
Kidney International, Vol. 57 (2000), pp. 1382–1389

NONGENOMIC EFFECTS OF ALDOSTERONE
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Nongenomic effects of steroids on the nicotinic acetylcholine at high concentrations, they can activate the receptor
receptor. A fast signaling mode of natural and synthetic steroids protein even in the absence of the agonist [4–7].
is exerted on some ion channels and cell-surface receptors. Subsequent work on the GABAAR demonstrated thatThis activity contrasts with their classic mode of action, via

steroids interact directly with the receptor protein throughintracellular receptors. Early studies from our laboratory dem-
recognition sites different from those for barbituratesonstrated that spin-labeled androstanol and cholestane interact

with the nicotinic acetylcholine receptor (AChR) and that lipid and benzodiazepines [7]. The heteromeric assembly of
mobility at the lipid belt surrounding the AChR is reduced different GABAAR isoforms containing different sub-
relative to that of the bulk membrane lipid. The occurrence unit types results in multiple steroid recognition sites onof discrete and independent sites for phospholipids and sterols,

these receptors. This structural diversity is thus responsi-both accessible to fatty acids, was subsequently disclosed in
ble for the different modulatory effects exerted by neuro-the native membrane. Synthetic and natural glucocorticoids

were found to act as noncompetitive inhibitors of AChR func- active steroids on different GABAAR isoforms. For ex-
tion. The influence of different substituent groups in the cycle- ample, the subtypes of GABAAR containing a and g
pentane perhydrophenanthrene ring on the channel-shortening subunits have the greatest sensitivity to pregnanolonepotency of various steroids has also been assayed in muscle-

modulation of receptor function, whereas those contain-type AChR, and we found a certain selectivity of this effect.
ing b and g subunits appear to be more sensitive to theSome organochlorine pesticides are xenoestrogens, that is, en-

vironmental agents capable of disrupting endocrine system sig- general anesthetic alphaxalone [8].
naling. We determined their effects on the AChR membrane During the last two decades, we have studied some
using novel fluorescence techniques. structural–functional aspects of the interactions between

the AChR and steroids. This receptor is a neurotransmit-
ter-gated ion channel responsible for the rapid propaga-

Steroid hormone action is mainly exerted through the tion of electrical signals between cells at the neuron–
modulation of protein transcription. In addition to this neuron and nerve–muscle synapse. The binding of the
mode of action, in the past few years, steroids have also neurotransmitter acetylcholine (ACh) to sites located in
been postulated to exert rapid, nongenomic action, medi- the extracellular moiety of the AChR causes a conforma-
ated by specific interactions with membrane components tional change leading to the opening of its associated
present at the cell surface. cation-permeable channel. This receptor is a pentameric

The nongenomic action of steroids was first described integral membrane protein in which the subunit compo-
for the g-aminobutiric acid receptor (GABAAR), one of sition varies according to the particular neuroneal or
the members of the ligand-gated ion channel (LGIC) muscular subtype. The AChR in skeletal muscle cells is
superfamily, of which the nicotinic acetylcholine recep- a heterologous pentamer composed of four different but
tor (AChR) is the paradigm. Electrophysiological studies highly homologous subunits in the stoichiometry of a2bgd
on the GABAAR in the presence of the synthetic steroi- (embryonic receptor) or a2bεd (adult receptor). Models
dal general anesthetic alphaxalone unequivocally dem- for the transmembrane organization of each subunit
onstrated the rapid nongenomic actions on this receptor have been proposed based on cDNA sequence analysis.
[1]. These ion channel-active steroids behave as positive The current consensus view on the organization of the
allosteric modulators of the GABAAR [2, 3]. Moreover, AChR assumes the occurrence of four transmembrane

segments, referred to as M1 through M4, each 20 to 30
amino acid residues in length (Fig. 1).Key words: nicotinic acetylcholine receptor, lipid-protein interactions,

steroids, annular lipids, xenoestrogens, Laurdan. Electrophysiological, biochemical, and mutagenesis
studies have provided strong evidence that the M2 trans- 2000 by the International Society of Nephrology
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NCIs, such as neuroactive steroids, have proved to be
particularly elusive. Early work from our and other labo-
ratories has shown that the AChR protein associates
preferentially with some sterols [9, 17–20]. In addition,
photoaffinity labeling studies established the close prox-
imity of cholesterol to the AChR protein in Torpedo
membranes [21].

