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a b s t r a c t

We present a novel state feedback design method for perturbed discrete-time switched
linear systems. The method aims at achieving (a) closed-loop stability under arbitrary
switching and (b)minimisation of ultimate bounds for specific state components. Objective
(a) is achieved by computing state feedback matrices so that the closed-loop subsystem
evolution matrices generate a solvable Lie algebra (namely, they are all upper triangular in
a common coordinate basis). Previous results derived an iterative algorithm that computes
the required feedback matrices, and established conditions under which this procedure
is possible. Based on these conditions, objective (b) is achieved by exploiting available
degrees of freedom in the iterative algorithm.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In the last decade there has been increasing research activities in the areas of stability and stabilisability of switched
systems; see, for example, [1–3]. An example of switched systems is a system with time-varying dynamics, which switches
within a known set of modes, or subsystems, indexed by a switching signal. A problem of interest is that of stability
under arbitrary switching, which consists in obtaining conditions that guarantee stability of the switched system for
every switching signal. Finding these conditions in general is not a simple task except for special cases, such as when
the subsystems are pairwise commutative, symmetric or normal [1, Chapter 2]. A well-known necessary and sufficient
condition for exponential stability under arbitrary switching is the existence of a common Lyapunov function (CLF) for all
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subsystems [4]. As a CLF might be rather complex and difficult to find, most developed work focuses on the existence of a
common quadratic Lyapunov function (CQLF).

While most efforts on stability and stabilisation of switched systems deal with asymptotic stability of the origin
(as equilibrium point of the system), it might not be possible to achieve asymptotic stability in some situations, such as
when the switched system is subject to non-vanishing disturbances. In these situations, one may seek practical stability
of the system, in the sense that the system trajectories are required to ultimately lie inside a bounded region around the
origin. The ultimate bounds of the states of the system characterise such region, which should be sufficiently small for good
asymptotic disturbance attenuation performance.

Estimates of the state ultimate bounds can be obtained through the use of level sets of suitable Lyapunov functions
(see for example [5, Section 9.2]). This approach is applicable to a general class of nonlinear systems, butmay produce overly
conservative bounds in linear systems, since the structure of the system is generally lost in the Lyapunov function [6]. Tighter
estimates of ultimate bounds in linear systems can be obtained through a componentwise analysis technique proposed in
[6,7], which preserves system structure and dispenses with Lyapunov functions.

The problem of reducing the effect of disturbances by feedback has been long studied and a number of robust control
methods exist for the minimisation of ultimate bounds in linear systems (e.g., [8–10]), although typically relying on
Lyapunov analysis and induced norms (such as l2 and l∞). Compared to the componentwise approach proposed in this
paper, induced norm minimisation approaches may be conservative in the sense that they might not yield the best results
for some specific state components representing a meaningful or a physical quantity. An example projecting this idea is
studied in [11]. The minimisation of componentwise ultimate bounds by feedback design has been studied in [12] for linear
time-invariant (LTI) systems. The authors in [12] have shown that arbitrarily small ultimate bounds can be guaranteed in
continuous-time systems by assigning closed-loop eigenvalues with arbitrarily large negative real part when disturbances
are ‘‘matched’’ to the control input (that is, disturbances in the span of the system’s control input matrix). For discrete-time
systems, however, there is a fundamental limitation in rendering these ultimate bounds arbitrarily small, depending on the
way the disturbance affects the state equations. In this regard, the problemof ultimate boundminimisation for discrete-time
LTI systems has recently been studied in [13], where conditions were derived so that the ultimate bound on one (or more)
state components can be minimised to its least possible value via eigenvalue–eigenvector assignment.

Ultimate boundedness of switched systems subject to uncertainty and disturbances has been the focus of attention
recently. Necessary and sufficient conditions were derived in [14] for autonomous switched linear systems to have a
finite disturbance attenuation level under arbitrary switching. The authors also provide sufficient conditions under which
disturbance attenuation can be attained under a dwell-time switching constraint. Similar results with dwell-time switching
constraints have been obtained for switched Euler–Lagrange systems in [15]. In [16], the authors present sufficient
conditions on the existence of a CLF for a continuous-time switched linear system subject to parameter uncertainties to
achieve uniformly ultimate boundedness under arbitrary switching. The stability and componentwise state ultimate bounds
of autonomous switched systems under arbitrary switching have been analysed in [17–19], where an iterative algorithm
that derives a CQLF is proposed.

The present paper examines the problemof feedback design for practical stabilisationwith ultimate boundminimisation.
An iterative algorithm is proposed to obtain the smallest possible bounds for specific state components in discrete-time
switched linear systemsunder arbitrary switching. Themethodology extends an algorithm from [20],which iteratively seeks
a set of stabilising state feedback gains that render the closed-loop subsystem matrices simultaneously upper-triangular
after a change of coordinates common to all subsystems. This closed-loop upper-triangular structure is a desirable property,
since then the stable closed-loop subsystem matrices will generate a solvable Lie-algebra, which guarantees the existence
of a CQLF [21].

The results in this paper improve on existing results from [20], which address stabilisation of switched linear systems
under arbitrary switching. The work in [20] is one of the few available works on feedback control design in the switched
systemcontext [22,23]. The present paper dealswith discrete-time switched linear systems in the presence of non-vanishing
bounded disturbances, in contrast with [20], where no disturbance affects the system. The algorithm from [20] is modified
in the current paper by imposing additional structure to the closed-loop subsystems to achieve disturbance attenuation by
minimising componentwise state ultimate bounds.

