the parallel implementation will work within
a prescribed tolerance.

1Mi can be directly obtained as Mi = |ẋi|, as ẋi is stored by the QSS algorithms. However, when
a solution oscillates around an equilibrium point (as it occurs often in QSS solutions) ẋi can be larger
than the actual variation of the state, and a numerical approximation can provide a better result.
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6. Results

In this section we present simulation results on four large–scale models. In these
models, we analyze and compare the performance of the parallel QSS Solver using the
proposed synchronization strategies with different parameter settings.

The examples are ordered by their complexity. The first one, corresponding to a large
population of air conditioner units, is a hybrid system that does not require communi-
cation between LPs so it is useful to measure the overhead introduced by the Parallel
QSS Solver mechanism. The second model is a two dimensional Advection-Reaction par-
tial differential equation (PDE) semi-discretized with the Method of Lines [1]. This is a
purely continuous system that allows also to validate the results regarding the numerical
error introduced by the parallelization strategies. The third model is a modification of the
first one with the addition of a centralized power control, that introduces inter–process
communication of discontinuous changes. The last one, corresponding to a network of
spiking neurons, has a complex connection structure with events that provoke instanta-
neous changes on continuous states.

Simulation Framework
The results presented below were obtained using a 64-core server with 32 GB of RAM

running a 64 bit Linux OS (Ubuntu 14.04). The server is composed of 4 AMD Opteron
6272 processors, with 16 cores (in 8 physical modules) each2 and a Non-uniform memory
access (NUMA) architecture. We used the Parallel QSS Solver implementation version
3.1 (git commit number [c10a14]).

In order to evaluate the performance of the simulations we took into account the
following metrics:

• Initialization Time: It corresponds to the time spent at the initialization routines
of the Parallel QSS Solver.

• Simulation Time: It is the CPU time taken by the simulation at the slowest logical
process. It does not take into account the Initialization Time.

• Memory Usage: We report the total amount of memory allocated by the simulation.

• Simulation Speedup: Speedup(P ) = T1
TP

, where T1 is the simulation time spent
using a single core and TP is the simulation time spent using P cores.

• Normalized Mean Error3:

error =
mean(|yP − yref )|

mean(yref )
(18)

2The AMD Opteron 6272 processors are based on the AMD Bulldozer micro-architecture. They
have two integer units but only one floating point (FP) scheduler per module, thus, depending on the
application, each processor can be considered to have 8 or 16 cores. As the QSS solver is always combining
FP with integer operations (as the structure plays a fundamental role in the computations), it can be
expected in principle that the 16 threads can efficiently run in parallel.

3In this work we compute the mean error rather than the maximum global error because in the
examples the states are either discontinuous or have very steep trajectories. That way, a very small
delay between two trajectories provokes that the maximum error is equal to the trajectory amplitude
(independently on the delay value). Thus, the mean error captures better the actual difference between
the simulated trajectories.
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where the reference trajectory yref is the one obtained using a sequential simulation
whereas yP is the trajectory obtained with P cores. Both trajectories are evaluated
at 5000 equidistant time points.

Notice that this error does not include the numerical error introduced by the QSS
approximation. It only evaluates the additional numerical error introduced by the
lack of synchronization between processes.

For the different models, we performed the following experiments:

1. In order to analyze the effects of using different values of the synchronization pa-
rameter ∆t, we run several simulations varying that parameter. These simulations
were performed using 62 cores4.

2. After selecting a suitable value for ∆t (i.e., a value that achieves a good trade–off
between speedup and error) we run simulations varying the number of cores in
order to characterize the speedup ratio w.r.t. the number of cores. We

3. For the adaptive synchronization strategy, we run several simulations varying the
error bound parameter α on a 62 cores configuration.

4. Then, using the error bound parameter α = 10 (which is a reasonable choice, as
analyzed in the previous section), we run simulations varying the number of cores
in order to characterize the achieved speedup.

In all cases, the models were manually partitioned.

6.1. Air Conditioners Population
This model, taken from [11], studies the dynamics of a large population of air condi-

tioners (ACs) when they follow the same reference temperature. The i–th air conditioner
is used to control the temperature of the i–th room, modeled by:

θ̇i(t) = − 1
Ci ·Ri

[θi(t)− θa +Ri · Pi ·mi + wi(t)] (19)

where Ri represents the thermal resistance, Ci is the thermal capacity, Pi is the power of
the AC unit in on state, θa is the outside ambient temperature (common to all rooms),
and wi(t) is a noise signal representing thermal disturbances.

