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Abstract In this paper, we present a methodology for estimating the effectiveness of a drug,1

an unknown parameter that appears on an avascular, spheric tumor growth model formulated2

in terms of a coupled system of partial differential equations (PDEs). This model is formulated3

considering a continuum of live cells that grow by the action of a nutrient. Volume changes4

occur due to cell birth and death, describing a velocity field. The model assumes that when5

the drug is applied externally, it diffuses and kills cells. The effectiveness of the drug is6

obtained by solving an inverse problem which is a PDE-constrained optimization problem.7

We define suitable objective functions by fitting the modeled and the observed tumor radius8

and the inverse problem is solved numerically using a Pattern Search method. It is observed9

that the effectiveness of the drug is retrieved with a reasonable accuracy. Experiments with10

noised data are also considered and the results are compared and contrasted.11

Communicated by George S. Dulikravich.

This work has been partially supported by the European Union FP7 Health Research Grant No.

FP7-HEALTH-F4-2008-202047-RESOLVE, and ANPCyT, CONICET and SECyT-UNC.

B D. Fernández

dfernandez@famaf.unc.edu.ar

D. Knopoff

knopoff@famaf.unc.edu.ar

G. Torres

torres@famaf.unc.edu.ar

C. Turner

turner@famaf.unc.edu.ar

1 Dipartimento di Scienze Matematiche, Politecnico di Torino, Corso Duca degli Abruzzi 24,

10100 Torino, Italia

2 Facultad de Matemática, Astronomía y Física, Universidad Nacional de Córdoba, CIEM-CONICET,

Medina Allende s/n, Ciudad Universitaria, 5000 Córdoba, Argentina

123

Journal: 40314 Article No.: 0259 TYPESET DISK LE CP Disp.:2015/7/16 Pages: 16 Layout: Small

A
u

th
o

r
 P

r
o

o
f

http://crossmark.crossref.org/dialog/?doi=10.1007/s40314-015-0259-7&domain=pdf


u
n
co

rr
ec

te
d

p
ro

o
f

D. Knopoff et al.

Keywords Avascular tumor · PDE-constrained optimization · Inverse problem ·12

Mathematical modeling13

Mathematics Subject Classification 35R30 · 65M32 · 35Q8014

1 Introduction15

The scientific community agrees that mathematical modeling of tumor growth is an effec-16

tive and important step in promoting knowledge about cancer, becoming one of the most17

studied topics in mathematical biology. Pioneer models for tumor growth were proposed18

by Adam (1986) and Greenspan (1972). Some developments in the last years include,19

among many others, cell-focused (Rejniak and McCawley 2010), hybrid (Preziosi and20

Vitale 2011) and continuum models (Wise et al. 2008), each of them with some spe-21

cific fields of applications. In (Byrne and Drasdo 2009), a comparison between them is22

considered. Some important contributions in the field include models based on the diffu-23

sion of nutrients taking into account the physiological changes accompanying the growth24

of avascular tumors (Kiran et al. 2009), those regarding to biological motivations for in25

silico models of cancer (Edelman et al. 2010), multi-phase models regarding thermody-26

namic equilibrium (Grillo et al. 2009), and the recent Bayesian approach for selecting27

and validating mathematical and computational models (Oden et al. 2013). The recent28

papers (Bellomo et al. 2008; Tracqui 2009; Lowengrub et al. 2010; Roose et al. 2007) are29

valuable reviews and the interested reader is referred to them for additional useful refer-30

ences.31

The advantages of continuum models are that they are understandable, tractable to mathe-32

matical analysis and intuitive from biological principles. They contain a few parameters and33

can use laws from physics. On the other hand, the advantages of discrete models are able to34

work in other scales and each cell can be treated independently with no extra complication35

(Roose et al. 2007).36

In this present paper, we focus on the growth of a multicellular spheroid (MCS) (Hamilton37

1998). A MCS is a cluster of cancer cells grown in vitro to mimic the early stages of in vivo38

avascular tumor growth. In fact, in vitro observations (Sutherland 1988) suggest that in the39

early stages solid tumors remain approximately spherical as they grow, possessing a central40

core of necrotic cells, with proliferating cells restricted to the outer rim of the tumor.41

Since this model considers the evolution of a system from a single progenitor cell to42