The previously mentioned biochemical and biophysi-
cal findings provided the necessary background to study
the interaction of steroids with the AChR in living cells,
an issue that is the focus of intense investigation in our
laboratory. Our initial studies made use of the clonal cell
line BC3H-1, which expresses endogenous embryonic-
type muscle AChR. We studied the action of the proto-
type glucocorticoid hydrocortisone (HC) at the single-
channel level (Fig. 2). We first compared the effect of
HC on embryonic and adult-type AChR. Cell-attached

Fig. 1. Schematic representation of the acetylcholine receptor (AChR)
patches were made in the presence of different concen-molecule and binding sites for the natural neurotransmitter acetylcho-

line (ACh) and for noncompetitive inhibitors (NCI). trations of HC in the pipette solution. The main change
in channel kinetics was a dose-dependent decrease in the
duration of the open state. Thus, single-channel recordings
of BC3H-1 cells in the presence of the synthetic glucocor-

membrane domain is the main contributor to the walls ticoid dexamethasone and the natural glucocorticoids
of the ion channel proper. M4 is the firmest candidate HC and 11-desoxycortisone enabled us to demonstrate
among the four transmembrane segments to be in con- that steroids act as NCIs of the muscle AChR [12, 13].
tact with membrane lipids, given its high hydrophobicity Furthermore, we showed this to be a rapid and direct
and the fact that it constitutes the predominant target effect on the ACh-activated channel that was not medi-
for hydrophobic photoaffinity labels [9]. Although this ated by steroid receptors: The action was similar on both
segment is not part of the ion pore, it is involved in intact cells and isolated patches [22], and no delay was
channel-gating kinetics [10]. apparent in their action on the AChR.

The transitions between the functional states of the These results were first interpreted considering that
AChR are affected by a broad class of pharmacological the action of the drug followed a simple blocking mecha-
agents termed noncompetitive inhibitors (NCIs). These nism of the type:
compounds comprise a wide range of structurally differ-
ent chemicals, ranging from the neuroleptic chlorproma-

C ⇔
b

a
O ⇔

f [B]

b
OB (Scheme 1)zine to the hallucinogen drug phencyclidine, ethidium,

local anesthetics related to lidocaine, derivatives of the
general anesthetics, and alcohols. Endogenous ligands where C is closed, O is open, OB is the blocked state of
include free fatty acids [11], steroids [12–14], the neuro- the AChR, and f and b are the forward and backward
peptide substance P [15], and the neurotransmitter sero- rate constants for the blocking effect. The values ob-
tonin [16]. Their modulatory action is based on the inhi- tained for f were 2.04 3 106 and 1.78 3 106 mol/L21 · s21

bition of the ion flux by sterical or allosterical channel for fetal and adult AChR, respectively. These values are
blockade or by modification of the rate of desensitiza- similar to those previously reported for other low-affinity
tion. Based on their affinity and location of binding sites, NCIs, such as general anesthetics (isoflurane, alphaxa-
NCI have been classified into high- and low-affinity com- lone) and alcohols, and indicate that HC does not distin-
pounds. The high-affinity NCIs bind with a stoichiometry guish between the g and e subunits or, alternatively, that
of 1:1 to a site presumably located at the lumen of the the site(s) on which HC acts comprises regions of the
ion channel. Low-affinity NCIs comprise a diverse group AChR protein well conserved among the two subunits.
of hydrophobic agents, which probably affect ion con- The fact that the effects of the drug on the AChR are
duction by allosteric mechanisms. The precise site of consistent with a protein-blocking scheme supports the
action of these compounds and the mechanism of chan- view of direct action of the drug with protein domains
nel inhibition are still a matter of controversy. and discards an indirect, lipid-mediated mechanism.

