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Abstract
Fukui matrices considered as the generalization of the concept of Fukui densities are decomposed

into their pairing and unpairing contributions within the theory of the reduced density matrices.

Their algebraic structure become clear from this decomposition providing their relationships with

the spin density matrices and the irreducible part of the second-order reduced density matrix

cumulant, that is, the explicit contributions of the many-body or correlation effects. The uncorre-

lated state function approximation is a simple way to emphasize the physical meaning of these

matrices and represents the appropriate starting point for the treatment of a quasi-analytical

model to denote the occurrence of correlation effects.
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1 | THEORETICAL SCENARIO

Fukui densities (or Fukui functions) are central to the reactivity concept in chemical physics.[1] The natural scenario in which they has been

properly defined as the first derivative of the electron density respect to the number of particles at fixed external potential is conceptual

density functional theory (DFT).[1,2] Its matrix formulation has been reported by use of the first-order reduced density matrices at the DFT

level of approximation[3] and also it has been generalized for any type of molecular state functions.[4–7] The aim of this report is to use the

rigorous version of PPLB proposal[8,9] based on the representation of the grand-canonical ensemble to properly express these magnitudes

from which the concept of systems with a non-integer number of particles N (N5N6m) is introduced in a natural manner. Thus, it allows the

number of particles to be a mathematically continuous variable to derive the Fukui like density matrices[7] from the first-order reduced den-

sity matrices 1DN6m (1-RDM), with N 2 No; m 2 R, and 0< m<1.[9] No and R stand for the set of non-negative integer and real numbers,

respectively. This type of systems may be identified with open systems, that is, an atom, a functional groups or a moiety, as a domain within

a given molecular structure.[8] The convex structure of the energy in atomic or molecular systems driven by Coulomb interactions,[8] enables

the ground state 1DN6m, obtained by contraction mapping[10] of two integer M-particle system 1-RDMs, to be expressed by the simple convex

expansion[8,9]

1DN6m 5 m 1DN61 1 ð12mÞ 1DN (1)

where 1DN and 1DN61 stand for the 1-RDMs of the systems with N and N61 particles, that is, the neutral and ionic species, respectively. Dur-

ing the course of this work, the states of the neutral species will be considered as singlet closed shells. Equation 1 is the meaningful physical

expression for the 1-RDM of a system possessing a non-integer number of electrons that cannot be described neither by a pure nor a canoni-

cal ensemble state.[9] Its trace N6 m may be interpreted as an average of the number of electrons of the systems involved in the

expansion.[8,9]

The Fukui matrices are defined by the derivative of 1DN6m respect to the number of particles N , as it increases/decreases from N to N6 m at

constant external field v,[1,7] by
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which from Equation 1 straightforwardly leads to

F6 56 1DN61 21DN
� �

(3)

being the difference among the N61 and N system 1-RDMs.[7] Equation 3 defines a 1-particle like density matrix (DM) associated to 1 extra (parti-

cle) or lacking electron (hole), that is, the cationic or anionic character, in reference to the neutral species. Consequently, it is of unit trace, that is,

TrðF6Þ51.

2 | DENSITY MATRIX DECOMPOSITION

To reveal the nature of these response matrices F6, the decomposition of 1DN into an effectively pairing and an effectively unpairing DM expressed

by[11]

1DN 5 PðNÞ1 1
2
uðNÞ (4)

is introduced, where the P(N) and 1
2 uðNÞ matrices describe the paired and the unpaired electron distributions of an N-particle system and are defined

by

PðNÞ5 1
2
ð1DNÞ2 (5a)

and

uðNÞ52 1DN 2 ð1DNÞ2 (5b)

respectively.[11] Thus, the matrix form in Equation 3 reads,

F6 56 PðN61Þ2 PðNÞ½ �6 1
2

uðN61Þ2uðNÞ½ � (6)

This equation permits to appreciate the correlation effects in a natural form. For this goal, let us introduce the P(N) and u(N) matrices in terms

of 1DN (cf, Equations 5a and 5b) and the spin-free 2-particle DM 2DN structure from which 1DN is derived by contraction mapping. The matrix ele-

ments of 2DN in an i,j,k,l,. . . orthogonal spin orbital basis set are given by[12]

ð2DNÞijkl5
1
2
ð1DNÞik ð1DNÞjl2

1
4
ð1DNÞil ð1DNÞjk 2

1
4

1DðsÞ i
l
1DðsÞ j

k 1
1
2
ðCNÞijkl (7)

where DðsÞ5 1Da21Db is the spin-free spin DM with 1Da, the spin up (a) and spin down (b) 1-RDMs, respectively[13] and ðCNÞijkl stand for the matrix

elements of the irreducible part of the spin-free 2-RDM cumulant matrix.[13] The first term in the rhs of Equation 7 is the direct or Coulomb term;

the second and third terms represent the exchange effects, that is, particle and spin density exchange contributions, respectively. The forth term is

a nonfactorizable or irreducible term that segregates the many-body effects not present in the others.[12–14] Note that the sum ð2 1
4

1DðsÞ i
l
1DðsÞk

j 1
1
2

Cik
jl Þ is the spin-free version of the cumulant of 2DN. This sum is independent of the spin substates of spin projection number Sz corresponding to

the state. Then, the Sz invariance properties of the different contributions to the reduced density matrices[13,14] play the key role to establish and

interpret the Fukui matrices.