O(106) cells in vitro, the continuum approach is better than an agent-based approach (Byrne43

and Drasdo 2009).44

Mathematical models of MCSs are typically continuous models which consist of an ordi-45

nary differential equation (ODE) representing the evolution of the outer tumor boundary, and46

a set of partial differential equations (PDEs) describing, for example, the distribution within47

the tumor of vital nutrients, such as oxygen and glucose, and growth inhibitors (Byrne and48

Chaplain 1997). That is why in this general approach of modeling, the key variables are the49

tumor size, e.g., tumor radius, and the concentration of the aforementioned substances. Since50

the tumor changes in size over time, the domain on which the models are formulated must be51

determined as part of the solution process, giving a vast class of moving boundary problems52

(Byrne and Chaplain 1997; Crank 1984).53

In this article, we propose a framework for estimating an unknown parameter via PDE-54

constrained optimization, following a model by Ward and King (2003), which is a two-phase55

model with the two phases being live cells and dead cells.56
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A parameter estimation problem for a tumor growth model

In this approach, avascular tumor growth is modeled via a coupled nonlinear system of57

PDEs, making its numerical solution quite challenging. It is worth mentioning that all tumor58

growth models involve a certain number of parameters (Hogea et al. 2008), and that some of59

them are difficult to obtain experimentally. In particular, we will consider a parameter that60

represents the effectiveness of a chemotherapeutic drug, because it encapsulates both the drug61

degradation rate and the diffusivity, and it is consequently a key parameter in determining62

the success of the drug (Ward and King 2003). In addition, according to the definition given63

in (Ward and King 2003), the drug penetration depth within the tumor can be shown to be64

proportional to the square root of this parameter.65

To obtain the effectiveness of the drug, we define a function to be minimized that estab-66

lishes a comparison between the measured radius of the tumor and the one predicted by67

the model. We observe that the evolution of the radius of the MCSs is in fact a measurable68

variable. For instance, in (Monazzam et al. 2007; Bergstrom et al. 2008; Herrmann et al.69

2008), special procedures were used to evaluate tumor growth and quantify its radius.70

This kind of problem constitutes a particular application of the so-called inverse problems,71

which are being increasingly used in a broad number of fields in applied sciences. For72

instance, problems referred to structured population dynamics (Perthame and Zubelli 2007),73

computerized tomography and image reconstruction in medical imaging (van den Doel et al.74

2011; Zubelli et al. 2003), and more specifically tumor growth (Knopoff et al. 2013; Agnelli75

et al. 2011; Hogea et al. 2008), among many others. An inverse problem assumes a direct76

problem that is a well-posed problem of mathematical physics. In other words, if we know77

completely a physical model, we have a classical mathematical description of it. But if one of78

the parameters describing this model is to be found (from additional boundary/experimental79

data), then we arrive at an inverse problem.80

The paper is organized as follows. Section 2 introduces the avascular tumor growth model.81

Section 3 presents a numerical scheme for solving the system of PDEs. Section 4 formulates82

the inverse problem, defining the functions to be minimized. Section 5 is dedicated to the83

numerical experiments and the discussion of the results. Finally, conclusions are given in84

Sect. 6.85

2 Mathematical model86

We consider the model proposed by (Ward and King 2003). The tumor is a spheroid which87

consists of a continuum of living cells, in one of two states: live or dead. The birth and death88

rates depend on the nutrient and chemotherapeutic drug concentrations. It is supposed that89

those processes generate volume changes, leading to cell movement described by a velocity90

field. Assuming spherical symmetry, the system of equations to be studied is:91

∂n

∂τ
+

1

r2

∂(r2vn)

∂r
= [km(c) − kd(c) − K G(km(c))w]n, (1)92

∂c

∂τ
+

1

r2

∂(r2vc)

∂r
=

D

r2

∂

∂r

(
r2 ∂c

∂r

)
− βkm(c)n, (2)93

1

r2

∂(r2v)

∂r
= [VLkm(c) − (VL − VD){kd(c) + K G(km(c))w}]n, (3)94

∂w

∂τ
+

1

r2

∂(r2vw)

∂r
=

Dw

r2

∂

∂r

(
r2 ∂w

∂r

)
−

K

ω
G(km(c))wn, (4)95
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Table 1 Summary of model variables and symbols

