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Abstract

Accurate estimation of the glottal source from a voiced sound is a di�cult
blind separation problem in speech signal processing. In this work, state-space
methods are investigated to enhance the joint estimation of the glottal source
and the vocal tract information. The aim of this paper is twofold. First, a
stochastic glottal source is proposed, based on deterministic Liljencrants-Fant
model and ruled by a stochastic di�erence equation. Such a representation
allows to accurately capture any perturbation occurring at glottal level in real
voices. A state-space voice model is formulated considering the stochastic glottal
source. Then, combining this voice model and the state-space framework, an
inverse �ltering method is developed that allows to jointly estimate both glottal
source and vocal tract �lter. The performance of this method is studied by
means of experiments with voices synthesized by applying both the source-
�lter theory and a physical based voice model. The method is also test using
human voice signals. The results demonstrate that accurate estimates of the
glottal source and the vocal tract �lter can be obtained over several scenarios.
Moreover, the method is shown to be robust with respect to di�erent phonation
types.

Keywords: Stochastic glottal source, state-space voice model, glottal inverse
�ltering, joint source-�lter estimation

1. Introduction

Glottal inverse �ltering consists of the decomposition of a speech waveform
into glottal source and vocal tract components [5, 33]. It has become a chal-
lenging task in digital speech signal processing since inverse �ltering involves a
di�cult blind separation problem where neither the glottal source nor the vocal
tract are known. This non-invasive method has proved to be useful for vari-
ous purposes, including voice production research, speech coding and analysis,
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natural speech synthesis, expressive or emotional speech processing and speaker
recognition/veri�cation. In biomedical science in particular, inverse �ltering
has demonstrated to be potentially helpful in applications such as voice disor-
der detection/diagnose, occupational voice care, pathological voice restoration
and clinical depression assessment, among others. A thorough review of inverse
�ltering and its applications should include [5, 16, 27, 44, 45] and references
therein.

Di�erent inverse �ltering methods have been developed in accordance with
the source-�lter theory. Most of them involve the calculation of the vocal tract
�lter (VTF) and the estimation of the glottal source by deconvolving the speech
signal in order to cancel the vocal tract e�ects. In earlier approaches, tuning of
VTF was performed manually by experts. Later, the arrival of Linear Prediction
and its related methods has given rise to automatic estimation of VTF [1, 3, 18,
32]. An automatic method widely applied in the practice is the so-called Iterative
Adaptive Inverse Filtering (IAIF) [4, 6]. On the other hand, joint source-�lter
optimization methods have been developed recently, where voice decomposition
is achieved by solving the inverse problem of voice production [9, 10, 21, 22, 38].
In the context of inverse problems, a proper model formulation is crucial to
guarantee feasible and accurate solutions. Therefore, a �exible voice generation
model is mandatory for voice decomposition.

In joint source-�lter optimization, both the vocal tract and the glottal source
should be explicitly modeled. Although the vocal tract is usually modeled by
means of autoregressive �lters, time-varying alternatives have recently received
more attention because they guarantee a more �exible representation of the
vocal tract dynamics. In the glottal source, the harmonic (quasi-periodic) com-
ponent can be described applying a deterministic model or a combination of
prede�ned basis functions [2, 5, 10]. Deterministic models of glottal source are
extensively described in speech literature (e.g., KLGLOTT88, R, LF, FL, R++,
EE1 and EE2) [14, 16, 20]. Nevertheless, these glottal models possess two main
limitations: (i) due to their deterministic formulation, they do not represent
the non-modeled features or the perturbations occurring at glottal level in real
voices [15, 39], and (ii) capturing the harmonic component from a (inverse �l-
tered) glottal waveform generally requires a least-square �tting of non-linear
analytical functions [16, 19]. In order to tackle these limitations, we introduce a
stochastic linear di�erential equation for the accurate and �exible representation
of the glottal source.

State-space methods allow for the model-guided processing of non-stationary
stochastic signals. Their most important characteristics are the following [11,
17]: (i) model formulation is straightforward, (ii) meaningful statistics (also
called estimates) of unobserved processes can be computed analytically, (iii)
uncertainties and errors are considered in the formulation of state-space models,
and (iv) algorithms are available for computing the optimal values of model
parameters. Given that speech signals are characterized by a non-stationary
and stochastic behavior, state-space framework would become specially suitable
for joint source-�lter optimization methods.

The goal of the present contribution is to investigate the application of state-
space methods to the stochastic modeling of voice production and to the joint
source-�lter optimization. Unlike earlier contributions (e.g., [9, 21, 22, 38]), we
have assumed that the glottal source is a non-stationary stochastic phenomenon
taking place during phonation. Then, we bene�t from this hypothesis in order to
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improve the accuracy in the estimation of the glottal source and the vocal tract
�lter. In particular, the aim of this paper is twofold. Firstly, we introduce a
time-varying stochastic di�erence equation for modeling the glottal source. Sec-
ondly, we propose a joint source-�lter optimization method based on a Gaussian
state-space voice model. This method is investigated by means of experiments
with voices synthesized by applying both the source-�lter theory and a physical
based voice model. Finally, for illustrative purposes, we apply this method to a
real voice signal.

This paper is structured as follows: In Sec. 2, the stochastic glottal source
model and the Gaussian state-space voice model are developed. In Sec. 3, state-
space methods are introduced and optimal estimation of voice model parameters
is described. In Sec. 4, the voice material and the experimental setup utilized
in this work are described. In Sec. 5, the results achieved are exposed and
analyzed. Finally, in Sec. 6 the conclusions are presented.

2. Glottal source and voice models

In this paper, only voiced sounds are considered. According to the source-
�lter theory, in its simplest form, voice production can be described as S(z) =
Vg(z)G(z), where S(z) and Vg(z) are the z-transforms of speech signal s and
glottal source vg, respectively, and G(z) is VTF transfer functions [12, 37].
Hereafter, vg represents the derivative of the glottal �ow Ug (a.k.a. glottal
volume velocity) [2, 14, 16]. In this section we formulate a stochastic model of
glottal source vg, and then we apply it for developing a Gaussian state-space
model of voice production.