The first contribution of this paper is to derive conditions in terms of eigenstructure of the perturbed switched system
in order for the trajectories of one or more components of the state to lie within the smallest possible bound in at
most one time step. Next, we extend the results of [20] by exploiting the available degrees of freedom in the iterative
triangularisation algorithm by imposing a set of conditions on the common eigenvectors at each iteration of the algorithm.
The main contribution of the paper is an eigenstructure assignment procedure embedded in the extended version of the
aforementioned algorithm such that the resulting stabilising feedback laws achieve the minimum possible ultimate bound
for one or more states of the switched system under arbitrary switching. The results in this paper build upon preliminary
work communicated in the conference paper [24].

The layout of the remainder of the paper is as follows. In Section 2, structural conditions on the system matrices for one
or more ultimate bound components to be the minimum possible are presented. In Section 3, ultimate bound minimisation
is addressed through iterative eigenstructure assignment, which is performed viamodifications in the iterative algorithm of
[20]. In Section 4, a numerical example shows the effectiveness of the proposed algorithm and finally, Section 5 concludes
the paper.
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Notation. The index set {1, 2, . . . ,N} is denoted by N . The kernel (null space) of a matrix or linear map A : X → Y is
denoted by Ker A and its image, Im A. For x ∈ Cn×m, its jth row is denoted by x(j,:), its transpose by x′, its conjugate transpose
by x∗ and itsMoore–Penrose generalised inverse by xĎ. Given a set of indicesJ ⊂ {1, . . . , n}, x(J,:) denotes thematrix formed
by the rows of x with indices in J and x(J,k) denotes the column vector constructed by the elements of the kth column of
x with indices in J. Also, given another set of indices Z ⊂ {1, . . . , n}, x(J,Z) is a matrix formed by the elements of x with
indices (j, z) such that j ∈ J and z ∈ Z. The cardinality of a set J is denoted by #J. If S is a vector space, then d(S) denotes
the dimension of S. For a column vector x ∈ Cn, xj denotes its jth component, and xJ denotes its elements with their indices
in J. An eigenvalue λ ∈ C is stable if |λ| < 1. By extension, a matrix is stable if all its eigenvalues are stable. Two pairs
of numbers (a, b) and (c, d) are distinct if a ≠ c and b ≠ d. Absolute values and inequalities are taken componentwise.
A nonnegative vector means that all its elements are nonnegative. For vectors x, x ∈ Rn, |x| ≤ x means that |xi| ≤ xi for
i = 1, . . . , nwhere xi ≥ 0.

2. Problem statement: tightest ultimate bounds by feedback

The problem of ultimate bound minimisation for discrete-time switched systems is studied in this section. Consider a
perturbed discrete-time switched linear system

x(k+ 1) = Aσ(k)x(k)+ Bσ(k)uσ(k)(k)+ Hσ(k)d(k) (1)

where the switching function σ(·) takes values in a finite index set N , x ∈ Rn, and for all i ∈ N , ui ∈ Rmi , the matrices
Ai ∈ Rn×n, Bi ∈ Rn×mi and Hi ∈ Rn×z are known and Bi have full column rank. The disturbance variable d ∈ Rz is
componentwise bounded with a known bound |d(·)| ≤ d, where d ∈ Rz is a nonnegative vector.

The state of an asymptotically stable system driven by a bounded non-vanishing disturbance will not converge to the
origin in general, but rather to a bounded neighbourhood of the origin. The state ultimate bounds, defined as the set
{x ∈ Rn

: x ≤ supσ lim supk→∞ |x(k)|}, provide a componentwise characterisation of the smallest neighbourhood of
the origin that will ultimately contain the perturbed state trajectories. This paper aims to minimise state ultimate bounds
by feedback design.

Before we state the main problem more precisely, we define the sense in which the minimisation problem is studied.
For discrete-time switched systems under arbitrary switching, there exists an inherent limitation to reducing the ultimate
bound for any state component, which can never be smaller than the effect of the perturbation on that component.

Lemma 1 (Lowest Ultimate Bound [13]). For the switched system (4), the ultimate bound on the state vector’s jth component is
bounded below as

sup
σ

lim sup
k→∞

|xj(k)| ≥ max
i∈N


max
|d|≤d
|[Hi](j,:)d|

 .
= bmin

j . (2)

Proof. From (4), since xj(k+ 1) = [Acl
σ(k)](j,:)x(k)+ [Hσ(k)](j,:)d(k), then the ultimate bound on the jth state component can

never be smaller than that corresponding to the case when the jth row of Acl
i is zero for every i ∈ N . Then, the result follows

from direct analysis of (4). �

Note that bmin
j in (2) is independent of the closed-loop matrices Acl

i , i ∈ N , because it corresponds to the case when the jth
row of every Acl

i = Ai + BiKi is zero.
Problem statement. Assuming σ(k) is known at time k, we are interested in designing a set of state feedback matrices {Ki}i∈N
such that the system (1) with

uσ(k)(k) = Kσ(k)x(k) (3)

is uniformly exponentially stable for every switching sequence {σ(k)} (when d = 0) and minimises the ultimate bound of
state components when d ≠ 0. That is, the resulting perturbed closed-loop system

x(k+ 1) = Acl
σ(k)x(k)+ Hσ(k)d(k), (4)

with Acl
i = Ai + BiKi, admits a CLF and achieves the minimum possible ultimate bound bmin

j as in (2), for one or more state
components, j ∈ J ⊂ {1, . . . , n}, where J contains the indices of the desired state ultimate bounds to be minimised.

However, there are caseswhere the smallest ultimate bound is not attainable. One such case is singled out in the following
lemma.