Although there is little doubt about the location of In another series of experiments, we observed that the
the binding sites for high-affinity NCIs at the channel burst duration decreased as a function of HC concentra-

tion [14]. A burst is defined as a series of opening eventslumen, the mechanism and site of action of low-affinity
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Fig. 2. Effect of the glucocorticoid hydrocortisone and the mineralocorticoid aldosterone on the AChR, as observed by patch-clamp recording.
Below, the chemical formulas of the two compounds single-channel traces are observed. The opening of a channel is observed as an upward deflection.
The bottom panels show histograms corresponding to the mean open time of the adult-type AChR in the absence (A) or in the presence of 200
mmol/L hydrocortisone (B) or 200 mmol/L aldosterone (C). AChR channels were activated in all cases by 1 mmol/L ACh present in the patch pipette.

corresponding to the same AChR molecule. According the compounds act on different sites. In another series
of experiments, we took advantage of the different con-to scheme 1, the burst duration in the presence of HC
figurations afforded by the patch-clamp technique, allow-is expected to increase because blockages of the channel
ing the addition of drugs from either side of the AChR-delay the open-close channel transition, that is, the end-
containing membrane. Similar effects on the mean opening of the burst. Thus, the observed reduction in the
time were observed whether HC was applied to the ex-burst duration [14] is not compatible with a classic open-
tracellular or to the intracellular membrane leaflet. Ex-channel blocking mechanism, but can be explained by
periments with dexamethasone produced similar results.the closure of the open-blocked channel in accordance
Moreover, dexamethasone affected the AChR channelwith the following scheme that has also been suggested
mean open time when added from the extracellular sidefor the action of isoflurane on the AChR [23]:
of the membrane, but in a region distant from the patch
pipette. For this to occur, the drug had to diffuse along
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the membrane to reach its site of action on the AChR
protein. These data support the hypothesis that the site

Knowing that HC acted at AChR domains, we investi- of action of HC is located at the level of the lipid bilayer
gated whether these domains were located inside or out- and that this steroid reaches this site through a mem-
side of the membrane. To determine if HC was acting brane pathway.
on the ion pore at the same site as open-channel blockers, Analyses at the single-channel level allow the follow-
we tested the effect of HC in the presence of the open- ing conclusions: (1) glucocorticoids act as NCIs of the
channel blocker QX-222. We found that the reduction AChR; (2) they block embryonic and adult AChRs in
in channel open time induced by QX-222 was indepen- a similar manner; (3) the blocking phenomenon differs

from that of classic open-channel blockers; and (4) thedent of the presence or absence of HC, indicating that
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blockade does not depend on agonist concentration. Our The effects of cholesterol and acidic phospholipids on
AChR structure have also been reported. Both types ofexperiments located the HC site in domains of the recep-

tor probably in contact with the membrane lipid. HC lipid were postulated to contribute to the stabilization
of the secondary structure of AChR transmembrane seg-might thus enter the membrane and move to a site(s)

from which it allosterically blocks the AChR ion channel. ments [28, 31, 32]. Furthermore, specific sites have been
determined for these lipids at the lipid–AChR interfaceWe are currently analyzing the relationship between

substrates of the cyclepentaneperhydrophenantrene ring [33, 34]. These hypotheses are useful in explaining the
mechanism and sites of action of some NCIs. These com-and the modulatory action of steroids by performing

single-channel patch-clamp recordings in the presence pounds could alter AChR function by: (1) modifying
the fluidity of the receptor lipid annulus, (2) displacingof different concentrations of various steroids. One of

the steroids being assayed is the mineralocorticoid aldo- specific endogenous lipids from the AChR–lipid inter-
face, and/or (3) interacting with the AChR at sites lo-sterone, a natural steroid synthesized by the adrenal cor-

tex. Its chemical structure is related to HC (Fig. 2), and cated at the protein–lipid interface.
To address the characterization of specific lipid sitesit plays a key role in the regulation of sodium and potas-

sium equilibrium. Although aldosterone and HC differ in on the AChR protein, we have recently employed several
fluorescence spectroscopy techniques in a well-charac-their main physiological action, their capacity to modify

AChR function was found to be similar. Analysis of the terized model system, the (native) AChR-rich membrane
from Torpedo electric tissue. We have extended the useinhibitory potency of a wide range of steroids allowed

us to conclude that the modulatory effect is structurally of the fluorescent probe Laurdan (6-dodecanoyl-2-(di-
methylamino)-naphthalene) [35], introduced in the fieldspecific. The presence of an OH group in position 11

appears to be a crucial factor in conferring steroid po- of biological membranes by Parasassi et al to study the
AChR in its native membrane environment by means oftency on the AChR (Garbus, Bouzat, and Barrantes,

unpublished observations). (1) the so-called generalized polarization (GP) technique
and (2) measurement of the efficiency of the Förster
resonance energy transfer (FRET) process in the pres-