2.1. Stochastic glottal source (SGS) model

The LF function, proposed by Liljencrants and Fant in [20], is one of the
most popular parametric representations of the glottal source vg. It provides a
good �t to waveforms commonly encountered in applications involving glottal
inverse �ltering [5, 14, 16]. According to it, a glottal source pulse is analytically
modeled in time-domain as follows:

vLFg [n] =


E0 e

αn sin (ωg n), 0 ≤ n ≤ Ne,
−Ee

εNa

(
e−ε (n−Ne) − e−ε (Nc−Ne)

)
, Ne < n ≤ Nc,

0, Nc < n < N0,

(1)

where {E0, α, ωg, ε} and {Ee, Np, Ne, Na, N0} are called the direct synthesis
and the timing parameters, respectively [20]. Here, N0 is the fundamental period
and f0 = fs/N0 is the fundamental frequency, with fs the sampling frequency.
The two set of parameters are related by the constrains:

∑N0−1
n=0 vLFg [n] = 0,

ωg = π
Np
,

εNa = 1− e−ε (Nc−Ne),

Ee = −E0 e
αNe sin (ωg Ne).

(2)

As an example, one cycle of vLFg is shown in Fig. 1. In particular, Ee is the
absolute value of the minimum located at n = Ne (see the dashed vertical line
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Figure 1: LF glottal source, vLF
g , and the corresponding auxiliary input signal, ẽg . Moreover,

Phase I and Phase II are indicated by the double arrows.

in the �gure). The starting point of every pulse constitutes the glottal opening
instant. Furthermore, the location of the minimum point in every cycle, where
the maximum excitation occurs, is the glottal closure instant. Hereafter, Phase
I (Phase II) refers to the timespan from a glottal opening (closure) instant to
the next closure (opening) instant. In the example in Fig. 1, Phase I and Phase
II are also shown.

From the vLFg de�nition, Eq. (1), we develop a linear time-varying stochastic
di�erence equation for modeling the glottal source. First row can be written as:

vLFg [n] = E0 e
αn sin

(
ωg n

)
= E0 e

α eα (n−1) sin
(
ωg
[
(n− 1) + 1

])
= eα cos (ωg)

[
E0 e

α (n−1) sin
(
ωg (n− 1)

)]
+ eα sin (ωg)

[
E0 e

α (n−1) cos
(
ωg (n− 1)

)]
.

(3)

Similarly, the second row in (1) can be expressed as:

vLFg [n] = − Ee
εNa

(
e−ε(n−Ne) − e−ε(Nc−Ne)

)
= −Ee e

−ε

εNa

(
e−ε(n−1−Ne) − e−ε (Nc−1−Ne)

)
≈ e−ε

[
− Ee
εNa

(
e−ε(n−1−Ne) − e−ε(Nc−Ne)

)]
.

(4)

In the last expression, it is assumed thatNc−Ne � 1 and therefore e−ε (Nc−Ne) ≈
e−ε (Nc−1−Ne) ≈ 0.

Combining the two previous results and assuming that the glottal source
behaves as a stochastic process, we formulate the stochastic glottal source (SGS)
model:

vSGS
g [n+ 1] =

{
Ag v

SGS
g [n] +Bg ẽg[n] + ζ[n], 0 ≤ n ≤ Ne,

Cg v
SGS
g [n] + ζ[n], Ne < n ≤ N0,

(5)

where Ag = eα cos (ωg), Bg = eα sin (ωg) and Cg = e−ε. It is also considered
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the auxiliary input signal:

ẽg[n] =

{
E0 e

αn cos
(
ωg n

)
, 0 ≤ n < Ne,

0, Ne ≤ n < N0,
(6)

and the Gaussian process ζ[n] ∼ N (0, σ2
ζ ). Notice that the de�nition (5) requires

only two expressions because, assuming vSGS
g [n] ≈ 0 for Nc < n < N0 and

σ2
ζ → 0, the SGS model is in accordance with the third row in (1). It can also

be observed that SGS model does not incorporate the constrains (2). Thus, in
order to yield a physically signi�cant glottal pulse, in Sec. 3.4 a penalization is
considered on the estimation of SGS model parameters.

The SGS model, de�ned in (5), possesses four important bene�ts: (i) it is
de�ned in terms of a linear time-varying stochastic di�erence equation, assuming
ẽg[n] is known; (ii) it can be studied under the state-space framework; (iii) the
glottal source waveform is determined by parameters Ag, Bg and Cg, along with
the glottal opening and closure instants; and (iv) any error or misspeci�cation in
the formulation is captured by ζ. Notice that the LF direct synthesis parameters,
with the exception of E0, and the parameters Ag, Bg and Cg are related by:

α =
1

2
ln
(
A2
g +B2

g

)
,

ωg = arctan

(
Bg
Ag

)
,

ε = − ln
(
Cg
)
.

(7)

2.2. State-space voice (SSV) model

Let s[n] for n = 1, 2, . . . , N be a voiced sound signal, with N the number
of samples. Assuming that the opening and closure instants for every glottal
pulse in s are known in advance, then Phase I and Phase II are also determined.
Denote by IN = {1, 2, . . . , N} the time index set corresponding to the voice
data SN = {s[1], s[2], . . . , s[N ]}. Then, II and III constitute the time index
sets corresponding to Phase I and Phase II, respectively, satisfying the following
conditions: II∪III = IN , II∩III = ∅ andN = #II+#III, with # the cardinality
of a set.

In accordance with the source-�lter theory, it is assumed that the voiced
sounds are produced by the modulation of the glottal source with the VTF.
Here, vocal tract behavior is represented using a time-varying autoregressive
�lter with exogenous input. Then, the voice signal s[n] can be described in
time-domain as follows:

s[n] = −
ρ∑
l=1

al[n] s[n− l] +Gg vg[n] + v[n], (8)

where ρ is the model order, al[n] for l = 1, 2, . . . , ρ are the time-varying �lter
coe�cients, Gg is a gain term and v[n] ∼ N (0, σ2

v). In (8), minus sign is
introduced only for algebraic convenience.