Variable Dimensionless variable Description

r y Spatial independent variable

τ t Temporal independent variable

n N Live cell density

c C Nutrient concentration

v V Velocity field

w W Drug concentration

s S Tumor radius

where the independent variables are the radial position r inside the tumor and time τ and96

the dependent variables n, c, v and w are the live cell density (cells/unit volume), nutrient97

concentration, velocity and drug concentration, respectively. A summary of model variables98

is included in Table 1 at the end of this Section. As it is described in (Ward and King 2003),99

Eq. (1) states that the rate of change of n is dependent on the difference between the birth100

rate km(c), and the death rate, which can be either natural at a rate kd(c) [as described in101

(Ward and King 1997)] or due to drug effects, at a rate K G(km(c))w. The functions km and102

kd are taken to be generalized Michaelis–Menten kinetics with exponent 1, i.e.,103

km(c) = A

(
c

cc + c

)
, kd(c) = B

(
1 − σ

c

cd + c

)
. (5)104

where A and B are the maximum birth and death rates theoretically attainable when c tends105

to infinity and c = 0, respectively, the constants cc and cd are the standard half-saturation106

concentrations in the Michaelis–Menten terms, and B(1 − σ) is the minimum death rate107

attainable when the concentration tends to infinity with 0 ≤ σ ≤ 1. The constant K is the108

maximum possible rate of drug-induced cell death and G is a function that represents the109

dependence between drug action and cell cycle.110

Equation (2) states that the nutrient is consumed at a rate proportional (with constant of111

proportionality equal to β) to the rate of mitosis, and its diffusion is described by the Fick’s112

law with the diffusion coefficient D taken to be constant since spheroid’s heterogeneity does113

not significantly affect diffusion rates.114

Equation (3) states that the rate of volume change is given by the difference in volume115

generated via birth from that lost by death (it is assumed that a live cell occupies a volume116

VL that is twice the volume of a death cell VD).117

The diffusion of the drug is also described by Fick’s law (with diffusion coefficient Dw),118

and it is assumed that it is degraded only when it attacks a living cell, giving a maximum119

degradation rate K/ω. The constant ω can be interpreted as a measure of the drug’s effec-120

tiveness, as explained in (Ward and King 2003), with increasing ω implying that less drug121

is consumed to produce the same effects during the killing process. These considerations122

lead to Eq. (4). An important consequence of knowing ω is that it let us compute the drug123

penetration depth
√

ωDwVL/K .124

Since the tumor radius changes over time, the domain on which the model is formulated125

must be determined as part of the solution. Let s(τ ) be the tumor radius at time τ . Let us126

suppose that at time τ = 0 the tumor has a radius sI and a living cell density n I (r). The127

initial conditions on c and w are not necessary under the quasi-steady assumptions. Then128

123

Journal: 40314 Article No.: 0259 TYPESET DISK LE CP Disp.:2015/7/16 Pages: 16 Layout: Small

A
u

th
o

r
 P

r
o

o
f



u
n
co

rr
ec

te
d

p
ro

o
f
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Fig. 1 Possible protocols for drug administration

n(r, 0) = n I (r), s(0) = sI . (6)129

For the boundary conditions, we suppose that there is no flux about r = 0 due to symmetry.130

The boundary conditions are:131

∂c

∂r
(0, τ ) = 0, c(s(τ ), τ ) = c0,

v(0, τ ) = 0, v(s(τ ), τ ) = s′(τ ),

∂w

∂r
(0, τ ) = 0, w(s(τ ), τ ) = w0(τ ),

(7)132

where c0 and w0(τ ) are external nutrient and drug concentrations, respectively.133

The function w0(τ ) depends on the chemotherapy protocol, which describes the schedule134

of tests, dosages and the length of the study. For example, we can take different options for135

drug administration as shown in Fig. 1. Protocols 3 and 4 represent single and multiple doses136

like in (Ward and King 2003), protocols 1 and 2 represent single and multiple doses that137

could simulate a more realistic evolution of the external drug concentration.138

Following the ideas in (Adam 1986; Byrne and Chaplain 1997; Ward and King 1997,139