The variable mi(t) is the state of the i–th AC unit that takes the value 1 in on state
and 0 otherwise. This state follows a hysteretic on–off control law:

mi(t+) =





0 if θi(t) ≤ θir(t)− 0.5 and mi(t) = 1
1 if θi(t) ≤ θir(t) + 0.5 and mi(t) = 0
mi(t) otherwise

(20)

where θir(t) is the reference temperature, that obeys the following profile:

θir(t) =





20 if 0 ≤ t < 1000
20.5 if 1000 ≤ t < 2000
20 if 2000 ≤ t ≤ 3000

(21)

4We used a maximum of 62 cores leaving 2 cores free to attend the OS tasks.
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Finally, the thermal disturbances w(t) is updated once every minute, taking pseudo-
random values uniformly distributed in the interval (−1, 1). The temperature of the first
AC unit is depicted in Fig.4.

Figure 4: Air Conditioners Population Model - Output Trajectory

For this experiment, we simulated a population of 248000 AC units and set their
parameters according to [11].

Notice that each air conditioner is modeled by one differential equation (Eq.(19)) and
three zero crossing functions: one associated to the hysteretic control law of Eq.(20),
another corresponding to the evolution of the reference temperature of Eq.(21), and the
last one associated to the update of the noise signal wi(t). Thus, the model contains a
set of 248000 differential equations and 992000 zero–crossing functions.

Observe also that the dynamics of each air conditioner unit is independent on the
evolution of the remaining air conditioners. Therefore, the model can be partitioned in
a way such that no communication between the different sub–models is required and
hence, the lack of synchronization in the parallel simulation does not introduce errors.

This model was simulated using the QSS2 method with a quantization of ∆Qrel =
∆Qmin = 1e− 3 and the final simulation time tf was set to 3000 minutes.

In this case, the Parallel QSS solver automatically detects that there is no communi-
cation between the different LPs and it automatically sets the parameter ∆t equal to the
final simulation time 3000. Thus, in this introductory case, we did not run experiments
for different values of ∆t or α as these parameters are meaningless here.

Also, we do not report errors as they were null in all cases (in absence of communi-
cation, sequential and parallel results are identical).

The goal of this example is to measure the overhead introduced by the parallel sim-
ulation when the synchronization mechanism is not needed. This overhead includes the
access to the structural matrices (that are shared by the different LPs), the additional
calls to the synchronization routines and the access to the inter–process communication
structures. Additionally, in this experiment, we include the results obtained using a
the model partitioning strategy described in Section 3.8 to improve the memory con-
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sumption. In this simple case, we were able to generate the different Model instances
manually.

Then, we run simulations for a different number of cores ranging from 1 to 62. The
results are reported in Table 1.

Table 1: Air Conditioners Population Model - Simulation Results
Speedup and memory consumption comparison between the solver implementation and the model par-
tition prototype (MPP)

Cores Init Simulation Memory Speedup MPP MPP MPP
Time Time (MBytes) Simulation Memory Seedup
(ms) (seconds) Time (MBytes)

(seconds)

1 580 1132 360 1.00 1132 360 1.00

2 894 668 655 1.69 644 388 1.75

4 948 357 1081 3.17 341 501 3.31

8 969 192 1835 5.89 185 544 6.11

16 1085 109 3342 10.38 96 628 11.79

32 1165 52 6356 21.76 50 804 22.64

48 1281 32 9371 35.37 31 976 36.51

62 1406 25 10223 45.28 23 1057 49.21

As we can see in Table 1, the achieved speedups for this model are linear. Running
on 62 cores speeds up the simulation by a factor of 45 using full state copies and 49
using the model partition strategy. The speed difference between these strategies can
be explained by the additional memory accesses needed by the non partitioned imple-
mentation. Initialization times are increased with the number of cores (the initialization
involves the computation and allocation of interprocess communication matrices, that
grow in complexity with the number of processes). Anyway, the initialization times are
neglectable in all cases.