It is known that, for voiced sounds, the formants and their bandwidths
remain approximately constant or show small variations [12, 37, 43]. Thus, it
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is assumed that VTF coe�cients can be modeled as ρ stochastic time series
[24, 34]:

al[n+ 1] = al[n] + ξl[n], l = 1, 2, . . . , ρ, (9)

where ξl are jointly Gaussian random processes.
Considering Eq. (8) and taking into account previous hypotheses, next we

introduce the linear Gaussian state-space voice (SSV) model. In order to pro-
ceed, it is assumed that the voice production can be represented by the (latent)
state vector x[n] ∈ Rp, with p = ρ+ 1, given by:

x[n] =
(
x(1)[n] x(2)[n] . . . x(p−1)[n] x(p)[n]

)T
=
(
a1[n] a2[n] . . . aρ[n] vg[n]

)T
.

(10)

Although similar ideas have been suggested by other authors [21, 22, 38], SSV
model di�ers from those approaches in two aspects: the glottal source is stochas-
tically modeled using the SGS model and, moreover, it is an element of the latent
state vector x.

At this point, we can introduce the state and observation equations describ-
ing voiced sound signals. For n ∈ II, the state transition is driven by:

x[n+ 1] = AI x[n] + BI ẽg[n] + w[n], (11)

where w[n] ∼ N (0,Q), and matrix AI ∈ Rp×p and vector BI ∈ Rp are:

AI =

(
Iρ 0

0 Ag

)
and BI =

(
0

Bg

)
. (12)

Furthermore, the covariance Q ∈ Rq×q is the positive-de�nite symmetric
matrix, given by:

Q =

(
Qξ 0

0 σ2
ζ

)
, (13)

where Qξ ∈ Rρ×ρ is the joint covariance of stochastic processes ξl, Eq. (9),
and σ2

ζ is the variance of ζ, Eq. (5). Thus, matrix Qξ models the stochastic
correlation between the VTF �lter coe�cients.

For n ∈ III, the state transition is driven by:

x[n+ 1] = AII x[n] + BII ẽg[n] + w[n], (14)

where w[n] ∼ N (0,Q), and matrix AII ∈ Rp×p and vector BII ∈ Rp are:

AII =

(
Iρ 0

0 Cg

)
and BII =

(
0

1

)
. (15)

Matrix Q ful�lls the structure and the requirements described above. It is
important to remember that ẽg[n] = 0 for n ∈ III, according to (6).

Considering Eq. (8) for voice generation, along with Eqs. (11) and (14), the
observation equation is obtained. For n ∈ IN , it is formulated as:

s[n] = H[n] x[n] + v[n], (16)
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with row vector H[n] ∈ Rp:

H[n] =
(
−s[n− 1] −s[n− 2] · · · −s[n− ρ] Gg

)
. (17)

In summary, the SSV model is constituted by Eqs. (11), (14) and (16).
Due to its stochastic formulation, this model is able to represent the e�ects of
non-modeled phenomena or the perturbations occurring during phonation.

3. State-space methods

In this section, state-space methods applied in this work are brie�y described.
Taking into account the SSV model introduced in Sec. 2, only methods for linear
Gaussian state-space models are here considered.

3.1. State �ltering

State �ltering, also called Kalman �ltering, is an iterative forward proce-
dure for conveniently recovering latent states, conditional on past and present
data. It consists in computing the �ltered states x̂[n|n] = E {x[n] | Sn}, and
its covariance matrix P[n|n] = E

{
x[n] x[n]T | Sn

}
, for each n = 1, 2, . . . , N

[11]. This is an optimal procedure, in the sense of minimizing the mean square
estimation error [8]. Due to its simplicity and robustness, it becomes a useful
method in real-time applications. In this work, the so-called contemporaneous
Kalman �lter is applied (see e.g., [11, 17]). For initialization, it is assumed
x[0] ∼ N (x̂0, P̂0), where x̂0 and P̂0 are known.

3.2. State smoothing

State smoothing considers all information available in the data and, there-
fore, generates more accurate estimations of latent states [8]. It involves the
computation of the smoothed state x̂[n|N ] = E {x[n] | SN}, and its covariance
matrix P[n|N ] = E

{
x[n] x[n]T | SN

}
, for each n = 1, 2, . . . , N . In this work,

the so-called �xed interval Kalman smoothing is used, consisting on a two-steps
procedure. In a �rst step, the forward Kalman �lter is applied to the data, and
next, in a second step, the backward Kalman smoother improves the estima-
tions. This is a non-causal method making use of future information to improve
the estimations, and is suitable for processing stored signals or in delay-tolerant
real-time applications. Please refer to [17, 26], for further information about
state smoothing.

3.3. Di�erent smoothed estimates

Other smoothed estimates can be obtained from a given time series con-
ditional on a state-space model. They are relevant in practice because carry
information about the phenomenon under investigation, are useful for goodness-
of-�t evaluation, and play a critical role in the computation of model parameters
[13, 25, 30]. Here, smoothed estimates considered in this article are brie�y in-
troduced.

First, initial state smoothing is explained. It consists in computing the
smoothed initial state x̂[0|N ] = E

{
x[0]

∣∣SN} and its covariance matrix P̂[0|N ]
conditional on the full data and the state-space model. These parameters are
computed by means of the Kalman smoother [8, 13].
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The disturbance smoothing involves the estimation of the smoothed state
disturbances ŵ[n− 1|N ] = E

{
w[n− 1]

∣∣SN} and the observation disturbances

v̂[n|N ] = E
{

v[n]
∣∣SN}, along with their covariances P̂w[n− 1|N ] and P̂v[n|N ],

for n = 1, 2, . . . , N , respectively. This method also requires a two-steps pro-
cedure, where the forward Kalman �lter is applied, followed by the backward
disturbance smoothing recursion. For further information regarding disturbance
smoothing, see [17, 28].

Taking into account the smoothed states, including the initial state, the
smoothed state autocorrelation matrix is de�ned for n = 0, 1, . . . , N :

Ĉ[n|N ] = P̂[n|N ] + x̂[n|N ] x̂[n|N ]T . (18)

Similarly, smoothed disturbance autocorrelation matrices Ĉv[n|N ] and Ĉw[n|N ]
of observation v and state w disturbances, respectively, can also be computed.