Lemma 2 (Unfeasibility of Ultimate Bound Minimisation). For the switched system (4) with (Ai, Bi) controllable for all i ∈ N,
suppose that for an arbitrary j ∈ {1, . . . , n}, the jth row of at least one of the Bi matrices is identically zero. Then, the jth ultimate
bound of the system cannot be minimised to its lowest value bmin

j as in (2).
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Proof. To minimise the jth ultimate bound of the switched system (3), we need to achieve

[Acl
i ](j,:) = [Ai + BiKi](j,:) = [Ai](j,:) + [Bi](j,:)Ki = 0 (5)

for all i ∈ N . If for the kth subsystem [Bk](j,:) = 0, then for any choice of Kk we have [Acl
k ](j,:) = [Ak](j,:) ≠ 0 by controllability

and hence, the jth ultimate bound cannot be minimised to bmin
j as in (2). �

Lemma 2 establishes that to achieve the minimum ultimate bound for a state in the arbitrarily switched system (1) with
controllable subsystems requires that the corresponding row in all the input matrices Bi be not identically zero.

Having the case of Lemma 2 ruled out, to minimise the ultimate bounds of the switched system, we give conditions in
Lemma 3 on the structure of a common transformation matrix V and resulting transformed matricesMi, such that

Acl
i
.
= Ai + BiKi = VMiV−1 (6)

has its jth row equal to zero for all i and, hence, the jth ultimate bound of (4) is minimised.

Lemma 3 (Closed-Loop Structure with Lowest Ultimate Bound in a Single State). Consider the discrete-time switched
system (4) under arbitrary switching. For an arbitrary j ∈ {1, . . . , n}, suppose that there exist feedback matrices Ki for all i ∈ N
and an invertible transformation V such that Mi = V−1(Ai + BiKi)V are stable, upper triangular, and have the form4

Mi =

 ∆
i,1
k×k δik×1 ∆

i,2
k×(n−k−1)

01×k 0 01×(n−k−1)

0(n−k−1)×k 0(n−k−1)×1 ∆
i,3
(n−k−1)×(n−k−1)

 , (7)

where ∆i,1 and ∆i,3 are upper-triangular matrices, ∆i,2 is an arbitrary matrix, δi is an arbitrary vector, and the transformation
matrix V is such that its jth row has a nonzero entry at the (k+ 1)th column and is zero everywhere else, that is,

V(j,:) =

01×k Vj,k+1 01×(n−k−1)


, Vj,k+1 ≠ 0. (8)

Then the jth ultimate bound of the switched system is equal to its minimum possible value bmin
j defined in (2).

Proof. Using (7) and (8), the jth row of the closed-loop matrix of each subsystems is

[Acl
i ](j,:) = [Ai + BiKi](j,:) = [VMiV−1](j,:) = V(j,:)MiV−1

=

0 Vj,k+1 0

∆i,1 δi ∆i,2

0 0 0
0 0 ∆i,3

 V−1 = 01×n

and hence, the ultimate bound on the jth state component is minimised to bmin
j as in (2). �

In the next lemma, the result in Lemma 3 is extended to the minimisation of more than one ultimate bound.

Lemma 4 (Closed-Loop Structure with Lowest Ultimate BoundsMultiple States). Let J ⊂ {1, . . . , n}with cardinality#J contain
indices of a set of desired states. Suppose that the matrices Mi and V in (6) satisfy

• Mi are upper triangular and stable and have #J zero rows with indices in an arbitrary set Z ⊂ {1, . . . , n} with #Z = #J.
• V is invertible and such that V(J,Z) ∈ C#J×#J is invertible (for example, any permutation of the identity matrix) and

V(J,{1,...,n}\Z) = 0.

Then the ultimate bounds of the switched system with their indices specified in the set J can be minimised to their minimum
possible values bmin

J as in (2). ⃝

In [20] an algorithm that iteratively seeks feedbackmatrices Ki and the transformation V so thatMi = V−1(Ai+BiKi)V are
stable and upper triangular was developed. In the next section, we modify this algorithm in order to achieve the additional
conditions of Lemmas 3 and 4 and hence yield closed-loop matrices Acl

i = Ai + BiKi with the desired zero rows.

3. Stabilisation and ultimate bound minimisation by feedback

In this section, eigenstructure assignment guaranteeing stability and ultimate boundedness of a switched linear system
under arbitrary switching is considered. We extend the iterative algorithm proposed in [20], which exploits state-feedback
control and a common transformation to obtain subsystems with upper-triangular matrices.

4 For clarity, the dimensions of some of the matrices are indicated as subscripts.



88 R. Heidari et al. / Nonlinear Analysis: Hybrid Systems 21 (2016) 84–102

Fig. 1. Algorithm for iterative triangularisation and ultimate bound minimisation by feedback (ITBF).

3.1. The ITBF algorithm

In [20], conditions were given on the number of states n, the number of subsystems N , and the number of inputs of each
subsystem mi, i ∈ N , so that the stabilising feedback matrices Ki and the simultaneous triangularisation transformation V
will exist for almost every set of system parameters, i.e. for almost all possible entries of the matrices Ai and Bi, for all i ∈ N .
When these conditions are satisfied, [20] also shows that, in addition, the closed-loop eigenvalues for every subsystem
can be arbitrarily selected. In this section, we modify the feedback design algorithm of [20] so that all available degrees of
freedom are exploited to achieve minimum ultimate bounds through the selection of some closed-loop eigenvalues and the
construction of a unitary matrix with specific properties.

Consider the discrete-time switched linear system (1) with state-feedback law (3), yielding the closed-loop system (4).
The proposed modified algorithm is shown below as Algorithm ITBF in Fig. 1. This algorithm seeks feedback matrices Ki so
that

1. the closed-loop matrices Acl
i = Ai + BiKi are stable and simultaneously triangularisable, and

2. for a selected set of state components with indices in J ⊂ {1, 2, . . . , n}, whose cardinality will be specified later, their
corresponding ultimate bounds are minimised to their smallest values.