2003), we rescale the mathematical model and transform the spatial domain [0, s(τ )] of the140
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tumor into the dimensionless spatial interval [0, 1]. Similarly, we will define the dimensionless141

time t as τ A, where the rate A was defined above. This is a very useful approach when dealing142

with free boundary problems, as mentioned in (Crank 1984). Hence, let us define the following143

functions144

N (y, t) = VLn(ys(t/A), t/A),145

C(y, t) =
1

c0
c(ys(t/A), t/A),146

V (y, t) =
1

Ar0
v(ys(t/A), t/A), (8)147

W (y, t) =
1

W0
w(ys(t/A), t/A),148

S(t) =
1

r0
s(t/A),149

where W0 is a suitable reference drug concentration and r0 = (3VL/(4π))1/3 is the radius of150

a single live cell.151

Notice that if we apply the change of variables (8) to Eqs. (2) and (4), then152

ν

[
Ct −

S′

S
yCy +

2V

yS
C +

(V C)y

S

]
=

1

S2

(
Cyy +

2

y
Cy

)
− β̂ k̂m(C)N , (9)153

χ

[
Wt −

S′

S
yWy +

2V

yS
W +

(V W )y

S

]
=

1

S2

(
Wyy +

2

y
Wy

)
154

−
K̂

α
G

(
Ak̂m(C)

)
W N , (10)155

where156

k̂m(C) =
C

ĉc + C
,157

and ν = Ar2
0 /D, χ = Ar2

0 /Dw , ĉc = cc/c0, β̂ = Ar2
0 β/(VLc0 D), K̂ = K W0/A and158

α = ωDwW0VL/(Ar2
0 ).159

The dimensionless numbers ν and χ can be interpreted as the ratio of two timescales,160

namely, the tumor growth (1/A ≈ 1 day) and the much shorter nutrient and drug diffusions161

(r2
0 /D, r2

0 /Dw ≈ 1 min). Therefore, ν and χ are approximately 10−5. That is why we adopt162

a quasi-steady assumption in the nutrient and drug equations [see Ward and King (1997)].163

Then, the system of Eqs. (1)–(4), taking into account the above comments on Eqs. (9) and164

(10), can be written in its nondimensional form as165

Nt −
S′

S
yNy +

V

S
Ny = [a(C, W ) − b(C, W )N ]N , (11)166

Cyy +
2

y
Cy = β̂ k̂m(C)S2 N , (12)167

Vy +
2

y
V = b(C, W )SN , (13)168

Wyy +
2

y
Wy =

K̂

α
G(Ak̂m(C))S2 N W, (14)169
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A parameter estimation problem for a tumor growth model

for 0 < y < 1 and t > 0, where170

k̂d(C, W ) =
B

A

(
1 − σ

C

ĉd + C

)
+ K̂ G(Ak̂m(C))W,171

a(C, W ) = k̂m(C) − k̂d(C, W ),172

b(C, W ) = k̂m(C) − (1 − δ)̂kd(C, W ),173

and ĉd = cd/c0 and δ = VD/VL.174

The initial and boundary conditions (6)–(7) become:175

N (y, 0) = NI (y) := VLn(ysI , 0), S(0) =
1

r0
sI , (15)176

and177

Cy(0, t) = 0, C(1, t) = 1,

V (0, t) = 0, V (1, t) = S′(t),
Wy(0, t) = 0, W (1, t) = 1

W0
w0(t/A),

(16)178

From now on, Eqs. (11)–(16) will be referred to as the direct problem.179

3 Solving the direct problem180

In this section, we will present a numerical scheme for solving the system of Eqs. (11)–(16).181

Let n and m be positive integers, T > 0 a given final time and consider a uniform space and182

time discretization: yi = i�y, t j = j�t , for i = 0, . . . , n, and j = 0, . . . , m. Then, we183

must determine the functional values Ni j , Ci j , Vi j , Wi j and S j satisfying:184

Ni, j+1 − Ni j

�t
−

Vnj yi − Vi j

S j

Ni+1, j − Ni j

�y
185

=
[
a(Ci j , Wi j ) − b(Ci j , Wi j )Ni j

]
Ni j , (17)186

187 Ci+1, j − 2Ci j + Ci−1, j

(�y)2
+

2

yi

Ci+1, j − Ci−1, j

2�y
= β̂ k̂m(Ci j )S2

j Ni j , (18)188

Vi+1, j − Vi j

�y
+

2

yi

Vi j = b(Ci j , Wi j )S j Ni j , (19)189

Wi+1, j −2Wi j + Wi−1, j

(�y)2
+

2

yi

Wi+1, j −Wi−1, j

2�y
=

K̂

α
G(Ak̂m(Ci j ))S2

j Ni j Wi j , (20)190

S j+1 − S j

�t
= Vnj . (21)191

Assuming that functions N , C , V , W , and S are sufficiently smooth, we can avoid the192

singularity of (12)–(14) at y = 0. Notice that Cy(0, t) = 0 [by (16)] implies Cy(y, t)/y →193