The memory consumption, in turn, grows almost linearly with the number of cores
in the non partitioned implementation, increasing the memory consumption more than
28 times for 62 cores. This is due to the fact that each LP has local copies of the states,
quantize states, etc., and, additionally, they allocate communication data structures and
the interprocess communication matrices. However, when using the model partition-
ing strategy, we can observe that the memory consumption for 62 cores is less than 3
times the memory needed for running the simulation with 1 core. This is due to the
fact that each sub–model contains only the sub-array of the state, quantized state and
zero–crossing functions that each LP needs, together with the corresponding structural
information which is also partitioned. Also, as a consequence, there is no need to store
the additional arrays containing the indexes of the state derivatives and zero–crossing
functions evaluated at each LP.

As an additional test, we measured the simulation time spent by the sequential im-
plementation of the QSS Solver. This experiment took 1050 seconds, which is about 8%
faster than the parallel implementation running on a single core. This overhead is due
to the extra control mechanisms of the parallel solver (for communication, synchroniza-
tion, and access to inter–process structures). These mechanisms are not disabled when
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running on a single core although they are not actually necessary. Similar tests were run
on the different examples arriving always to very similar overhead figures.

A final remark is that, in this case, the simulation using one core takes less than 20
minutes so the large–scale nature of the model can be questioned. Anyway, this was just
an illustrative case, where we can easily simulate the system until a final time ten times
larger arriving to identical conclusions.

6.2. Advection Reaction Equation
The following model, taken from [12], represents a 2D Advection–Reaction equation.

This equation can describe, for instance, a river transporting a substance experiencing a
chemical reaction.

After applying the method of lines on this PDE, the following set of ODEs is obtained:

u̇i,j = −ax
ui,j − ui,j−1

∆x
− ay

ui,j − ui−1,j

∆y
+ rui,j(ui,j − α)(ui,j − 1) (22)

for i = 2, · · ·N , j = 2 · · ·M , where ui,j(t) is the concentration of the transported sub-
stance at the i, j grid point of the spatial domain. The parameters ax and ay represent
the speed of the transporting flow in the x and y coordinates respectively, and r is the
rate of the chemical reaction. Finally ,∆x and ∆y are the width of each grid section.

At the borders, the dynamics is defined by

u̇i,1 = −ax
ui,1
∆x
− ay

ui,1 − ui−1,1

∆y
+ rui,1(ui,1 − α)(ui,1 − 1) (23)

for i = 2, · · ·N

u̇1,j = −ax
u1,j − u1,j−1

∆x
− ay

u1,j

∆y
+ ru1,j(u1,j − α)(u1,j − 1) (24)

for j = 2, · · ·M , and,

u̇1,1 = −ax
u1,1

∆x
− ay

u1,1

∆y
+ ru1,1(u1,1 − α)(u1,1 − 1) (25)

The initial conditions are set to
ui,1 = 1 (26)

for i = 1, · · ·N and ui,j = 0 otherwise.
The concentration of three output variables in the middle of the grid, namely u750,301,

u750,901 and u750,1201 are illustrated in Fig.5.
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Figure 5: Advection Reaction Model - Output Trajectories

0

0.2

0.4

0.6

0.8

1

1.2

0 0.5 1 1.5 2

Taking into account that the model is stiff (the chemical reactions are much faster
than the transport dynamics), the linearly implicit LIQSS2 algorithm was used, setting
the tolerance to ∆Qrel = ∆Qabs = 10−3. The model parameters were r = 10000, ax = 1,
ay = 0.1, ∆x = 1/N , ∆y = 1/M with N = M = 1500. That way, we have a spatial
domain of size 1 × 1 with 1500 × 1500 = 2250000 grid points, where each grid point
represents a state equation.

Table 2 reports the simulation results for different values of the ∆t parameter on 62
cores. Here, the error reported is the mean error on 20 state variables ui,j(t) taken over
a line at the middle of the spatial domain. Each error was computed using Eq.(18).

Table 2: Advection Reaction Model - Fixed ∆t - Using 62 Cores

∆t Simulation Speedup Error
Time

(seconds)

1e-07 1104 2.40 3.61e-06
1e-06 288 9.20 3.45e-06
1e-05 145 18.28 3.66e-06
1e-04 119 22.27 6.22e-06
1e-03 121 21.90 1.38e-05
1e-02 115 23.05 2.12e-05
1e-01 112 23.66 2.39e-04
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As expected, for increasing values of ∆t the speedup and the error increase. From
these results, evidently, the best performance is obtained with ∆t = 1e− 4. Thus, fixing
∆t to this value, we computed the speedup and errors for different number of cores
(Table 3).