The contraction mapping to obtain 1DN from 2DN is defined by 1ðDNÞik 5 2
N21

X2

j
Dij
kj.

[15] Hence, the decomposition (cf, Equations 4, 5a, and

5b) permits to express the u(N) matrix,[12,14] as

uðNÞ½ �ij5 ðDðsÞÞij
h i

Sz5S
1
X
k

ðCNÞikkj
h i

Sz5S
(8)

where Sz5S means that the spin projection Sz must be evaluated at its highest projection value S because of the spin projection independence of

these magnitudes.[12] Then, the explicit structure of the Fukui like density matrices arise by replacement of Equations 5a and 8 into Equation 6,

yielding

F6
� �i

j56
1
2

n
DðsÞðN61Þ
h ii

j

o
Sz5S

6 PðN61Þ2PðNÞ½ �ij

6
1
2

X
k

n
Cik
kjðN61Þ

h i
Sz5S

2 Cik
kjðNÞ

h i
Sz50

o (9)

The first term in its rhs shows the net unpaired density contribution from the spin DM. It comes from the system with the odd number of par-

ticles, that is, the ionic specie; the second term stands for the difference of N61 and N pairing densities between of the neutral and ionic systems;
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and the third term measures the explicit correlation contribution as the difference of the spatial unpairing due to the nonuniform double occupancy

of the natural (or molecular) orbitals.[16,17]

3 | HARTREE–FOCK MODEL: THE LIMITING CASE

We will make use of the noncorrelated mean field motion of a Hartree–Fock state to analyze the physical meaning of these matrices by inspection

of each terms in Equation 9. For this goal, each of the 2 1-RDMs to build the Fukui matrices must be written within this approximation. The neutral

N (N even) particle system is written in the restricted closed shell (RHF) form, while that of the ionic species, in the restricted open shell Hartree–

Fock (ROHF) state. It is worthy to note that in this approximation, the irreducible part of the second-order reduced DM cumulant C, vanishes identi-

cally. Hence, the RHF closed shell 1-RDM is expressed by

1DN52
X22occ

k51

juk><ukj

while

1DN6152
X22occ

k51

juk><ukj1 juo><uoj

represent the 1-RDM of the ðN61Þ ionic systems,[15] and fjuk >g stands for the set of orthonormal molecular orbitals of the RHF approximation

(frozen orbitals or Koopmans approximation). The upper limit 22occ of the summations indicates the number of double occupied orbitals in the cor-

responding state, that is, N2 for the neutral and the anionic systems and N
221 for the cationic ones. In the ROHF approximation, juo> refers to the

open shell single occupied orbital for the ions in its ground state, that is, the highest occupied molecular orbital (HOMO) juH> for the cation, while

juL>, the lowest unoccupied molecular orbital (LUMO) for the anion. The introduction of these expressions for each of the corresponding pairing

and unpairing density matrices in Equation 9 show that for F1, both magnitudes contribute in the same amount, 12 juo><uoj, while for F2 both con-

tribute in different amounts, 3
2 juo><uoj and 1

2 juo><uoj, respectively. Nevertheless, the same value for both branches of the Fukui matrices is

obtained, and

F6 5 juo><uoj (10)

which is the spin DM DðsÞðSz5SÞ in the ROHF case.[16,17] Hence, the differences between the pairing contributions for the N and N61 systems are

not similar for each of the Fukui matrices, however they properly contribute to build up the spin DM of the doublet state in its higher projection.

Note that for this approximation as well as for any single determinant model approaches, Fukui matrices are positive semi-definite with all their val-

ues equal to zero, except for only one of unit value.[5] The present example will be helpful for the physical observations in the next section.

4 | SIMPLE CORRELATED MODEL BEYOND HARTREE–FOCK

Let us introduce a simple correlated model to go beyond the Hartree–Fock level of approximation shown in the previous section. Thus, we state

the idea of the physical essence of the extra/lacking electron distribution in the system as a response function contained in the Fukui matrices.

These responses are interpreted as changes in the pairing and unpairing distributions as a consequence of the correlation effects. For that purpose,

we will concentrate in the F2 case (the result for F1 is obtained in a similar way).