Cyy(0, t) when y → 0. Analogously, for V and W , we obtain194

3Cyy(0, t) = β̂ k̂m(C(0, t))S(t)2 N (0, t),195

3Vy(0, t) = b(C(0, t), W (0, t))S(t)N (0, t),196

3Wyy(0, t) =
K̂

α
G(Ak̂m(C(0, t)))S(t)2 N (0, t)W (0, t).197
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Discretizing the above equations, we have198

6
C1 j − C0 j

(�y)2
= β̂ k̂m(C0 j )S2

j N0 j , (22)199

6
W1 j − W0 j

(�y)2
=

K̂

α
G(Ak̂m(C0 j ))S2

j N0 j W0 j , (23)200

3
V1 j

�y
= b(C0 j , W0 j )S j N0 j , (24)201

where we used a central difference on space at the boundary y = 0 to obtain Cyy(0, t j ) ≈202

2(C1 j − C0 j )/(�y)2 (similarly for variables W and V ).203

On the other hand, by Eq. (17) and using the fact that yn = 1 and Cnj = 1 for all j , we204

get205

Nn, j+1 − Nnj

�t
= [a(1, Wnj ) − b(1, Wnj )Nnj ]Nnj , (25)206

The procedure for solving the discretized Eqs. (17)–(25) is the following.207

Algorithm 1208

1. Set j = 0.209

2. If j = 0 set Ni0 = NI (yi ) for i = 0, . . . , n, and S0 = sI /r0, otherwise210

– Define Nnj satisfying Eq. (25).211

– Define Ni j , i = 0, . . . , n − 1 satisfying (17).212

– Define S j satisfying (21).213

3. Set Cnj = 1 and find Ci j , i = 0, . . . , n − 1 solving the nonlinear system (18) and (22).214

4. Set Wnj = w0(t j )/W0 and find Wi j , i = 0, . . . , n − 1 solving the linear system (20) and215

(23).216

5. Set V0 j = 0 and find Vi j , i = 1, . . . , n solving the linear system (19) and (24).217

6. Set j = j + 1 and return to step 2.218

To verify the numerical procedure, we solved the direct problem (11)–(16) associated to219

a real tumor. Let us consider V79 spheroids growing in glucose supply conditions. This cell220

line, which was developed from lung tissue of a young male Chinese hamster, has a high221

plating efficiency (80 %), and a generation time of 12–14 h. The line was renamed V79 by222

Elkind in 1958 (Ford et al. 1958).223

According to (Hlatky et al. 1988; Ward and King 1997, 2003) and references therein, the224

corresponding parameters are: cc = 1.4 × 10−4 g/cm3, cd = 7 × 10−5 g/cm3, A = B =225

1.98 × 10−5 1/s, σ = 0.9, K = 661.39 cm3/(gs), D = 1.1 × 10−6 cm2/s, β = 1.01 × 10−9
226

g/cell, VL = 10−9 cm3, VD = 5×10−10 cm3, Dw = 5.5×10−6 cm2/s and c0 = 1.4 ×10−3
227

g/cm3. Consequently, the dimensionless parameters corresponding to the direct problem are:228

ĉc = 0.1, ĉd = 0.05, K̂ = 50, β̂ = 0.005, δ = 0.5. We assume a linear dependence between229

drug action and cell cycle, that is, G(km(c)) = km(c)/A (Ward and King 2003).230

If we first consider the tumor growth without the action of the drug, beginning from a231

single cell, we can see that the evolution of the radius is linear with respect to time for large232

times (see Fig. 2a). In Fig. 2b, we also show the evolution of the live cell density and the233

growth of the necrotic core. Thus, the resolution of the proposed numerical scheme, removing234

the action of the drug, is compatible with the results presented in (Ward and King 1997, Figs.235

1, 2).236

Now, let the tumor evolve without the action of the drug from a dimensionless time equal237

to −25 (corresponding to 350 h) obtaining a tumor size of S(0) = 141.87 (corresponding238
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Fig. 2 a, b show the evolution of the tumor radius and the live cell density without the action of drug. c shows

the evolution of the tumor radius under a chemotherapy treatment for several values of α. d Velocity at the

tumor’s boundary for a fixed dimensionless time (t = 0.2) for different values of α

to 880.9 µm) and an initial live cell density NI (y). From that moment, we apply a protocol239

consisting of a 28 h exposure to a constant drug concentration w0(τ ) = 1.5 µg/ml, 0 ≤ τ ≤240