The Algorithm ITBF (shown in Fig. 1) is an extension of the algorithm in [20], where themainmodifications are: (a) the set
of state components to be minimised, namely J ⊂ {1, . . . , n}, has to be supplied as input data, (b) the common eigenvector
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assignment (CEA) procedure of [20] is replaced by the structured common eigenvector assignment (SCEA) procedure in (10),
and (c) the unitary matrix construction (15) has to satisfy the additional constraints (16). As in [20], the proposed algorithm
seeks feedbackmatrices Ki so that the closed-loopmatrices Acl

i in (4) are stable and simultaneously triangularisable, butwith
the additional requirement that the conditions in Lemma 4 are fulfilled.

A brief description of the algorithm is as follows. After initialisation, the algorithm iterates the following steps: common
eigenvector computation for the internal subsystems identified by Aℓi , B

ℓ
i (performed by procedure SCEA in (10)), state

feedback and transformation update (performed at (12) and (13)), and internal matrices’ update for the next iteration
(at (15)–(19)). The internal subsystemmatrices change dimensions during the execution of the algorithm because one state
dimension is eliminated at each iteration. At start, the internal matrices for iteration ℓ = 1 are set to coincide with the
subsystemmatrices:A1

i = Ai, B1
i = Bi. Then the SCEAprocedure in (10) seeks a unit vector ξ ℓ having specific structure (which

will be explained later), and corresponding (internal) feedback matrices F ℓi , so that ξ ℓ is a feedback-assignable eigenvector
common to all internal subsystems, with corresponding stable eigenvalues. That is, if Procedure SCEA is successful, then ξ ℓ
satisfies ∥ξ ℓ∥ = 1 and (Aℓi + Bℓi F

ℓ
i )ξ

ℓ
= λℓi ξ

ℓ for some scalars λℓi satisfying |λ
ℓ
i | < 1 for all i ∈ N .

3.2. Structural condition for simultaneous triangularisation by feedback

As noted above, successful satisfaction of the algorithm at each iteration requires the existence of the vector ξ ℓ. Existence
of such ξ ℓ (without the additional requirement for ultimate bound minimisation) is ensured by the structural condition
of [20], as we next explain. Define mℓ

i
.
= rank(Bℓi ) = d(Im Bℓi ), and factor Bℓi = bℓi r

ℓ
i , where rℓi : Rmi → Rmℓi has full row

rank and bℓi : R
mℓi → Rnℓ has full column rank. Note that Im Bℓi = Im bℓi . LetΛ

ℓ be a vector with components λℓi , i ∈ N , i.e.

Λℓ
.
= [λℓ1 λ

ℓ
2 . . . λ

ℓ
N ]
′, (20)

and build the matrix

Qℓ(Λℓ)
.
= [Rℓ(Λℓ) − Bℓ], where (21)

Rℓ(Λℓ)
.
=

λ
ℓ
1I − Aℓ1
...

λℓN I − AℓN

 , Bℓ
.
= blkdiag


bℓ1, . . . , b

ℓ
N


,

and where blkdiag denotes block diagonal concatenation. The following result from [20] presents conditions for the
existence of a common feedback assignable eigenvector based on properties of the matrix (21), and provides a mechanism
to obtain the common eigenvector and the associated feedback matrices when the problem is solvable.

Lemma 5 (Structural Condition [20]). Let

pℓ
.
= nℓ +

N
i=1

mℓ
i − Nnℓ. (22)

Then,
(a) d(KerQℓ(Λℓ)) ≥ pℓ for every choice of Λℓ as in (20).
(b) A vector that can be assigned by feedback as a common eigenvector with corresponding eigenvalues λℓi for i ∈ N exists if and

only if d(KerQℓ(Λℓ)) > 0. Consequently, if

pℓ > 0, (23)

then a feedback-assignable common eigenvector exists for every choice of corresponding eigenvalues.
(c) If Qℓ(Λℓ)wℓ = 0 withwℓ ≠ 0 partitioned as

wℓ
.
= [v′ u′1 · · · u

′

N ]
′, then v ≠ 0, and (24)

(Aℓi + Bℓi F
ℓ
i )v = λ

ℓ
i v, for i ∈ N, (25)

for every F ℓi satisfying rℓi F
ℓ
i v = ui. For each i ∈ N one such F ℓi is

F ℓi = (r
ℓ
i )

Ďuiv
Ď, (26)

where Ď denotes the Moore–Penrose generalised inverse. ⃝

If the structural condition (23) holds, the nullspace of Qℓ(Λℓ) is not empty and, thus, we can find wℓ ∈ KerQℓ(Λℓ).
Suppose d(KerQℓ(Λℓ)) = ψℓ ≥ pℓ, define dℓ

.
= nℓ +

N
i=1 m

ℓ
i and let W ℓ

∈ Cdℓ×ψℓ be a basis for KerQℓ(Λℓ). Then, from
Lemma 5(c), the vectorwℓ ≠ 0 has the form

wℓ = W ℓαℓ (27)
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Fig. 2. Procedure SCEA when the structural condition is satisfied.

where αℓ ∈ Cψℓ is an arbitrary vector. Once (27) is obtained, a feedback-assignable common eigenvector ξ ℓ provided by
procedure SCEA (see Fig. 2) at iteration ℓ of algorithm ITBF can be computed by selecting the first nℓ components of wℓ to
construct v (cf. (24)) and then letting

ξ ℓ = v/∥v∥. (28)

The quantity p1 given by (22) for the first iteration ℓ = 1 is central to the solvability of the proposed algorithm. It also
determines an upper bound on the number of ultimate bound components that can be minimised by appropriate use of the
available degrees of freedom. These facts will be discussed in the following sections.