To make the example as analytical as possible, we will consider the correlated state function as a configuration interaction (CI) type expanded

only by 2 configurations, that of the neutral N-particle (N even) closed shell Hartree–Fock ground state determinant system jUH> and its double

excited determinant jUL> formed from the promotion of the 2 electrons in juH> (HOMO) to the LUMO juL>, that is,

jU>5cHjUH>1 cLjUL> (11)

where cH and cL stand for the CI expansion coefficients of the ground and the double excited determinant, respectively, fulfilling the normalization

condition, jcHj21jcLj251. The (N – 1)-particle system is represented by the ROHF approximation in its high spin state, as in the previous section, to

retain the same state function scheme. The 1DN obtained by the contraction mapping procedure[15] of the DM defined by ND5jU><Uj is diagonal
and is expressed by

1DN5jcHj2 1DN
H1jcLj2 1DN

L (12)

where 1DN
H and 1DN

L represent the spin-free 1-particle reduced density matrices for the ground and the double excited determinant states, respec-

tively. Thus, explicitly
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1DN52
XN221

k

juk><ukj12 jcHj2 juH><uHj12 jcLj2 juL><uLj (13)

and the corresponding (N – 1) particle 1-RDM simply reads

1DN2152
XN221

k

juk><ukj1juH><uHj (14)

Hence, introducing these expressions in Equation 3, the expression for F2 which contains correlation information is

F25ð2 jcHj221Þ juH><uHj12 jcLj2 juL><uLj (15)

We can then by virtue of this result, look for the interpretation of both contributions to the Fukui matrices, that is, the difference of pairing and

unpairing matrices as a function of the level of correlation as it is shown in Equation 6. Therefore, the pairing and unpairing density matrices defined

by Equations 4, 5a, and 5b are read,

PðNÞ2PðN21Þ5 2 jcHj421
2

� �
juH><uHj12jcLj4 juL><uLj (16)

and

1
2

uðNÞ2uðN21Þ½ �5 2 jcHj2jcLj221
2

� �
juH><uHj12jcHj2jcLj2juL><uLj (17)

Thus, these results enable us to discuss the changes in the difference electron distribution, F2, that is, the flux or change in the character

of the electron population fraction from paired to unpaired and vice versa, under the correlation strength governed by the CI coefficients. To

achieve this purpose, let us observe the trace of each of the contributions to F2 coming from the paired and the unpaired density matrices

(Equations 16 and 17). To feature the changes in the population character of the electron difference distribution, it is useful to write the popu-

lations by the trace of the paired and unpaired difference distributions, F2p 5PðNÞ2PðN21Þ and F2u 5
1
2 uðNÞ2uðN21Þ½ �, respectively. These are

2 ðjcHj41jcLj4Þ – 1
2 and 4 jcHj2jcLj2 – 1

2, respectively. Two trivial cases of interest arise immediately in the present model, those where the coeffi-

cients are jcHj51 and jcLj50, (or jcHj50 and jcLj51). Nevertheless, only the first of them is physically reliable because although the second has

the same mathematical structure, the N-particle state function represents an excited determinant and not a ground state required for the

Fukui function definition. For this reason, we will only concentrate in the first of these configurations. In this context, the N-particle system is

described by only 1 closed shell determinant (cf, Equation 11) and the (N – 1) system is a high spin projection determinant. It should be noted

that each of the population difference between two states, one of N and (N – 1)-particles, contribute to build the spin DM as shown in the

previous section (cf, Equation 10). Thus, the negative sign is admitted and means that there are more paired or unpaired electron fraction in

one of the states. These results reveal the difference in pairing and unpairing between the N and (N – 1)-particle distributions which in this

case only comes from the net particle difference because no correlation is considered. Let us now inspect for the cases in which correlation

effects are taken into account, that is, those where both coefficients do not vanish, that is, 0<jcHj<1 and 0<jcLj<1. Figure 1 shows TrðF2p Þ and
TrðF2u Þ contributions to the difference electron DM and the HOMO and LUMO orbital populations (Equation 15), as a functions of jcHj. It may

be observed in Figure 1A (red line), that the pairing contribution to the 1 electron Fukui density is positive for any value of the coefficient jcHj
with maxðF2p Þ5 3

2 for a Hartree–Fock state (jcHj51) while the unpairing population fraction may change its sign as shown in Figure 1A (blue

line) with minðF2u Þ52 1
2 (see text in the previous section). Note that also it is negative for decreasing values of the coefficient and its sign

change, that is, the unpaired population difference becomes to be positive and continue increasing its value until reaching its maximum. The

pairing population is greater than the unpaired one for all range of jcHj. As the pairing contribution growths, the unpairing decreases even to

be negative to preserve the particle conserving principle, TrðF2Þ51.