Finally, smoothed one-step ahead state cross-correlation matrix is consid-
ered, consisting on computing Ĉn−1,n[n|N ] = E

{
x[n− 1] x[n]T | SN

}
, for n =

1, 2, . . . , N . Notice that Ĉn,n−1[1|N ] = Ĉn−1,n[1|N ]T . For more information
on it and others smoothed correlation estimates relevant to time series analysis,
refer to [17, Sec. 4.5].

3.4. Estimation of SSV model parameters

The proposed SSV model depends on a set of parameters Θ which in general
are unknown and, therefore, must be calculated from the voice data SN . In par-
ticular, the extensional de�nition of this set is Θ = {σ2

v, Q̊, x̂0, P̂0, Ag, Bg, Cg,

Gg}, assuming that Q = σ2
v Q̊. In the SSV model, glottal source amplitude de-

pends on the product Gg E0. Fixing E0, then Gg can be accordingly computed.
Hereafter, E0 = 0.001.

There are several techniques based on state-space methods for computing Θ,
relying on the formulation and the solution of an optimization problem. Here,
the iterative Expectation-Maximization (EM) algorithm is applied for solving
the penalized optimization problem formulated as [13, 29]:

Θ̂ = arg max
Θ∈D

E {ln L(Θ|SN )} − λΦ(Θ), (19)

where D is the domain of de�nition of Θ, L is the log-likelihood function, Φ is
a non-negative penalization function and λ is a penalization factor.

Di�erent penalization functions can be chosen, depending on which aspect
of the optimization procedure must be controlled. Here, Φ is given by:

Φ(Θ) =
1

2

[(
Ag − Ãg

)2
+
(
Bg − B̃g

)2
+
(
Cg − C̃g

)2]
, (20)

where Ãg, B̃g and C̃g are known. As can be inferred, the e�ect of this penaliza-
tion is to stabilize the estimation of SGS model parameters, see Eq. (5). This
is mandatory because, as stated in Sec. 2.1, SGS model approximates the non-
linear LF model and, as a consequence, unreliable parameters may be obtained
giving rise to unsuitable glottal sources and turning the optimization procedure
unstable. If Ãg, B̃g and C̃g ensure an acceptable glottal waveform, then the
penalization term favors physically signi�cant solutions.
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In order to solve the optimization problem (19) by using the EM method,
rules for iteratively computing the parameters in Θ were required. For comput-
ing σ2

v and Q̊ the equations introduced in [17, 30] were considered. Parameters
x̂0 and P̂0 were obtained by means of initial state smoothing (Sec. 3.3).

Next, the rules for computing glottal source parameters Ag, Bg, Cg and
Gg are described. The proofs can be found in the supplementary material
complementing this article. In �rst place, parameters Ag and Bg were obtained
as follows:

Âopt
g =

γ1 θ22 − γ2 θ12
θ11 θ22 − θ12 θ21

,

B̂opt
g =

γ2 θ11 − γ1 θ21
θ11 θ22 − θ12 θ21

.

(21)

The variables involved in the previous equations are given by:

θ11 = (Q̊−1)(p,p) (C̃I
n−1)(p,p) + λσ2

v,

θ12 = (Q̊−1)(p,p) (C̃I
ẽn−1 x̂n−1

)(p),

θ21 = (Q̊−1)(p,p) (C̃I
ẽn−1 x̂n−1

)(p),

θ22 = (Q̊−1)(p,p) ẽIn−1 + λσ2
v,

γ1 = (Q̊−1 C̃I
n,n−1)(p,p) −

ρ∑
i=1

(Q̊−1)(p,i) (C̃I
n−1)(i,p) + λσ2

v Ãg,

γ2 = (Q̊−1 C̃I
ẽn−1 x̂n

)(p) −
ρ∑
i=1

(Q̊−1)(p,i) (C̃I
ẽn−1 x̂n−1

)(i) + λσ2
v B̃g,

(22)

with (·)(i) the i-th element of a vector and, similarly, (·)(i,j) the i, j-th entry in

a matrix. These results were obtained assuming that both σ2
v > 0 and Q̊−1 are

known. In practice, the most recent values computed during the EM method
are chosen.

Previous equations depend on the parameters:

C̃I
n,n−1 =

∑
n∈II

Ĉn,n−1[n|N ],

C̃I
n−1 =

∑
n∈II

Ĉ[n− 1|N ],

C̃I
ẽn−1 x̂n−1

=
∑
n∈II

ẽg[n− 1] x̂[n− 1|N ]

C̃I
ẽn−1 x̂n

=
∑
n∈II

ẽg[n− 1] x̂[n|N ],

ẽIn−1 =
∑
n∈II

ẽg[n− 1]2.

(23)

In the case of Cg, the following rule was obtained:

Ĉopt
g =

γ3
θ3
, (24)
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where

θ3 = (Q̊−1)(p,p) (C̃II
n−1)(p,p) + λσ2

v,

γ3 = (Q̊−1 C̃II
n,n−1)(p,p) −

ρ∑
i=1

(Q̊−1)(p,i) (C̃II
n−1)(i,p) + λσ2

v C̃g.
(25)

As in the previous case, it is assumed that both σ2
v > 0 and Q̊−1 are known.

Furthermore, the remaining parameters are:

C̃II
n,n−1 =

∑
n∈III

Ĉn,n−1[n|N ],

C̃II
n−1 =

∑
n∈III

Ĉ[n− 1|N ].
(26)

Finally, the gain Gg is calculated by:

Ĝopt
g =

µ

η
, (27)

where

µ =
∑
n∈IN

[
s[n] (x̂[n|N ])(p) +

ρ∑
i=1

s[n− i] (Ĉ[n|N ])(i,p)

]
,

η =
∑
n∈IN

(Ĉ[n|N ])(p,p).