Table 3: Advection Reaction Model - Fixed ∆t = 1e− 04

Cores Init Simulation Memory Speedup Error
Time Time (MBytes)
(ms) (seconds)

1 174 2650 1058 1.00 0
2 699 2248 1626 1.18 3.63e-06
4 666 1216 2763 2.18 3.66e-06
8 748 715 5035 3.71 3.33e-06

16 850 375 9580 7.07 3.14e-06
32 1100 203 14573 13.05 5.44e-06
48 1300 153 23647 17.32 4.83e-06
62 1460 119 31614 22.27 6.22e-06

We can notice that the error has always the same order of magnitude. As before, the
memory consumption and the initialization times grow with the number of cores (the
initialization time is again negligible). Finally, the speedup reaches a reasonable value of
22 for 62 cores, growing almost linearly with the number of cores.

We also simulated the model using the adaptive ∆t strategy, varying the error bound
parameter α, obtaining the results reported in Table 4.

Table 4: Advection Reaction Model - Adaptive ∆t - Using 62 Cores

α Simulation Speedup Error
Time

(seconds)

2 169 15.68 2.96e-06
10 135 19.63 4.50e-06
20 124 21.37 4.57e-06
50 122 21.72 6.71e-06

100 127 20.87 9.33e-06

As predicted in Section 5, the best results are obtained around α = 10, achieving a
similar speedup to that obtained using ∆t = 1e − 4, but with less error. Notice that
using this strategy the speedup and errors are robust with the choice of the parameter
α.

Using the error bound parameter α = 10, we then varied the number of cores, ob-
taining the results reported in Table 5.
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Table 5: Advection Reaction Model - Adaptive ∆t - α = 10

Cores Init Simulation Memory Speedup Error
Time Time (MBytes)
(ms) (seconds)

1 174 2650 1058 1.00 0
2 672 2251 1626 1.18 3.63e-06
4 720 1218 2763 2.18 3.54e-06
8 733 716 5035 3.70 3.75e-06

16 871 381 9580 6.96 3.05e-06
32 1015 207 14573 12.80 3.70e-06
48 1270 178 23647 14.89 4.99e-06
62 1468 135 31614 19.63 4.50e-06

Notice that the error does not change significantly and the speed up follows a very
similar evolution to that obtained using a fixed parameter ∆t = 1e− 4.

It is worth mentioning that obtaining the optimal value ∆t = 1e − 4 required per-
forming several experiments, while the value α = 10 is just the default choice for the
adaptive algorithm.

In order to compare the performance of the parallel QSS Solver with that of a clas-
sic parallel ODE solver, we simulated the same model using the parallel extension of
the CVODE package called PVODE [46] on the same server, under the same tolerance
settings. The PVODE solver was configure to use the OpenMP library and the Adams
numerical algorithm (BDF did not work due to the very large size). The results are
reported in Table 6.

Table 6: Advection Reaction Model - CVODE Solver - Simulation Results

Cores Simulation Speedup
Time

(seconds)

1 12552 1
2 6814 1.84
4 3581 3.50
8 1854 6.77

16 1293 9.70
32 909 13.80
48 741 16.93
62 751 16.71

From the results, we also observe an almost linear speed-up until 48 cores, where it
saturates. The QSS solver is about 4.73 times faster than CVODE running on a single
core. Then, running on 62 cores, the QSS solver becomes about 6.3 times faster than
PVODE.

These figures show that the QSS solver is faster in a sequential simulation and the
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difference becomes bigger using 62 cores. It is worth mentioning that the QSS solver is
not optimized to deal with 2D arrays and the simulation code produced is very inefficient.

6.3. Power Control of an Air Conditioner Population
This model, also taken from [11], extends the model of Section 6.1, by adding a central

control of the total power consumption. Towards this end, the total AC population is
divided into local sections S = {s1, · · · , sn} and the power consumed by the k–th section
is computed as:

pi(tk) =
∑

j∈sk

Pj (27)

and the total power consumption of the AC population is computed as:

P (tk) =
∑

i∈S
pi (28)

The global control system regulates the total power P (tk) so that it follows a desired
power profile Pr(t). To achieve this goal, a proportional integral (PI) control law is used
to compute the common reference temperature as:

θr(tk) = KP · [Pr(tk)− P (tk)] +KL ·
∫ tk

τ=0

[Pr(τ)− P (τ)dτ (29)

Figure 6 depicts the output of the power control of a sequential simulation of the
model.