Inasmuch the above remark, the changes due to the variation of the CI coefficients are crucial to depict the effects of the correlation in the

electron difference distribution. Thus, it is worthy to note two important cases according the values of the CI coefficients which correspond to

strong correlated electronic configurations. The first one is that in which both difference populations are equal, that is, 12 at jcHj �0.7 (see Figure 1A)

which reveals a case of strong correlation and represent the equalization of minðF2p Þ and the maxðF2u Þ. The second case of interest may be men-

tioned as an electronic diradical situation (both electron configurations are dominant),[8] that is, jUdirad>5 1ffiffi
2

p fjUH > 2jUL >g; the difference popula-

tions are � 0.75 and � 0.25, respectively.

Let us finish the discussion in this section analyzing the Figure 1B. This shows the difference populations for the HOMO (F2HH) (red line) and

LUMO (blue line) (F2LL) for the orbitals (Equation 15), as a functions of jcHj. For jcHj51, that is, the Hartree–Fock case, the F2 5 juH><uHj equals
the corresponding spin DM (see previous section) (F2HH51, F2LL50). According to the introduction of the correlation effects, namely, when jcHj
decreases, F2HH also decreases, and F2LL begins to growth. Thus, close to the interval in which jcHj � 1; F2 is close to the spin DM. For other values

of jcHj; F2LL begins to be important and F2HH departs from the spin DM. At jcHj � 0:866, both difference populations equalize and for the diradical

state are very distant from each other and very different of a spin DM, even with negative HOMO difference population.
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5 | FURTHER REMARKS

The simple quasi-analytic model example used in the present report permitted to introduce the correlation effects, although qualitatively, into the

concept of the nature of the Fukui density matrices showing that these effects are supported by the change of part of the electron cloud character

between paired and unpaired electron densities.

It is interesting to make some observations about the significance of Fukui matrices and the consequences to which they lead. The first

aspect we want to mention is that for systems with low correlation, that is, those systems for which the Hartree–Fock approach is a good

one, the CN (CN61) matrix is close to the zero matrix and fulfills the norm matrix condition, k CN k�k 1DNk2. Consequently, the last term of

Equation 9 approaches zero. Then, the term PðN61Þ2PðNÞ approaches 1
2 and 2 3

2 times the spin DM, respectively. Therefore, one is finally

tempted to write, without any loss of rigorousness, as it has been discussed above from the point of view of the electron populations in the

frontier orbitals, that

F6
� �i

j5 f DðsÞðN61Þ
h ii

j
gSz5S 1Xi

j (18)

where X may be interpreted as a measure of the deviation (distance) of the difference of pairing between the two systems. Therefore, for sys-

tems of low correlation, the Fukui matrices are no more than the spin density of the ionic state (net unpairing) plus a correction from the spa-

tial unpairing due to the difference in the double occupancy of the orbitals as a consequence of the correlation effects.[16,17] Nevertheless, as

shown in the discussion section of above, for high correlated systems, Equation 18 is no longer valid.

Following the same line of reasoning, an interpretive aftermath worthy of mention is its relation with the spin-entanglement contribution to the

correlation.[18,19] The F6 matrices describe the electron difference among the N and N61 particle electron distributions, namely what we called dif-

ference electron distribution. Hence, its associated density integrates to the unit trace (number of electrons in the distribution) and may be written

as

TrðF6Þ5156
1
2
6Tr PðN61Þ2PðNÞ½ �

6
1
2

X
i;k

f Cik
kiðN61Þ� �

Sz5S 2 Cik
kiðNÞ

� �
Sz50g

(19)

Thus, regarding the fact that the first two terms in the rhs of Equation 9 may be related to the net spin density contributions as shown above

for the Hartree–Fock approach, the last term is clearly related to the correlation effects and states the difference among the cumulant crossed

traces of the spin-free 2-RDM, eM5
P

i;k C
ik
kiðSz5SÞ.[20] Consequently, as it has been shown, it represents a measure of the spin-entanglement of the

M-particle system[20] and then, this term expressed by the 6(eN612eN) means the contribution of the spin-entanglement difference among the neu-

tral and the ionic states of the system.

The present results open the possibility of the local topological study of these densities expressed by Equation 6 which implies the

numerical determination of them and their physical consequences, including other than the correlation effects, the orbital relaxation effects

which needs numerical calculations and are out of the scope of present theoretical work. These topics are being considered in our

laboratories.

FIGURE 1 A, TrðF2p Þ (red line) and TrðF2u Þ (blue line) contributions to the difference electron DM; B, populations for the HOMO (red line)
and LUMO (blue line) orbitals (Equation 15), as a functions of jcHj
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