28. We solved the direct problem for several values of the parameter α as shown in Fig. 2c241

obtaining results similar to those in (Ward and King 2003, Fig. 2). From Fig. 2c, we can see242

that the parameter α can be regarded as the dimensionless effectiveness of the drug since for243

greater values of α the tumor becomes smaller (see the definition of α).244

An interesting question to answer is: for which value of α can be stated that tumor will245

decrease in size? To determine this value, we take into account the velocity in the boundary246

at a fixed time for different values of α. For example, in Fig. 2d, we can see that if we fix the247

dimensionless time t = 0.2, the function V (1, t) has a root in α ≈ 58.248

4 Inverse problem249

As it was mentioned before, some of the parameters that describe the mathematical model250

are unknown, for example, cc, cd , A, B, σ , ω, among others. However, for parameters related251

to the model without the action of the drug (Ward and King 1997), it is not necessary to252
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consider the model described in (Ward and King 2003). For a methodology for estimating253

those parameters, we refer to (Knopoff et al. 2013). In this work, we focused on the recovery254

of the parameter α since it appears exclusively in the model with drug and it represents its255

dimensionless effectiveness. Moreover, it can be shown that the drug penetration depth is256

equal to r0(α/K̂ )1/2. For this purpose, we formulate the following problem:257

Find a parameter value α∗ able to generate data that best match the available258

in f ormation over time 0 ≤ t ≤ T .259

Since the direct problem can be solved for each value of α > 0, we should construct260

an objective function J which gives us some distance between the experimental (real) data261

and the solution of the direct problem for each value of α. Thus, the inverse problem can be262

formulated as:263

Find α∗ > 0 such that J (α∗) ≤ J (α) for all α > 0, (26)264

or equivalently265

α∗ = argmin
α>0

J (α). (27)266

To define a suitable objective function J , it is important to decide which variables could267

be measured experimentally, for instance, the tumor radius evolution. So, the first possibility268

for defining a function (associated to the dimensionless problem) could be269

J (α) =
∫ T

0

(
Sα(t) − S∗(t)

)2
dt, (28)270

where Sα(t) is the dimensionless radius at time t obtained by solving the direct problem for271

a certain value of α, and S∗(t) is a function that is obtained (e.g., by interpolation) from272

experimental measurements of the the tumor radius at certain times.273

Motivated by the considerations stated in (Ward and King 2003, pp. 194–196) based on274

(Sano et al. 1984): “…there is very little difference in cell survival, at the time the final275

treatment ends, between a single dose of the drug or the same amount of drug applied in276

multiple doses”, we define a function representing the mean external drug concentration over277

the duration of the experiment, namely:278

I(wo) =
1

τ̃

∫ τ̃

0

wo(τ )dτ, (29)279

where τ̃ is the dimensional final time (τ̃ = T/A). Note that I is a quantity that depends on280

the drug administration protocol and that it has units corresponding to concentration.281

The four protocols shown in Fig. 1 were selected in such a way that the quantity I is282

conserved for all of them. From Fig. 3, we observe that after drug treatment with these283

protocols, the spheroids recover to grow at comparable sizes.1 284

Thus, it is reasonable to consider an objective function that takes into account only the285

tumor radius at final time, that is286

J (α) =
(
Sα(T ) − S∗(T )

)2
. (30)287

where Sα can be obtained from any protocol with the same I associated to the protocol used288

to obtain the data S∗.289

Finally, if it were possible to have measurements of the live cell density inside the tumor290

for certain times, we could define:291

J (α) = µ

∫ 1

0

∫ T

0

(
Nα(y, t) − N∗(y, t)

)2
dtdy +

∫ T

0

(
Sα(t) − S∗(t)

)2
dt, (31)292
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Fig. 3 Evolution of the tumor radius for different treatment protocols: a blue for protocol 1, b green for

protocol 2, c red for protocol 3 and d cyan for protocol 4

where Nα is the dimensionless live cell density obtained by solving the direct problem for a293

certain value of α, N∗ is a function that is obtained (e.g., by interpolation) from experimental294

measurements of the the live cell density, and µ is a scaling parameter. Notice that when295