Figure 6: Power Control of an Air Conditioner Population Model - Output Trajectory

We simulated a population of 248000 ACs with 248 local sections, so in this case the
model contains 248000 state variables and 496498 zero–crossing functions. We used the
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QSS3 method with a quantization of ∆Qrel = 1e− 4 = ∆Qmin = 1e− 4 and the model
parameters set as in Section 6.1.

The error introduced by the parallel implementation was measured on the total power
consumption of the ACs (P (tk)) according to Eq. (18).

Table 7 reports the simulation results obtained for different ∆t values using 62 cores.

Table 7: Power Control of an Air Conditioner Population Model - Fixed ∆t - Using 62 Cores

∆t Simulation Speedup Error
Time

(seconds)

1e-05 2009 1.56 1.42e-04
1e-04 761 4.13 1.82e-04
1e-03 432 7.27 1.81e-04
1e-02 250 12.56 1.85e-04
1e-01 200 15.70 2.95e-04
5e-01 94 33.39 4.99e-04

1 90 34.88 5.50e-04
2 124 25.32 5.84e-04

As expected, the speedup and error grow with the value of ∆t. Starting from ∆t = 1,
there is no appreciable gain in the speedup, so we used this value for the next experi-
ments. This time, the maximum speedup is in the order of 35 for 62 cores (it was 52
in the first example, that did not need synchronization). In this example, the different
LPs communicate discrete changes (changes in the power consumption of each section or
changes in the global reference temperature). As explained in Section 3.7 the commu-
nication of discrete changes enforces a logical process to wait until the receivers process
the corresponding change, what slows down the simulation.

Then, using ∆t = 1, we simulated the model for different number of cores obtaining
the results reported in Table 8.

Table 8: Power Control of an Air Conditioner Population Model - Fixed ∆t = 1

Cores Init Simulation Memory Speedup Error
Time Time (MBytes)
(ms) (seconds)

1 106 3139 458 1.00 0
2 240 1830 655 1.72 9.18e-04
4 267 1019 1048 3.08 1.02e-03
8 294 648 1835 4.84 2.02e-04

16 382 426 3440 7.37 1.25e-03
32 526 176 6651 17.84 5.46e-04
48 673 117 9830 26.83 5.72e-04
62 796 90 12648 34.88 5.50e-04
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The results are very similar to those of the previous example in terms of initialization
times, memory consumption and errors. The speedup, again, grows almost linearly.

Then, we simulated the system with the adaptive algorithm for different error bound
parameter α, obtaining the results reported in Table 9.

Table 9: Power Control of an Air Conditioner Population Model - Adaptive ∆t - Using 62 Cores

α Simulation Speedup Error
Time

(seconds)

2 128 24.53 3.88e-04
10 91 34.50 1.47e-03
20 92 34.12 1.46e-03
50 89 35.27 1.39e-03

100 90 34.88 1.59e-03

Again, the value α = 10 has an almost optimal performance. Using this parameter,
we simulated the model for different number of cores, obtaining the results reported in
Table 10.

Table 10: Power Control of an Air Conditioner Population Model - Adaptive ∆t - α = 10

Cores Init Simulation Memory Speedup Error
Time Time (MBytes)
(ms) (seconds)

1 106 3139 458 1.00 0
2 195 1799 655 1.75 1.36e-03
4 209 1032 1048 3.04 1.43e-03
8 210 651 1835 4.82 4.77e-04

16 251 426 3440 7.37 1.33e-03
32 313 172 6651 18.25 9.01e-04
48 381 117 9830 26.83 1.09e-03
62 425 91 12648 34.50 1.47e-03

Again, the results are very similar to those obtained with the optimal value ∆t = 1
in Table 7.

6.4. Spiking Neural Network
The last model, adapted from [47], represents a network of spiking neurons. The i–th

neuron is modeled by three differential equations:

τ · v̇i(t) = vrest − vi(t) + gexi (t) · (Eex − vi(t)) + ginhi (t) · (Einh − vi(t))
τex · ġexi (t) = −gexi (t)

τ inh · ġinhi (t) = −ginhi (t)
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where vi(t) represents the membrane potential, gexi (t) is the excitatory conductance,
and ginhi (t) is the inhibitory conductance The definition and values for the remaining
parameters can be found in [47].