(28)

Flowchart in Fig. 2 summarizes the implemented optimization procedure
considering all the expressions described above. To start with, voice signal
s[n] with n ∈ IN , model order ρ, glottal opening and closure instants, and
parameters Ãg, B̃g and C̃g are mandatory. First of all, II and III are established
from the glottal instants. SSV model is implemented as follows: σ2

v = Var {s},
Gg = 1, Ag = Ãg, Bg = B̃g and Cg = C̃g. Here, initial values of Q̊ and P̂0

were heuristically de�ned in order to produce satisfactory results. Taking into
account de�nition (10), initial state x̂0 is set from the glottal source and the
vocal tract �lter estimated by using IAIF method (see Sec. 4.3). Next, a coarse
estimate of σ2

v is obtained through the EM method, keeping �xed the remaining
parameters in Θ, and the iteration index is initialized as j = 0.

Afterward the previous initial steps, the iterative optimization is started.
State-space methods are applied in order to generate the smoothed estimates
and, then, SSV model parameters are computed. These constitute the E and M
steps in the EM method, respectively. Next, the cost function is evaluated and
the convergence is analyzed. If the increment between previous and current cost
values is lower than a given threshold, it is assumed that optimal parameters
are obtained. Otherwise, optimization method does not converge, parameters
Ãg, B̃g and C̃g are upgraded, and the process is repeated. Depending on the
accuracy required, a threshold in the range (10−8, 10−3) has been considered.
Parameters Ãg, B̃g and C̃g are upgraded by using the most recent estimates
of SGS parameters. Alternatively, penalization factor λ could be gradually
decreased during the process. On one hand, this allows to force a smooth
convergence of glottal source parameters and, on the other hand, to modify
the e�ect of Φ(Θ) on the optimization procedure. An initial λ in the range
(104, 108) has been considered.
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Start
Input: s[n] with n ∈ IN , ρ,

GCI, GOI, Ãg , B̃g y C̃g .

Define II and III

Generate SSV model

Initialize σ2
v
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State space methods

Compute: σ̂2
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Âg, B̂g, Ĉg , Ĝg

Upgrade:
Ãg , B̃g , C̃g

Compute
E {ln L(Θ|SN )} − λΦ(Θ)

j = j + 1

Procedure
converge?

End

yes

no

Figure 2: Flowchart summarizing the optimization procedure for the computation of unknown
parameters Θ in SSV model. As a result, optimal values of σ2

v, Q̊, x̂0, P̂0, Ag , Bg , Cg and
Gg are obtained.

4. Experiments

In this section, the voice material and the reference methods used in this
article are brie�y described.

4.1. LF glottal source based voice signals

Voice material was generated by synthesizing sustained vowels /a/ using
the source-�lter theory. The signals were obtained processing periodic LF
glottal functions, described by Eqs. (1) and (2), by an autoregressive VTF
with the �rst four formants {800, 1200, 2600, 3200} Hz and the bandwidths
{60, 50, 105, 110} Hz. LF glottal pulses were generated considering random
time parameters, as proposed in [22].

Di�erent scenarios were investigated in the experiments, modifying the signal-
to-noise ratio (SNR), the glottal source-to-aspiration noise ratio (GNR), and the
fundamental frequency (f0). Only one of these parameters was modi�ed at a
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time, starting from initial values SNR=60 dB, GNR=60 dB, and f0=108 Hz.
For each setting, 100 signals with a duration of 0.5 s were synthesized consid-
ering a sampling frequency of fs = 10 kHz. Notice that, for these signals, both
the glottal source waveform and the vocal tract power-spectrum were known in
advance.

4.2. Physical model based voice signals

The proposed SSV model and the previously described voice material are
both based on the source-�lter theory. As a consequence, the above described
signals may produce biased results. Thus, voice material obtained by a physical
model of voice production was also involved in testing the proposed methods.
This idea has been previously applied to the examination of inverse �ltering
methods [1, 7, 9, 23].

In physical models, vocal fold dynamics and sound wave propagation in the
vocal tract are described by analogy with physical and acoustical elements. The
length and shape of the vocal tract is described by a series of acoustic tubes
with variable cross-section areas. Moreover, the acoustical coupling between
the time-varying pressures below and above the glottis, the glottal air �ow and
the driving forces acting on the vocal folds are also explicitly modeled. More
information regarding physical models of voice production could be found in
[40, 41].

In order to test the proposed method in more challenging scenarios, the
voice material proposed in [38] was used. It consists of signals corresponding to
sustained vowels /a/ and /i/ representative of an adult male speaker for three
di�erent qualities: pressed, modal and breathy [38]. For each case, one example
was available with a constant fundamental frequency of f0 = 105 Hz and a
duration of 0.7 s. The sampling frequency was fs = 44.1 kHz. Also, the glottal
�ow and the �rst four formants, calculated from the vocal tract assuming the
glottal end is closed, were informed. First, the signals were low-pass �ltered and
downsampled to fs = 10 kHz. Then, they were divided into 12 non-overlapped
portions, each of them considering 5 glottal cycles (approximately 50 ms long).

4.3. Experimental setup

The voice signals were individually processed. Parameters Ãg, B̃g and C̃g
were �rstly obtained, by �tting the LF model to the inverse �ltered glottal
source using IAIF method (see below). Then, optimal values of SSV parameters
Θ were calculated, applying the method described in Sec. 3.4. As a result, a
SSV model �tted to the voice data was obtained. Next, state-space methods
were applied in order to compute the smoothed states x̂[n|N ]. According to Eq.
(10), estimates of coe�cients âl[n], for l = 1, 2, . . . , ρ, and the glottal source
v̂g[n] were therefore obtained. Finally, the glottal �ow Ûg[n] was computed by
the integration of the glottal source. This procedure constitutes the state-space
based voice inverse �ltering (SSIF) method.

For comparison purposes, the glottal source and the vocal tract spectral
information were also estimated applying two others widely used methods:

• Iterative Adaptive Inverse Filtering (IAIF): This method was developed
for the automatic decomposition of voiced sounds. It consists on itera-
tively compute AR models of the glottal source and the vocal tract from
a voice signal. In the �rst place, a glottal source (order 1) AR model is
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estimated, the source e�ect is canceled, and a vocal tract (order p) AR
model is then computed. Next, model estimates are re�ned by repeating
previous procedures. In this case, a higher-order (q > 1) AR model for
representing the glottal source is considered. Generally, IAIF method is
applied pitch-synchronously considering windowed segments of voice sig-
nal centered according to the glottal closure instants. For a throughout
description, see [4, 6] and the references therein. In this work, the im-
plementation provided in the TKK Aparat toolbox was applied [2], freely
available at http://sourceforge.net/projects/aparat.