µ = 0, we recover the objective function as in (28).296

We have defined the objective functions in terms of variables that can be experimentally297

measured as explained in Knopoff et al. (2013). For example, the density of living cells298

could be measured via biomedical imaging like PET technique for a tumor in vivo, or via299

immunofluorescence and electronic scan microscopy technique for in vitro cases (Taylor et al.300

1986; Martin et al. 1994). In addition, in (Freyer et al. 1986), the mean size of a spheroid301

population was determined by measuring two orthogonal diameters on spheroids using an302
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inverted microscope fitted with a calibrated eyepiece reticule. Also, in (Monazzam et al.303

2007; Bergstrom et al. 2008), a special procedure was used with digital microscope photos304

to evaluate tumor growth. Finally, in (Herrmann et al. 2008), spheroids were photographed305

in an inverted phase contrast microscope while a micrometer scale was photographed at the306

same magnification, and spheroid size was determined.307

Advantages and disadvantages of each objective function will become clear later.308

5 Numerical experiments309

To solve the inverse problem (26), we used a Pattern Search method (Torczon 1997; Dolan310

et al. 2003; Audet and Dennis 2002). This method is a very effective numerical optimization311

method for engineering problems where the computation of the derivative of the objective312

function is expensive. In particular, it belongs to the family of derivative-free methods.313

Pattern Search methods proceed by conducting a series of exploratory moves about the314

current iterate before identifying a new iterate. These moves can be viewed as a search about315

the current iterate for a trial point with a lower function value. At each iteration, the algorithm316

reduces the step size if the exploratory moves algorithm fails to produce a trial step that gives317

a simple decrease. If the exploratory moves algorithm does produce a trial step that gives a318

simple decrease, then this algorithm either increases the step size or preserves the current319

step size. An implementation of this method can be found in (Venkataraman 2009).320

The numerical experiments were run in Matlab R2011a in a PC running Linux OS, Intel321

Core i5. The direct problem was solved according to Algorithm 1 with parameters m =322

800, n = 500, T = 4; initial conditions S0 and NI were obtained after letting the tumor323

evolve without the action of the drug from a dimensionless time equal to −25; physical324

constants correspond to a V79 spheroid growing in glucose supply conditions. The inverse325

problem was solved using the Matlab built-in function patternsearch with an initial326

point randomly chosen in the interval [0, 106]. Function (28) was computed employing the327

composite trapezoidal rule with temporal discretization taken as in the direct problem. The328

function Sα in (30) was calculated using protocol 3 for all the experiments.329

Consider first the optimization problem (26) that consists of minimizing the functions (28)330

or (30), where S∗ is generated by solving the direct problem using Algorithm 1, for certain331

choices of the model parameter α = α∗, where α∗ = 17.3, α∗ = 314.0 and α∗ = 5350.1,332

to represent different orders of magnitude that this parameter can attain. We perform these333

simulations for the four protocols shown in Fig. 1. Then, to study the stability of the proposed334

procedure, we consider a tumor radius measurement affected with a random noise of ±5 µm335

uniformly distributed, that for the considered spheroids corresponds to about 0.5 % of the336

tumor radius. The noise was generated using the Matlab built-in function rand.337

We perform some experiments to investigate how close the original value of the parameter338

can be retrieved. We stress that the inverse problem is not trivial, because we do not know,339

for instance, if the optimization problem has a solution or, in that case, if it is unique or if340

the method converges to another local minima. However, according to Fig. 4, the shape of341

the objective functions indicates that the inverse problem (26) has a unique solution.342

Tables 2, 3, 4 and 5 show the solution of the inverse problem for certain protocols and343

certain values of α∗.344

On one hand, according to Table 2, the estimated parameter α is retrieved very well, with345

a percent error lower than 0.4 % in most cases, using the function (28) for every choice of α∗.346

On the other hand, Table 3 shows that the parameter α is retrieved quite well for large values347
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Fig. 4 Objective functions (28) and (30) for a α∗ = 314 and b α∗ = 5350.1

Table 2 Estimated α and percent error e% with function (28) using generated data without noise