Whenever the membrane potential vi(t) reaches the threshold value −50, the neuron
performs a spike, reseting its potential to the value vi(t) = vrest = −60. The spike
is transmitted to the post synaptic connected neurons, that change their excitatory or
inhibitory conductance depending on the type of neuron that performed the spike. If
the i–th neuron is of excitatory type, the excitatory conductance of their post-synaptic
neurons is changed according to

gexj (t+) = gexh (t) + ∆gex

for all j ∈ Posti (the set of post synaptic neurons of neuron i). If the i–th neuron is of
inhibitory type, the inhibitory conductance of their post-synaptic neurons is changed as

ginhj (t+) = ginhh (t) + ∆ginh

for all j ∈ Posti. For these synaptic connections, we used parameters ∆gex = 0.4 and
∆ginh = 1.6.

After a neuron spikes, it enters a refractory period during it does not change its
membrane potential.

We considered a network of 300, 000 neurons, with 80% of excitatory type and 20%
of inhibitory type randomly distributed. Each neuron has 200 random post synaptic
connections, limited to the 800 closest neurons.

Additionally, there is a set of 60, 000 neurons that receive input spikes from an external
source during the first 100 mili seconds.

The system has a total of 900, 000 state equations, and 660, 000 zero crossing func-
tions. Example output trajectories for three neurons are depicted in Fig.7.
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Figure 7: Spiking Neurons Model - Output Trajectories

We simulated this system using QSS2 algorithm with a tolerance ∆Qrel = ∆Qabs =
1e− 3 until a final time tf = 300.

This model has a chaotic behavior and a small change in the tolerance settings pro-
duces a totally different result if we look at the evolution of an individual neuron. Thus,
rather than measuring errors, we measured the activity of the neuron network, counting
the number of spikes performed during the simulation.

Due to this chaotic behavior, not only the errors but also the speedups change between
different simulation runs under the same parameter settings. Thus, the results reported
here are computed as the average over 10 experiments.

As in the previous examples, we started by varying the parameter ∆t using 62 cores.
The results are reported in Table 11

Table 11: Spiking Neurons Model - Fixed ∆t - Using 62 Cores

∆t Simulation Speedup Average
Time Spikes

(seconds)

1e-04 2201 2.45 15.80
1e-03 726 7.44 15.92
1e-02 410 13.17 15.92
1e-01 304 17.76 15.93
5e-01 227 23.79 15.87

1e+00 214 25.24 15.84
2e+00 216 25.00 15.62
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As expected, the speedup increased with ∆t reaching a maximum of about 25 times.
Regarding the number of spikes, it did not experience noticeable changes, so the activity
was similar.

Table 12 shows the speedup varying the number of cores using ∆t = 0.5.

Table 12: Spiking Neurons Model - Fixed ∆t = 5e− 1

Cores Init Simulation Memory Speedup Average
Time Time (MBytes) Spikes
(ms) (seconds)

1 1244 5402 2555 1.00 15.84
2 1806 3331 2916 1.62 15.86
4 1809 2030 3670 2.66 15.94
8 2071 1349 5177 4.00 15.85

16 2176 1012 8257 5.33 15.93
32 2594 439 14352 12.30 16.16
48 3104 288 20480 18.75 15.81
62 3536 231 25851 23.38 15.80

The initialization times, memory usage, and speedup show similar evolutions to those
of the previous examples, and again, the speedup is almost linear.

The use of the adaptive algorithm varying the error bound parameter α produces the
results reported in Table 13

Table 13: Spiking Neurons Model - Adaptive ∆t - Using 62 Cores

α Simulation Speedup Average
Time Spikes

(seconds)

2 388 13.92 15.94
10 344 15.70 15.90
20 315 17.14 16.02
50 252 21.43 15.75

100 236 22.88 15.84

This time, the best results are obtained for α = 100. However, due to the chaotic
behavior of the model, we cannot estimate the effects of the errors introduced by the
lack of synchronization.

Using α = 10 and varying the number of cores, we obtained the results of Table 14.
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Table 14: Spiking Neurons Model - Adaptive ∆t - α = 10

Cores Init Simulation Memory Speedup Average
Time Time (MBytes) Spikes
(ms) (seconds)

1 1244 5402 2555 1.00 15.84
2 1805 3367 2916 1.60 16.41
4 1806 2040 3670 2.64 15.50
8 1935 1358 5177 3.97 16.04

16 2196 1049 8257 5.14 15.79
32 2654 486 14352 11.11 15.77
48 3123 354 20480 15.25 15.93
62 3512 344 25851 15.70 15.84

7. Conclusions

In this article we presented novel methodologies for the parallel simulation of con-
tinuous time and hybrid systems using QSS algorithms. Also, we described their imple-
mentation in a software simulation tool.