• Linear Prediction (LP): This is one of the most widely used methods for
the estimation of vocal tract �lter. It computes the vocal tract (order p)
AR model that minimizes the auto-regressive prediction error for a given
windowed voice signal. In the standard formulation of LP, glottal source is
poorly modeled. Therefore, this method is not suitable for glottal source
estimation by inverse �ltering. For a detailed description of LP and its
limitations, see [12, 18, 32, 37]. Here, the classical autocorrelation LP
method was considered.

5. Results

5.1. LF glottal source based voice signals

For this voice material, best results were obtained with ρ = p = 8 and q = 2.
In Fig. 3, examples obtained through the proposed SSIF method are shown, for
a voice signal synthesized with SNR=60 dB, GNR=30 dB, f0=108 Hz. At the
top, a 30 ms-length signal waveform is displayed. In the second row, the LF
glottal source (gray line) and the estimates provided by SSIF (thick line) and
IAIF (thin line) methods are displayed. In the third row, the estimated glottal
�ows along with the theoretical (LF) signal are presented. It can be appreciated
that both methods suitably estimate the glottal information, in comparison with
the original signals. Notice also that SSIF yields the less �uctuating glottal
estimates. The latter is more evident in the closed phase. At the bottom, the
VTF power spectrum (gray line) and the mean power spectra estimated by
SSIF (thick line) and IAIF (thin line) methods are presented. In the case of
SSIF, the instantaneous power spectra were �rst constructed [34] and, then, the
mean spectrum was obtained. It can be appreciated that, in this example, SSIF
captures the spectral behavior more accurately than IAIF, particularly in the
region of the third and fourth formants. It is important to point out that in
Fig. 3 all SSIF and IAIF estimates are shifted down and up, respectively, in
order to improve the visualization.

Estimated information was objectively assessed for analyzing the perfor-
mance of the proposed method. On one hand, glottal source estimation was
evaluated by computing the relative root-mean-square estimation error in per-
centage:

evg = 100

√√√√ 1

N

N∑
n=1

(
v̂g[n]− vg[n]

Ee

)2

%, (29)

where v̂g and vg are the estimated and the theoretical glottal sources, respec-
tively, and Ee is taken as a reference value. In Tab. 1, errors evg for SSIF and
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Figure 3: Inverse �ltering of a sustained vowel /a/ synthesized applying the LF glottal
source (SNR=60 dB, GNR=30 dB, f0=108 Hz). Top: 30 ms of voice waveform. Second row:
estimation of the glottal source vg by using SSIF and IAIF methods, in comparison with the
LF glottal function considered in the synthesis. Third row: glottal �ows Ug obtained from
the source estimates, along with the original (LF) glottal �ow. Bottom: power spectra Pf

computed by SSIF and IAIF methods, along with the spectral response of the VTF considered
in the synthesis. In all cases SSIF and IAIF estimates are shifted down and up, respectively,
for a better visualization.

IAIF methods are reported. The mean values and the corresponding standard
deviations, in parenthesis, are presented for di�erent levels of SNR, GNR and f0.
Best results are printed in bold font, and statistically di�erent groups according
to the Wilcoxon sum rank test [31, Sec. 7.5] are indicated. This non-parametric
test assumes as null hypothesis that two populations are equal, against the al-
ternative that the latter is not true. It can be appreciated that SSIF yields
accurate glottal source estimates, except for very low SNR (high acoustic noise
level) where mean error is greater than 8 %. Moreover, notice that SSIF gen-
erates the smaller mean errors and the smaller standard deviations compared
with IAIF, over all the considered scenarios.

The accuracy in the estimation of VTF spectral information was also as-
sessed. As it was stated before, for the voice material here considered the
theoretical VTF power-spectrum PV Tf was known in advance. Therefore, the
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Table 1: Glottal source estimation error evg (in %) for SSIF and IAIF methods in the LF
glottal source based voice material, for di�erent levels of SNR, GNR and f0. The mean values
are presented and the standard deviations are shown in parenthesis. The statistically di�erent
results are indicated (* 0.05 ≥ p > 0.01, ** 0.01 ≥ p > 0.001, *** 0.001 ≥ p).

SNR (dB) GNR (dB) f0 (Hz)

0-20 25-40 45-60 0-20 25-40 45-60 88-118 188-218

SSIF
8.12 3.64 1.40 2.87 1.05 0.97 1.04 4.98

(2.70) (1.30) (1.37) (1.76) (1.35) (1.36) (1.15) (1.14)

IAIF

29.10 13.71 5.52 10.49 2.93 2.75 6.78 23.27

(4.52) (2.86) (2.46) (5.85) (0.40) (0.37) (7.31) (15.48)

*** *** *** *** *** *** *** ***

Table 2: Log-spectral error ePf
(in dB) for SSIF, IAIF and LP methods in the LF glottal

source based voice material, for di�erent levels of SNR, GNR and f0. The mean values are
presented and the standard deviations are shown in parenthesis. The statistically di�erent
results are indicated (* 0.05 ≥ p > 0.01, ** 0.01 ≥ p > 0.001, *** 0.001 ≥ p).