In the next subsection we provide a technical result that will be required to analyse the solvability of the ITBF algorithm
at all iterations. Then, in Section 3.4 we analyse in detail the mechanism for ultimate bound minimisation embedded in the
algorithm.

Remark 1. Note that the iterations in Algorithm ITBF (see Fig. 1) are divided into two categories. The first category iteratively
runs with the structural condition pℓ < nℓ while the second one deals with the case when pℓ = nℓ for which the algorithm
terminates in just one step. ⃝

3.3. Solvability of Algorithm ITBF

Solvability of the Algorithm ITBF builds on the solvability of the iterative algorithm proposed in [20]. In this section we
first revisit some results from [20] that analyse the structural condition (23). Thenwe present a new result on how to exploit
the available degrees of freedom in the iterative algorithmproposed in [20] to guarantee satisfaction of (23) at each iteration.

The structural condition (23) depends on mℓ
i , the rank of Bℓi . At the first iteration ℓ = 1, mℓ

i = mi and thus, p1 =
(1− N)n+

N
i=1 mi. At subsequent iterations,mℓ+1

i depends on the vector ξ ℓ returned by Procedure SCEA as follows:

mℓ+1
i =


mℓ

i if ξ ℓ ∉ Im Bℓi ,
mℓ

i − 1 if ξ ℓ ∈ Im Bℓi .
(29)

From (29), then mℓ+1
i = mℓ

i − 1 when mℓ
i = nℓ, because ξ ℓ ∈ Rnℓ = Im Bℓi . The next key result from [20] follows from (22)

and (29).

Lemma 6 ([20]). Consider Algorithm ITBF at iteration ℓ and pℓ as in (22), with mℓ
i = rank(Bℓi ). Then, pℓ+1 ≥ pℓ − 1, with

equality if and only if

ξ ℓ ∈ Bℓ, with Bℓ .
=


i∈N

Bℓ
i and Bℓ

i
.
= Im Bℓi .◦ (30)

According to Lemma 6, if at iteration ℓ, pℓ = 1 and ξ ℓ ∈


i∈N Bℓ
i , then pℓ+1 = pℓ−1 = 0 and it is possible that no stable

common eigenvector can be found; thus, the ITBF algorithm terminates unsuccessfully. We are thus interested in finding
conditions to ensure that pℓ > 0 will hold at every iteration. Following [20], we derive these conditions by considering
certain subspaces associated with the internal subsystems (Aℓi , B

ℓ
i ).

Let Sℓi denote the set of vectors v ∈ Bℓ
i = Im Bℓi for which there exist a matrix F ℓi and a stable scalar λ so that

(Aℓi + Bℓi F
ℓ
i )v = λv. (31)
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By definition, Sℓi is the set of feedback-assignable eigenvectors for the internal subsystem (Aℓi , B
ℓ
i ), with associated stable

eigenvalues, which are contained in Bℓ
i .

For convenience,we reproduce the concept of transversality for a set of subspaceswhich is useful for our analysis (see [20]
for further details).

Definition 1 ([20]). Two subspaces S, T of an ambient space X are transverse if the dimension of their intersection is
minimal, given the dimensions of S and T , i.e. when d(S


T ) = max{0, d(S)+ d(T )− d(X)}. Equivalently, S and T are

transverse when the dimension of their sum is maximal. To extend this definition to sets of subspaces let S = {S1, . . . , Sn}

be a set of subspaces of an ambient space X. Then, we say that S is transverse when both the intersection of the subspaces
in every subset of S has minimal dimension and the sum of the subspaces in every subset of S has maximal dimension.

Suppose {Sℓi : i ∈ N} are transverse subspaces. Define the following quantities:

ρℓi
.
= d(Sℓi ), qℓ

.
= nℓ +


i∈N

ρℓi − Nnℓ, (32)

Sℓ
.
=


i∈N

Sℓi , ρℓ
.
= d(Sℓ). (33)

From (33) and Lemma 6, if the common eigenvector ξ ℓ lies within Sℓ, then ξ ℓ ∈ Bℓ as in (30), and the structural
condition pℓ+1 = pℓ − 1 > 0 might not be satisfied. To avoid this situation and guarantee that the structural condition
(23) continues to be satisfied at every iteration of the algorithm, we exploit the available degrees of freedom to choose the
common eigenvector such that ξ ℓ ∉ Sℓ and hence, pℓ+1 ≥ pℓ. This result, presented in Theorem 7, will come into use in the
next section where we lay out the procedure for ultimate bound minimisation.

Theorem 7 (Conditions for Solvability of Algorithm ITBF). Let {S1
i : i ∈ N} be transverse, q1 ≥ 0 and (Ai, Bi) be controllable for

all i ∈ N. Then,it is always possible to select αℓ in (27) such that pℓ+1 ≥ pℓ − 1, with equality if and only if pℓ = nℓ.◦

Before we proceed to the proof of the theorem, note that under the assumptions of Theorem 7, it was shown in
[20, Theorem 2] that

• pℓ > 0 for ℓ = 1, . . . , n.
• There exist feedback gains Ki such that the set Z = {(Ai + BiKi, Bi) : i ∈ N} consists of stable matrices and generates a

solvable Lie-algebra. Hence, the closed-loop system admits a CQLF.