The methodologies are based on the use of non strict synchronization between logical
processes and introduce an additional numerical error to that of the QSS approximation.
We showed that this additional error is bounded depending on a parameter ∆t, and we
designed an adaptive algorithm for dynamically computing that parameter in order to
keep the error bounded according to the desired tolerance.

The results obtained on four large systems (one of them being purely continuous
and the remaining having discontinuities) showed linear speedups with the number of
cores. For a maximum of 62 cores used, the speedup reached values between 22 and 45
in the different cases. Taking into account that the sequential QSS simulations of those
examples are faster than those of classic discrete time numerical algorithms, the parallel
QSS results can increase the advantages.

This is the first work reporting parallel simulations with QSS methods in models with
a size of the order of one million variables (accounting states and discontinuity handlers).

Regarding future work, we consider the following items:

• The results should be extended to a wider set of models, including in particular
other types of PDEs.

• Although the tool includes the automatic partitioning algorithms of [45], they must
be adapted and optimized according to the features of the this particular parallel
implementation.

• In many problems, like in that of the Advection–Reaction equation, the results can
be improved using dynamic load balancing. To this end, we plan to extend the tool
implementing dynamic partitioning algorithms.

• In order to simulate using more LPs, we need to extend the techniques and the
implementation to consider distributed memory architectures, where the synchro-
nization strategy must be modified.
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• We are currently working on the automatic generation of partitioned sub-models
in order to facilitate the use of the model partitioned implementation, which is far
more efficient in terms of memory consumption.

The Parallel Stand–Alone QSS solver is an open source project, available at the site
http://sourceforge.net/projects/qssengine. The models used in this article are part of
the distribution.

8. Acknowledgments

This work was partially funded with grant ANPCYT PICT 2012 - 0077.

References

[1] F. Cellier and E. Kofman, Continuous System Simulation. New York: Springer, 2006.
[2] E. Hairer, S. Norsett, and G. Wanner, Solving Ordinary Differential Equations I. Nonstiff Problems.

Springer, 2nd ed., 1993.
[3] D. Petcu, “Experiments with an ode solver on a multiprocessor system,” Computers & Mathematics

with Applications, vol. 42, no. 8, pp. 1189–1199, 2001.
[4] M. Korch and T. Rauber, “Optimizing locality and scalability of embedded runge–kutta solvers us-

ing block-based pipelining,” Journal of Parallel and Distributed Computing, vol. 66, no. 3, pp. 444–
468, 2006.

[5] M. Korch and T. Rauber, “Locality optimized shared-memory implementations of iterated runge-
kutta methods,” in Euro-Par 2007 Parallel Processing, pp. 737–747, Springer, 2007.

[6] J. Lions, Y. Maday, and G. Turinici, “A”parareal”in time discretization of pde’s,” Comptes Rendus
de l’Academie des Sciences Series I Mathematics, vol. 332, no. 7, pp. 661–668, 2001.

[7] E. Kofman and S. Junco, “Quantized State Systems. A DEVS Approach for Continuous System
Simulation,” Transactions of SCS, vol. 18, no. 3, pp. 123–132, 2001.

[8] E. Kofman, “Discrete Event Simulation of Hybrid Systems,” SIAM Journal on Scientific Comput-
ing, vol. 25, no. 5, pp. 1771–1797, 2004.

[9] G. Migoni, M. Bortolotto, E. Kofman, and F. Cellier, “Linearly Implicit Quantization-Based In-
tegration Methods for Stiff Ordinary Differential Equations,” Simulation Modelling Practice and
Theory, vol. 35, pp. 118–136, 2013.

[10] G. Grinblat, H. Ahumada, and E. Kofman, “Quantized State Simulation of Spiking Neural Net-
works,” Simulation: Transactions of the Society for Modeling and Simulation International, vol. 88,
no. 3, pp. 299–313, 2012.

[11] C. Perfumo, E. Kofman, J. Braslavsky, and J. Ward, “Load Management: Model-Based Control of
Aggregate Power for Populations of Thermostatically Controlled Loads,” Energy Conversion and
Management, vol. 55, pp. 36–48, 2012.