SNR (dB) GNR (dB) f0 (Hz)

0-20 25-40 45-60 0-20 25-40 45-60 88-118 188-218

SSIF
13.49 9.09 2.46 2.46 0.71 0.62 0.81 2.10

(1.18) (1.45) (2.12) (1.40) (1.07) (0.91) (1.01) (1.71)

IAIF

15.25 9.43 4.09 4.07 3.00 2.86 4.49 4.14

(1.47) (1.68) (1.31) (1.35) (0.83) (0.72) (1.60) (1.34)

*** ** *** *** *** *** *** ***

LPC

12.93 9.92 9.66 8.59 9.64 9.65 10.01 9.91

(1.40) (0.29) (0.05) (1.23) (0.11) (0.06) (0.31) (0.67)

*** *** *** *** *** *** *** ***

estimates were compared using the log-spectral error, in dB, over L frequency
bins {f1, f2, . . . , fL}:

ePf
=

√√√√ 1

L

L∑
l=1

[
10 log10

(
P̂f [fl]

PV Tf [fl]

)]2
dB, (30)

where P̂f is the estimated power-spectrum. Frequencies in the range 0-5 kHz
were considered, with L = 512. In Tab. 2, errors ePf

for SSIF, IAIF and
LP methods are presented. The mean values and the corresponding standard
deviations, in parenthesis, are reported for di�erent levels of SNR, GNR and f0.
Best results are exhibited in bold font. It is also indicated whether the results
obtained by SSIF are statistically di�erent from those generated by IAIF or
LP, respectively, according to the Wilcoxon sum rank test. It can be observed
that SSIF generates smaller mean errors and smaller standard deviations than
the other methods considered, except for very low SNR where the LP performs
better. As expected, the IAIF method outperforms LP, exhibiting smaller mean
errors, over almost all the analyzed scenarios.

These results suggest that the stochastic models proposed in Sec. 2, in
combination with the state-space methods, give raise to accurate estimates of
glottal source and vocal tract spectral information in the voice material here
considered. The latter was observed over all the analyzed scenarios, except un-
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Figure 4: Inverse �ltering of a sustained vowel /a/ generated from a physical model of voice
production. Top: voice signal waveform. Second row: estimation of the glottal source vg by
using SSIF and IAIF methods, in comparison with the simulated glottal function. Third row:
glottal �ows Ug obtained from the source estimates, along with the simulated glottal �ow.
Bottom: power spectra Pf computed by SSIF and IAIF methods. Vertical thick lines mark
the theoretical location of the �rst four formants. In all cases SSIF and IAIF estimates are
shifted down and up, respectively.

der severe acoustic noise conditions. The proposed SSIF method proved to be
robust over a wide range of GNR and f0. Nevertheless, the estimates deterio-
rated signi�cantly when acoustic noise was increased. This was also observed
for IAIF and LP methods.

5.2. Physical model based voice signals

Next, the results obtained in the physical model based voice material are
discussed. In this case, the best results were obtained with ρ = p = 10 and
q = 4. Examples of inverse �ltering a modal vowel /a/ are shown in Fig.
4. At the top, a 30 ms-length signal waveform is displayed. In the second
row, the simulated glottal source (gray line) and the estimates obtained by
SSIF (thick line) and IAIF (thin line) methods are presented. Similarly, the
simulated glottal �ow and the estimates are shown in the third row. It can be
observed that the estimates yielded by both methods �t properly the physical
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(latent) glottal signals. However, it can be seen that SSIF produces smoother
signals, showing a less �uctuating behavior in the closed phase, compared with
IAIF. At the bottom, the power spectra computed by SSIF (thick line) and
IAIF (thin line) methods are presented. Vertical gray lines mark the theoretical
location of the �rst four formants. In this case, both methods suitably capture
the vocal tract resonances, except for the fourth formant where it seems that
IAIF outperforms SSIF. Once again, SSIF (IAIF) estimates are shifted down
(up) in order to improve the visualization.

The performance of the proposed method for the physical model based voice
material was also analyzed. Accuracy in the estimation of the glottal source was
objectively assessed by computing the estimation error evg , de�ned in Eq. (29).
In Tab. 3, errors evg for SSIF and IAIF methods are reported. The mean values
and the corresponding standard deviations, in parenthesis, are presented for
vowels /a/ and /i/, produced with pressed, modal and breathy qualities. Best
results are indicated in bold font, and statistically di�erent groups according
to the Wilcoxon sum rank test are marked. It can be seen that the proposed
SSIF accurately estimates the glottal source, except for the breathy vowels /a/
where mean error is greater than 7 %. Furthermore, SSIF outperforms IAIF over
all the considered scenarios, yielding the smallest mean errors and the smallest
standard deviations. Notice that the mean errors are higher than those reported
in Tab. 1, except for a very low SNR.

As stated before, for physical model voice material the �rst four formants are
known in advance. Therefore, the estimation of VTF spectral information was
evaluated considering the relative root-mean-square formant estimation error in
percentage:

eFk
= 100

√√√√ 1

N

N∑
n=1

(
F̂k[n]− Fk[n]

Fk[n]

)2

%, (31)

where Fk and F̂k are the theoretical and the estimated k-th formant, respec-
tively. In Tab. 4, errors eFk

for SSIF, IAIF and LP methods are reported. The
mean values and the corresponding standard deviations, in parenthesis, are in-
formed for {F1, F2, F3} corresponding to vowels /a/ and /i/ for pressed, modal
and breathy qualities. Best results are exhibited in bold font. It is also indi-
cated whether the results obtained by SSIF are statistically di�erent from those
generated by IAIF or LP, respectively, according to the Wilcoxon sum rank test.
It can be seen that the obtained results are considerably diverse. In general,
the mean errors produced by SSIF are less than or equal to those obtained by
IAIF or LP, and they yield the smallest standard deviations, over most of the
considered cases. Moreover, SSIF clearly outperforms the other two methods in
the estimation of F2 in vowels /a/ and F1 in vowels /i/, respectively.

The last results support the hypothesis that the proposed SSIF, considering
the stochastic models formulated in Sec. 2, is able to produce accurate esti-
mates of glottal source and vocal tract information. In addition, the method
shows to be robust with respect to the voiced phoneme and the phonation type.
As expected, SSIF and the other considered methods yielded the worst results
for breathy signals. This could be, in part, explained by the fact that breathy
voices are characterized by a shorter closed phase and a lesser glottal excita-
tion energy, compared with modal and pressed phonations. In this scenario,
the main hypotheses of the source-�lter theory are not ful�lled and the voice
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Table 3: Glottal source estimation error evg (in %) for SSIF and IAIF methods in the physical
model based voice material, corresponding to vowels /a/ and /i/ for voice qualities: pressed,
modal and breathy. The mean values are presented and the standard deviations are shown in
parenthesis. The statistically di�erent results are indicated (* 0.05 ≥ p > 0.01, ** 0.01 ≥ p
> 0.001, *** 0.001 ≥ p).