Namely, these are sufficient conditions to guarantee stabilisability of the switched system. Theorem 7 shows that without
any further restrictions, it is possible to select feedback gains that, in addition to providing closed-loop stability, ensure that
pℓ is non-decreasing for all iterations (until pℓ = nℓ and remains equal to nℓ afterwards). This means that starting with
‘enough freedom’ (i.e., p1 ‘large enough’) to select the common eigenvector, this freedom is maintained for all iterations and
hence lays the groundwork to tackle the ultimate bound minimisation problem, as we will show in Section 3.4.

As a preliminary result required to prove Theorem 7, the next lemma relates the quantities pℓ defined in (22) and ρℓ
defined in (33), and is central to the solvability of the proposed algorithm (SCEA Procedure) at all iterations.

Lemma 8. Consider pℓ defined in (22), qℓ defined in (32), let pℓ > 0, {Sℓi : i ∈ N} be transverse and (Aℓi , B
ℓ
i ) be controllable.

Then pℓ ≥ ρℓ = max{0, qℓ}, with pℓ = ρℓ if and only if mℓ
i = nℓ for i ∈ N.

Proof. Recalling properties of transverse subspaces, the dimension of the intersection of transverse subspaces Sℓ satisfies

ρℓ = max {0, qℓ} . (34)

Since Sℓi ⊂ Bℓ
i , then ρ

ℓ
i ≤ mℓ

i and qℓ ≤ pℓ which together with (34) and pℓ > 0 yields ρℓ ≤ pℓ. Next, we prove that ρℓ = pℓ
if and only ifmℓ

i = nℓ for i ∈ N .
(→) If ρℓ = pℓ > 0, then from (34) we have ρℓ = qℓ = pℓ > 0which from (32)means ρℓi = mℓ

i for i ∈ N . Controllability
of (Aℓi , B

ℓ
i ) and the fact that ρℓi is the number of controllability indices of (Ai, Bi) equal to 1 (see [20, Lemma 5]) then yield

mℓ
i = nℓ, for i ∈ N .
(←) If mℓ

i = nℓ for all i ∈ N , then ρℓi = mℓ
i for i ∈ N and thus, from (32) pℓ = qℓ. From (34) and the assumption pℓ > 0,

we have ρℓ = qℓ = pℓ > 0. �

Now we are ready to proceed to the proof of Theorem 7.

Proof of Theorem 7. Herewe show that by proper selection ofαℓ in (27), pℓ is non-decreasing for all iterations until pℓ = nℓ
and remains equal to nℓ afterwards.
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From Lemma 5(a), we have d(KerQℓ(Λℓ)) = ψℓ ≥ pℓ. Thus, if the latter holds with equality, a basis for the nullspace of
Qℓ(Λℓ) has the form (see (27))

W ℓ
=

wℓ1 · · ·w

ℓ
ψℓ


=


v1 · · · vψℓ
u11 · · · u1ψℓ
...

...
uN1 · · · uNψℓ

 , rank(W ℓ) = ψℓ ≥ pℓ, (35)

where the partition of each vector follows from (24). From (24) and (27), the common eigenvector is determined as

v =

v1 · · · vψℓ


αℓ. (36)

First, we show that the subspace generated by the vr vectors is also of rank ψℓ, i.e.

rank

v1 · · · vk · · · vψℓ


= ψℓ. (37)

This is shown by contradiction. Suppose that vk, for some k ∈ {1, . . . , ψℓ}, is a linear combination of other columns, that is

vk =

ψℓ
r=1,r≠k

vrγr (38)

where at least one coefficient γr is nonzero. Then, sinceW ℓ in (35) is in the nullspace of Qℓ(Λℓ)we have

Qℓ(Λℓ)wℓr = 0, r = 1, . . . , ψℓ (39)

and by replacing (21) and (35) in (39), for i ∈ N we obtain

(λℓi I − Aℓi )vr − bℓi uir = 0, r = 1, . . . , ψℓ. (40)

For r = k, using (38) in (40) we obtain

(λℓi I − Aℓi )vk − bℓi uik =

ψℓ
r=1,r≠k

(λℓi I − Aℓi )vrγr − bℓi uik

= bℓi
ψℓ

r=1,r≠k

uirγr − bℓi uik = bℓi

 ψℓ
r=1,r≠k

uirγr − uik


= 0. (41)

Since the bℓi matrices have full column rank, (41) implies

ψℓ
r=1,r≠k

uirγr − uik = 0. (42)

This means that uik =
ψℓ

r=1,r≠k uirγr , for i ∈ N , which together with (38) yields

wℓk =

ψℓ
r=1,r≠k

wℓr γr , (43)

i.e. rank(W ℓ) < ψℓ which contradicts our assumption in (35). Hence, (37) holds. Therefore, the common eigenvector v in
(24) can be chosen in a space of rank ψℓ.

In [20, Theorem 2] it is proved that when {S1
i : i ∈ N} is transverse, q1 ≥ 0 and (Ai, Bi) is controllable, then for

ℓ = 1, . . . , n, {Sℓi : i ∈ N} is transverse and (Aℓi , B
ℓ
i ) is controllable by induction. Hence, by Lemma 8, we know that pℓ ≥ ρℓ

with equality if and only ifmℓ
i = nℓ for i ∈ N . We consider two cases, pℓ = ρℓ and pℓ > ρℓ, separately as follows.

When pℓ = ρℓ, thenmℓ
i = nℓ for i ∈ N and all inputmatrices are invertible.We thenhave pℓ = ρℓ = nℓ andhence, the di-

mensionofSℓ isnℓ (see (33)) and any commoneigenvector ξ ℓ ∈ Cnℓ is also inSℓ. Then, fromLemma6, pℓ+1 = pℓ−1 = nℓ−1.
On the other hand, the reduction of subsystems dimension in the next step (see (9)) yields nℓ+1 = nℓ − 1 which results in
pℓ+1 = nℓ+1.