α∗ Protocol 1 Protocol 2 Protocol 3 Protocol 4

αest e% αest e% αest e% αest e%

17.3 17.23 0.39 17.27 0.17 17.81 2.97 16.53 4.48

314.0 313.24 0.24 313.60 0.13 314.58 0.18 314.54 0.17

5350.1 5349.12 0.02 5351.03 0.02 5349.24 0.02 5349.46 0.01

Table 3 Estimated α and percent error e% with function (28) using generated data with noise

α∗ Protocol 1 Protocol 2 Protocol 3 Protocol 4

αest e% αest e% αest e% αest e%

17.3 24.83 43.52 10.48 39.44 22.95 32.68 8.05 53.46

314.0 329.87 5.05 286.32 8.82 349.86 11.42 268.30 14.56

5350.1 5195.90 2.88 5374.20 0.45 5128.40 4.14 5198.70 2.83

Table 4 Estimated α and percent error e% with function (30) using generated data without noise

α∗ Protocol 1 Protocol 2 Protocol 3 Protocol 4

αest e% αest e% αest e% αest e%

17.3 15.92 7.98 17.27 0.19 18.05 4.32 13.24 23.49

314.0 295.24 5.98 295.24 5.98 313.69 0.10 241.93 22.95

5350.1 4918.20 8.07 4755.00 11.12 5349.60 0.01 3257.60 39.11

of α∗. To recover small values of α∗, it is necessary to have more accurate measurements.348

Notice that in the experiments with and without noise, the percent error decreases as α∗
349

becomes greater.350

Since we need to compute a good approximation of the integral in (28), it is necessary to351

have enough measurements to capture the tumor’s evolution for a given protocol.352
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Table 5 Estimated α and percent error e% with function (30) using generated data with noise

α∗ Protocol 1 Protocol 2 Protocol 3 Protocol 4

αest e% αest e% αest e% αest e%

17.3 16.72 3.34 14.63 15.43 32.67 88.83 3.26 81.18

314.0 352.54 12.27 291.45 7.18 310.56 1.10 182.93 41.74

5350.1 4824.10 9.83 4981.00 6.90 5360.90 0.20 3280.70 38.68

If it were not possible to have measurements of the tumor radius for several times, or if the353

drug administration protocol were unknown, we could use the function (30) that requires only354

a measurement at final time and an estimation of the mean external drug concentration value355

I [see (29)]. It is observed that the results obtained using this function are, although worse356

than those from function (28), still acceptable, given the limited information required. If this357

information is affected with noise, then it will clearly be a source of errors, so more accurate358

measurements are needed. Tables 4 and 5 show that, in general, the percent errors are around359

10 % for protocols 1 and 2. Protocol 3 is remarkably good compared with the other protocols360

in most cases, maybe due to the fact that the function Sα in (30) was obtained precisely361

with this protocol. Results in protocol 4 are not satisfactory at all, maybe due to an early362

final observation time. For example, notice from Fig. 3 that the furthest curve corresponds to363

protocol 4. This curve has not yet reached its stationary behavior, so a larger final time must364

be considered.365

6 Conclusions and looking ahead366

A methodology for the estimation of the drug effectiveness parameter, which is involved in the367

growth of an avascular in vitro tumor with drug, has been presented in this paper. Basically,368

we used the Pattern Search method to solve the inverse problem that can be regarded as369

a PDE-constrained optimization problem, where the constraints are given by the coupled370

system of PDEs proposed by Ward and King (2003).371

Two objective functions were proposed to solve the inverse problem. The first one takes372

into account the evolution of the tumor radius on time. It is worth stressing that the numerical373

experiments performed with this function let us retrieve the parameter α accurately, especially374

for the cases in which no noise was added to the data. The counterpart is that the radius should375

be monitored at various times and that the drug administration protocol should be known. The376

second objective function only needs one measurement of the radius at a final time and the377

knowledge of the mean external drug concentration during the simulation time. Of course,378

the cost of using less information is that the parameter is retrieved with a higher, but still379

acceptable, error.380

There is considerable scope for further work and future research based on the approach381

presented in this paper. For instance, an obvious extension is to consider a more complex382

model for an in vitro tumor representing the vascularized case. The following step could be383

to move on to the in vivo case where parameters are even more difficult to retrieve, either384

by the intrinsic complexity of the model or by the lack of suitable measurements. The same385

reasonings apply to the case of the growth of cancer cells under the surveillance of the386

immune system, for instance in Bellouquid et al. (2013), a qualitative analysis is performed387

but it would be worth retrieving the parameters accurately to validate the model.388
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