Pressed Modal Breathy

/a/

SSIF
3.91 3.85 7.33

(0.27) (0.26) (0.61)

IAIF

6.60 7.60 12.22

(1.04) (0.24) (1.45)

*** *** ***

/i/

SSIF
3.89 4.25 4.71

(0.29) (0.31) (0.32)

IAIF

8.70 6.75 17.47

(0.70) (0.22) (0.59)

*** *** ***

Table 4: Relative root-mean-square formant estimation error ePf
(in %) for SSIF, IAIF and

LP methods in the physical model based voice material, for {F1, F2, F3} corresponding to
vowels /a/ and /i/ for voice qualities: pressed, modal and breathy. The mean values are
presented and the standard deviations are shown in parenthesis. The statistically di�erent
results are indicated (* 0.05 ≥ p > 0.01, ** 0.01 ≥ p > 0.001, *** 0.001 ≥ p).

Pressed Modal Breathy

F1 F2 F3 F1 F2 F3 F1 F2 F3

/a/

SSIF
0.39 0.50 0.72 0.36 0.24 1.56 2.44 3.87 3.57

(0.17) (0.27) (0.07) (0.08) (0.20) (0.34) (0.71) (4.12) (1.23)

IAIF

0.31 1.54 0.68 0.41 1.64 1.84 3.69 11.47 4.88

(0.15) (0.38) (0.13) (0.29) (0.98) (1.18) (2.80) (6.25) (2.44)

*** *** ***

LP

5.62 2.00 0.48 1.47 2.32 2.22 3.36 8.27 4.69

(0.16) (0.11) (0.22) (0.54) (0.88) (1.61) (2.13) (4.13) (2.67)

*** *** ** *** *** *

/i/

SSIF
0.44 0.52 0.08 0.49 0.21 0.81 0.57 0.69 6.82

(0.13) (0.09) (0.06) (0.10) (0.08) (0.30) (0.30) (0.48) (1.19)

IAIF

6.84 1.75 2.85 0.96 1.28 1.45 2.71 2.70 6.46

(2.47) (0.30) (0.39) (0.10) (0.69) (1.02) (1.59) (1.95) (4.08)

*** *** *** *** *** *** *

LP

9.96 0.24 0.31 4.06 1.48 1.50 4.50 2.70 5.34

(0.14) (0.16) (0.15) (0.55) (0.69) (1.09) (1.61) (2.54) (4.33)

*** *** *** *** *** *** *
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Figure 5: Inverse �ltering of a real voice signal corresponding to a low pitch vowel /a/ uttered
by an adult male Top: voice signal waveform. Second row: estimation of the glottal source vg
by using the proposed SSIF and IAIF. Third row: glottal �ows Ug obtained from the source
estimates. Bottom: power spectra Pf computed through SSIF and IAIF methods. In all cases
SSIF and IAIF estimates are shifted down and up, respectively, for a better visualization.

decomposition fails [19, 38, 44].

5.3. Real voice signals

In this section, the performance of the proposed SSIF for glottal inverse
�ltering a real voice signal is illustrated. A voice signal selected from the Saar-
bruecken Voice Database [36] is considered, corresponding to a low pitch vowel
/a/ uttered by an adult male. In the database, the electroglottographic (EGG)
signal was also available. Both voice and EGG signals were recorded simultane-
ously in a quiet room, and digitized at a 50 kHz sampling frequency. For further
information, see [35].

First, the signals were downsampled to a 10 kHz sampling frequency, and
the glottal opening and closure instants were estimated from the EGG applying
the SIGMA algorithm [42]. Then, the optimal parameters for the SSV model
were computed, and with them the SSIF was performed. Here, it was considered
that ρ = p = 10 and q = 4.
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Fig. 5 summarizes the results of using the proposed approach. At the top,
a 30 ms-length signal waveform is displayed. In the second row, the glottal
source estimates obtained by SSIF (thick line) and IAIF (thin line) methods
are presented. It can be appreciated that the estimates closely resemble those
signals presented in Fig. 4. Once again, even when the results were similar,
the estimates yielded by SSIF were smoother than those obtained by IAIF.
Glottal �ows resulting from the source estimates are shown in the third row. In
this case, these signals are similar to each other, but di�er considerably from
previous results presented in Figs. 3 and 4. However, these estimates show a
good agreement with results of other studies (see e.g., [1, 3, 9, 45]). On the other
hand, vocal tract power spectra computed by SSIF (thick line) and IAIF (thin
line) methods are plotted at the bottom panel. Notice that both power spectra
are similar. Moreover, SSIF seems to produce narrower formant bandwidths
showing pronounced formant peaks compared with IAIF.

6. Conclusion

In this work, a stochastic glottal source model was developed, based on the
widely accepted Liljencrants-Fant function and in accordance with the state-
space theory. Among others bene�ts, this model allows the description of the
glottal source as a non-stationary stochastic phenomenon. As a consequence,
this model is suitable to represent the alterations or perturbations normally
observed in real voices. As far as the authors know, no other model of the
glottal source with this capability has been previously developed.

Additionally, a Gaussian state-space model for voiced sounds production was
introduced, combining the classical source-�lter theory, the proposed stochastic
glottal source model, and the state-space framework. Therefore, a state-space
based voice glottal inverse �ltering method was implemented combining this
voice production model and the state-space methods. The simulations here
presented suggest that this approach yielded accurate estimates of the glottal
source and the vocal tract information over diverse scenarios. It was also proved
that the proposed stochastic glottal source is able to suitably represent di�erent
glottal source dynamics. However, a more thorough analysis is required in order
to con�rm these �ndings.

An important issue needs to be pointed out: the glottal opening and closure
instants are essential components for the implementation of the model here
proposed. Therefore, the state-space based voice glottal inverse �ltering method
highly depends on the quality of these values. Even though several methods have
been developed in the last years to deal with this issue, the computation of this
information is a very di�cult task in practice. Future work will focus on the
optimal estimation of the glottal opening and closure instants, based on the
proposed voice production state-space model.
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