PRESENCE OF DISTINCT SITES FOR
ence of exogenous ligands, including lipids, sterols, and

CHOLESTEROL AT THE ACETYLCHOLINE xenosteroids [36, 37].
RECEPTOR–LIPID INTERFACE The fluorophore Laurdan localizes at the level of the

The presence of immobilized lipid molecules in the polar head groups of phospholipids, and it is extremely
vicinity of the AChR led to development of the concept sensible to the polarity and dynamics of water dipoles
of the receptor-associated lipid belt region or “annulus” in its surroundings. Laurdan GP reports on the polarity
(Fig. 3) [17]. This region, located in the immediate micro- and the phase state of the membrane [36, 37]. In order
environment of the AChR, possesses certain biophysical to study the AChR lipid microenvironment specifically,
characteristics that distinguish it from the bulk lipid in we designed a new strategy that measures GP under
the rest of the membrane. Moreover, it has been demon- FRET conditions between the intrinsic fluorescence of
strated that different classes of lipids have different af- the AChR protein (donor) because of its tryptophan
finities for the AChR lipid belt region [19, 24]. The origi- residues, and Laurdan as the acceptor. This approach
nal suggestion that this region could be relevant in allowed us to determine that the lipid annulus in the
functional terms, for example, for the modulation of native AChR membrane has a lower polarity (that is, a
receptor function by lipophilic substances like local anes- lower degree of water penetration) than the bulk lipid
thetics [17], has led to a variety of in vitro studies aimed membrane. This was interpreted as a reflection of the
at characterizing the dependence on lipid composition. higher order of the lipid molecules surrounding the

Early work established that the presence of cholesterol AChR protein [35].
and acidic phospholipids was necessary to maintain agonist- Using the same strategy, we determined that when
induced state transitions of the AChR in vitro [25–27]. exogenous lipids are added to the AChR-rich membrane,
It was suggested that the lipid annulus needed to be they perturb the polarity and order of both bulk and
“fluid” for a correct AChR activity [27, 28]. Sunshine and AChR-vicinal lipids [38]. Dioleoylphosphatidylcholine
McNamee subsequently demonstrated that the AChR (DOPC) and oleic acid (18:1) decrease the polarity and
channel properties were maintained on reconstitution of the order of these two lipid environments. The water-
the AChR protein in synthetic lipid systems exhibiting soluble ester of cholesterol, cholesterol hemisuccinate
different degrees of fluidity, concluding that for a proper (CHS), induces only a minor decrease in the polarity of
AChR activity, the presence of some specific lipids ought both lipid regions, without significantly modifying the
to be more important than membrane fluidity [29, 30]. lipid order.
This led to several hypotheses on the role of the afore- We have used the efficiency of the energy transfer

process, E, as a sensitive tool to measure the influencementioned lipids in AChR function.
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Fig. 3. Schematic representation of the AChR, its lipid microenvironment, and the fluorescent probe Laurdan, side view (top left) and cross-
section (bottom left). (Top left) Laurdan molecules reach the excited state following direct excitation (360 nm) or by energy transfer upon excitation
of donor tryptophan residues in the AChR at 290 nm. The cartoon shows these two conditions in the solid-line square and in the dash-line square,
respectively. (Bottom left) Displacement of Laurdan molecules (dashed circles) from the AChR annulus by addition of exogenous lipid (squares).
(Top right) Actual titration curves of Laurdan generalized polarization (GP) under direct excitation (open symbols) and FRET conditions (solid
symbols) in AChR-rich native membranes. The control (buffer) curve is shown without symbols; symbols are: 18:1 (circles), DOPC (squares),
CHS (triangles). (Bottom right) Efficiency of energy transfer of Laurdan in AChR-rich native membranes. Added lipids are: 18:1 (dark squares),
DOPC (dark circles), CHS (dark triangles), and CHS 1 DOPC (open diamonds). (Parts a and b reprinted with permission from Biochemistry
37:16653–16662.)

of compounds on the parameters that determine this sults by considering that the diminution of E reflects
the displacement of Laurdan molecules from the AChRphenomenon, the distance between donors and acceptor

molecules being especially sensitive. The addition of ex- microenvironment by exogenous lipids that increase the
distance between donor and acceptor molecules. Suchogenous lipids to AChR-rich membranes decreased the

E between AChR and Laurdan, the extent of the de- displacements are independent of one another and addi-
tive, whereas the effect of fatty acid alone amounts tocrease depending on the specific chemical class of lipid.