[12] F. Bergero, J. Fernández, E. Kofman, and M. Portapila, “Time Discretization versus State Quantiza-
tion in the Simulation of a 1D Advection-Diffusion-Reaction Equation.,” Simulation: Transactions
of the Society for Modeling and Simulation International, vol. 92, no. 1, pp. 47–61, 2016.

[13] V. M. Soto Frances, E. J. Sarabia Escriva, and J. M. Pinazo Ojer, “Discrete event heat transfer
simulation of a room,” International Journal of Thermal Sciences, vol. 97, pp. 82–93, 2015.

[14] S. Chatzivasileiadis, M. Bonvini, J. Matanza, R. Yin, T. S. Nouidui, E. C. Kara, R. Parmar,
D. Lorenzetti, M. Wetter, and S. Kiliccote, “Cyber–physical modeling of distributed resources for
distribution system operations,” Proceedings of the IEEE, vol. 104, no. 4, pp. 789–806, 2016.

[15] M. Wetter, T. S. Nouidui, D. Lorenzetti, E. A. Lee, and A. Roth, “Prototyping the next generation
energyplus simulation engine,” in 13-th IBPSA Conference. International Building Performance
Simulation Association, 2015.

[16] R. Assar and D. J. Sherman, “Implementing biological hybrid systems: Allowing composition and
avoiding stiffness,” Applied Mathematics and Computation, vol. 223, pp. 167–179, 2013.

[17] D. Paluszczyszyn, P. Skworcow, and B. Ulanicki, “Modelling and simulation of water distribution
systems with quantised state system methods,” Procedia Engineering, vol. 119, pp. 554–563, 2015.

37



[18] G. A. Wainer, “The cell–devs formalism as a method for activity tracking in spatial modelling and
simulation,” International Journal of Simulation and Process Modelling, vol. 10, no. 1, pp. 19–38,
2015.

[19] L. Santi, N. Ponieman, K. Genser, V. D. Elvira, Y. Jun Soon, and R. Castro, “Application of state
quantization-based methods in hep particle transport simulation,” in 22nd International Conference
on Computing in High Energy and Nuclear Physics, CHEP 2016, (San Francisco, CA), 2016.

[20] F. Bergero, E. Kofman, and F. E. Cellier, “A Novel Parallelization Technique for DEVS Simulation
of Continuous and Hybrid Systems.,” Simulation: Transactions of the Society for Modeling and
Simulation International, vol. 89, no. 6, pp. 663–683, 2013.

[21] F. Bergero and E. Kofman, “PowerDEVS. A Tool for Hybrid System Modeling and Real Time
Simulation,” Simulation: Transactions of the Society for Modeling and Simulation International,
vol. 87, no. 1–2, pp. 113–132, 2011.

[22] J. Fernández and E. Kofman, “A Stand-Alone Quantized State System Solver for Continuous System
Simulation.,” Simulation: Transactions of the Society for Modeling and Simulation International,
vol. 90, no. 7, pp. 782–799, 2014.

[23] E. Kofman, “Relative Error Control in Quantization Based Integration,” Latin American Applied
Research, vol. 39, no. 3, pp. 231–238, 2009.

[24] E. Kofman, “A Second Order Approximation for DEVS Simulation of Continuous Systems,” Sim-
ulation: Transactions of the Society for Modeling and Simulation International, vol. 78, no. 2,
pp. 76–89, 2002.

[25] E. Kofman, “A Third Order Discrete Event Simulation Method for Continuous System Simulation,”
Latin American Applied Research, vol. 36, no. 2, pp. 101–108, 2006.

[26] P. Fritzson, Principles of Object-Oriented Modeling and Simulation with Modelica 2.1. Wiley-
Interscience, New York, 2004.

[27] L. Mikelsons, N. Menager, and D. Schramm, “Partitioned model vs parallelized solver,” in ASME
2011 International Design Engineering Technical Conferences and Computers and Information in
Engineering Conference, pp. 1101–1109, American Society of Mechanical Engineers, 2011.

[28] N. Kalinnik, M. Korch, and T. Rauber, “Online auto-tuning for the time-step-based parallel solution
of odes on shared-memory systems,” Journal of Parallel and Distributed Computing, vol. 74, no. 8,
pp. 2722–2744, 2014.
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• Novel parallelization techniques for Quantized State System (QSS) ODE
simulation are proposed.

• A theoretical analysis of the parallelization error introduced is presented.

• The novel techniques are implemented on multi–core architecture.

• The presented implementation is deeply evaluated on four large scale mod-
els.
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