When pℓ > ρℓ, from (37), it is always possible to select αℓ in (36) such that the resulting vector v is not in Sℓ. From (28)
we then have ξ ℓ ∉ Sℓ, hence ξ ℓ ∉ Bℓ and (30) does not hold. Thus, from Lemma 6 we have pℓ+1 > pℓ − 1. �

3.4. Iterative ultimate bound minimisation

In [13], the problemof ultimate boundminimisation for non-switched discrete-time systems required a separate analysis
depending on the number of control inputs. For single-input systems, eigenvalue assignment based on the roots of certain
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polynomials associated with the system matrices characterises the possibility of having the minimum ultimate bound. For
multiple-input systems, on the other hand, the smallest ultimate boundon a state is achievable by eigenstructure assignment
under certain conditions. The above analysis can be deployed in switched discrete-time systems as explained below.

For switched systems of the form (1), if the structural condition (23) holds at each iteration of Algorithm ITBF, the
nullspace of thematrixQℓ(Λℓ) defined in (21) is non-empty and thus, there exists a common eigenvector for all subsystems.
At each iteration, ψℓ(≥ pℓ) represents the degrees of freedom to choose the common eigenvector such that a desirable
property is satisfied. Indeed, as seen from (27), the vector αℓ needs to be selected to shape the common eigenvector ξ ℓ
given in (28) in a specific way. This is shown in the following result.

Lemma 9. At iteration ℓ of Algorithm ITBF, consider wℓ = W ℓαℓ,wℓ ∈ Cdℓ , where W ℓ
∈ Cdℓ×ψℓ is a basis for KerQℓ(Λℓ), with

the matrix Qℓ(Λℓ) defined in (21) and αℓ ∈ Cψℓ an arbitrary vector. Let Jℓ ⊂ {1, 2, . . . , nℓ} be a subset of desired indices with
cardinality #Jℓ. If pℓ > #Jℓ, then the elements of the common eigenvector ξ ℓ given in (28), with their indices specified in Jℓ,
can be made zero, that is ξ ℓ

Jℓ
= W ℓ

(Jℓ,:)
αℓ/∥v∥ = 0.

Proof. Since d(KerW ℓ

(Jℓ,:)
) ≥ ψℓ − #Jℓ ≥ pℓ − #Jℓ ≥ 1, then there exists a nonzero nullspace in which αℓ can be

determined. �

The above lemma states that if pℓ > #Jℓ at each iteration of Algorithm ITBF, then by proper selection of αℓ ≠ 0 such
that

αℓ ∈ KerW ℓ

(Jℓ,:)
, (44)

it is possible to assign common eigenvector so that the desired elements of the matrix V in (6) are zero. Otherwise, if
pℓ ≤ ψℓ ≤ #Jℓ, then, noting that W ℓ , W ℓ(Λℓ) depends on the eigenvalue vector Λℓ of the form (20), the desired
zero elements could still be achieved by eigenvalue assignment provided the solution of the equation W ℓ

(Jℓ,:)
(Λℓ) = 0 has

elements with magnitude smaller than one. This will generically not hold so we concentrate on the case pℓ > #Jℓ. Since we
consider the cases where pℓ is non-decreasing (see Theorem 7), hence, we make the following assumption.

Assumption 10. For the system (4), (6), the set J ⊂ {1, . . . , n} that contains the indices of the desired state components
for ultimate bound minimisation has cardinality #J ≤ p1 − 1, with p1 defined in (22) for the first iteration.

Theorem 11 (Minimisation of Ultimate Bounds by Feedback). Consider the perturbed switched discrete-time system (1), and let
{S1

i : i ∈ N} be transverse, q1 ≥ 0, p1 > 1 and (Ai, Bi) be controllable for all i ∈ N. Let J ⊂ {1, 2, . . . , n}, with cardinality #J
satisfying Assumption 10, contain the indices of the desired state components for ultimate bound minimisation. Suppose that at
every iteration of Algorithm ITBF, there exists a vector αℓ ∈ Cnℓ satisfying (44)which yields a pℓ+1 ≥ pℓ− 1with equality if and
only if pℓ = nℓ. Then, the ultimate bounds of system (1) with indices in J can be minimised to their minimum possible values
bmin

J defined in (2) by executing Algorithm ITBF in Fig. 1.

Proof. The assumption q1 ≥ 0 together with {S1
i : i ∈ N} being transverse and (Ai, Bi) being controllable for all i ∈ N ,

satisfies the conditions in Theorem 7. From the assumption p1 > 1 and Theorem 7, with the appropriate selection of αℓ, pℓ
can be made non-decreasing at all iterations while pℓ < nℓ, thereby pℓ > 1 for all those iterations. (When pℓ = nℓ, whether
nℓ = 1 or nℓ > 1, no more iterations are necessary since the algorithm can be terminated in one step as explained later
in the proof.) If the selection of αℓ as described in Theorem 7 is also compatible with condition (44), then ultimate bound
minimisation can be achieved. In the remainder of the proof, the iterative ultimate bound minimisation is explained.

LetJ1
= J with cardinality #J contain the indices of the desired state components for ultimate boundminimisation. The

aim is to iteratively apply Lemma 3 by constructing the blocks of the Mi matrices for i ∈ N through eigenvalue assignment
and the columns of thematrix V through (13)–(17) to achieve the final matricesMi and V , whereMi has the form (7) and the
matrix V has rows of the form (8). With regard to the matrix Mi, the algorithm accomplishes the required upper triangular
structure through (10)–(12), provided its diagonal entries are set as the desired eigenvalues. However, for the desiredmatrix
V , since its columns are the result of a product of matrices (cf. (13)), the idea is to propagate the location of zero and nonzero
elements in relevant rows of these matrices so that the end result is the jth row of V , j ∈ J1, having all zero elements except
for one nonzero element different for each j ∈ J1.