The maximal decrease in E was obtained with the fatty the sum of the effects caused by DOPC and the choles-
terol ester together. The different extents of decrease inacid 18:1 (60%), whereas additions of either cholesterol

hemisuccinate or DOPC diminished E by 35 and 25%, E induced by different classes of lipids could be ex-
plained by the fact that each type of lipid displaces arespectively. Furthermore, when a saturating concentra-

tion of one class of lipids was added, followed by one finite number of Laurdan molecules from the AChR–
lipid interface. This study allowed us to postulate theof the other classes, the total effect amounted to approxi-

mately 60%. However, if 18:1 was added first, a total occurrence of different sites for DOPC and the choles-
terol ester [38]. Thus, two classes of lipid sites appear toreduction of approximately 60% was obtained without

a further decrease when cholesterol hemisuccinate or occur in the native AChR membrane, one for phospho-
lipid (but not sterol) and the other for sterol (but notDOPC was subsequently added. We interpret these re-
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Fig. 4. (A) Schematic molecular structures of three representative organochlorine insecticides (OCI), namely DDT, Lindane, and Aldrin. (B)
Effect of OCI on the efficiency of FRET in AChR-membranes (from left to right): 1. DDT, 2. DDD, 3. Methoxychlor, 4. DDE, 5. Lindane, 6.
Dieldrin, 7. Aldrin, 8. Heptachlor, 9. Chlordane, 10. Endosulfan. (C) Maximal effects of OCI (15 mmol/L) on Laurdan excGP measured using
direct excitation of the probe (360 nm, gray columns) or FRET from the protein emission (290 nm, j), and on the fluorescence anisotropy of
DPH ( ) in AChR-rich membranes from Torpedo marmorata.

phospholipid), both accessible to fatty acid. These sites estrogen signaling, have been identified and termed xeno-
may be equivalent to the annular and nonannular sites estrogens [40]. Xenobiotics may alter endocrine function
characterized by Jones and McNamee [33] and Naraya- by affecting the availability of a hormone to the target
naswami and McNamee [34] for AChR purified and re- tissue and/or by affecting the cellular response to the
constituted in model systems. hormone.

We are currently extending our studies to different Organochlorine insecticides (OCI) are a diverse group
classes of fatty acids (saturated, unsaturated—cis or trans of agents belonging to four distinct chemical families,
double-bond configuration—and with different acyl chain including the dichlorodiphenylethane derivatives (DDT,
lengths), in order to compare the polarity/order perturba- and its metabolites DDE and DDD, Methoxychlor), the
tion and the modification of E induced by their incorpora- chlorinated cyclohexane (Lindane), the chlorinated cy-
tion in AChR-rich membranes. As mentioned previously clodiene family (Aldrin, Dieldrin, Heptachlor, Endosul-
in this article, fatty acids act as NCIs, and in early studies fan, Chlordane, Endrin, Chlordecone, and Mirex), and
they appeared to inhibit AChR ionic flux in a similar Toxaphene, which is a mixture of chlorinated terpenes
manner, independent of their structural properties [11]. (Fig. 4). Some organochlorine pesticides display xeno-
More recent results indicate that the perturbation of the estrogenic activity. Among these are o,p9-DDT, several
lipid order in the AChR microenvironment depends on o,p9-dichloro-substituted analogues, Methoxychlor, and
fatty acid structural characteristics, whereas a similar its metabolites, Chlordecone, Dieldrin, Endosulfan, and
decrease of E (between 55 and 60%) is induced by differ- Toxaphene [41–44]. Most of these compounds are weakly
ent fatty acids independently of their structure (Antollini

estrogenic, but may nonetheless have significant effects
and Barrantes, unpublished results).

because of their greater bioavailability in serum than
natural hormones [41].

XENOESTROGENS AND The highly lipophilic nature of these compounds to-
ACETYLCHOLINE RECEPTOR gether with the temperature sensitivity of some of their

effects suggests that their interaction with biological sys-Numerous chemicals with the potential to disrupt the
endocrine system [39], particularly by interfering with tems may result not only from a direct interaction of the
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