The proof is divided into two parts. First, we analyse the ultimate boundminimisation problem at iterationswith pℓ < nℓ.
At these iterations, for arbitrary eigenvalues and by common eigenvector assignment, we determine successive columns of
the common triangularising transformation matrix V with zero elements at places specified in J1. Next, we show that if at
some iteration κ we reach pκ = nκ , then Algorithm ITBF can be terminated in just one more step.

At the first iteration, from (22) and considering that the Bi matrices are of full column rank (mi ≤ n), we have p1 ≤ n
with equality if and only if mi = n for all i ∈ N . If p1 = n, the algorithm can be terminated in one step as explained below.
If p1 < n, then, p1 > p1 − 1 ≥ #J admits the existence of enough degrees of freedom to execute the common eigenvector
assignment as in (44). Since U1 = In, to have V(J1,1) = 0, Procedure SCEA needs to select the common eigenvector such
that ξ 1

J1 = 0 (see (13)). Then, we construct a unitary matrix as in (15) with ξ 1 as its first column, such that for all j1 ∈ J1,

the j1th row of the unitary matrix will have n − 1 zero entries and one nonzero element. To this end, choose an arbitrary
set of distinct elements J2

⊂ {1, 2, . . . , n − 1},#J2
= #J. Pair each index j1 ∈ J1 with an index j2 ∈ J2 (where no two
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pairs have the same first element or the same second element), and let the j1th row of the unitary matrix be zero except
for a nonzero entry at the (j2 + 1)th place. Thus, the matrix U2 as in (17) will be such that for all j1 ∈ J1, its j1th row has
n2−1 = (n−1)−1 zeros and a nonzero entry at component j2. Then, if (j1, j2), (i1, i2) are two of those pairs, with i1, j1 ∈ J1

and i2, j2 ∈ J2 we have

U1U2 = In



∗ · · · ∗ · · · ∗ · · · ∗

...
...

...
...

0 · · · v1j1,j2 · · · 0 · · · 0
...

...
...

...

0 · · · 0 · · · v1i1,i2 · · · 0
...

...
...

...
∗ · · · ∗ · · · ∗ · · · ∗


n×n2

where v1
j1,j2

and v1
i1,i2

are nonzero and ∗ is a non-specified entry. Thus, the matrix U1U2 has #J rows, with their indices in J1

(only two rows, with indices j1 and i1, are illustrated above), with just one nonzero entry at the place indexed by the second
element of the pair, and otherwise zero.

For the second iteration of Algorithm ITBF (assuming that p2 < n2), since by assumption αℓ can be chosen to satisfy
(44) and the condition in Theorem 7, we obtain p2 ≥ p1 > #J and hence, the common eigenvector assignment can be
performed. For the second column of the matrix V to have zero elements at places specified in J1, i.e. V(J1,2) = 0, from (13)
and considering the nonzero entries of U1U2 in the intersections of rows with indices in J1 and columns with indices in J2,
we need to have ξ 2

J2 = 0 for the common eigenvector ξ 2. Accordingly, the unitary matrix U3 as in (17) constructed using

this ξ 2, will have #J rows with indices j2 ∈ J2 having n3 − 1 zeros and one nonzero entry at their j3th places, for j3 ∈ J3,
for an arbitrary set of distinct elements J3

⊂ {1, 2, . . . , n2 − 1}, #J3
= #J (that is, each index j2 ∈ J2 is paired with an

index j3 ∈ J3, as explained above for the first iteration). For i1, j1 ∈ J1, i2, j2 ∈ J2 and i3, j3 ∈ J3 (correspondingly paired)
we have

3
r=1

Ur = (U1)n×n(U2)n×n2(U3)n2×n3

= In



∗ · · · ∗ · · · ∗ · · · ∗

...
...

...
...

0 · · · v1j1,j2 · · · 0 · · · 0
...

...
...

...

0 · · · 0 · · · v1i1,i2 · · · 0
...

...
...

...
∗ · · · ∗ · · · ∗ · · · ∗





∗ · · · ∗ · · · ∗ · · · ∗

...
...

...
...

0 · · · v2j2,j3 · · · 0 · · · 0
...

...
...

...

0 · · · 0 · · · v2i2,i3 · · · 0
...

...
...

...
∗ · · · ∗ · · · ∗ · · · ∗


=



∗ · · · ∗ · · · ∗ · · · ∗

...
...

...
...

0 · · · π2
j1,j3 · · · 0 · · · 0

...
...

...
...

0 · · · 0 · · · π2
i1,i3 · · · 0

...
...

...
...

∗ · · · ∗ · · · ∗ · · · ∗


n×n3

,

where π2
j1,j3

.
= v1

j1,j2
v2
j2,j3

.

Following the same procedure for each subsequent iteration ℓwith pℓ < nℓ and satisfying the conditions on αℓ, we have
pℓ > #J. At this iteration, the matrix

ℓ
r=1 Ur is of size n × nℓ and has its rows with indices in J1 equal to zero except for

their jℓth entries, jℓ ∈ Jℓ, Jℓ ⊂ {1, 2, . . . , nℓ}, #Jℓ = #J, that is, for i1, j1 ∈ J1 and iℓ, jℓ ∈ Jℓ

ℓ
r=1

Ur =



∗ · · · ∗ · · · ∗ · · · ∗

...
...

...
...

0 · · · π ℓ−1
j1,jℓ

· · · 0 · · · 0
...

...
...

...

0 · · · 0 · · · π ℓ−1
i1,iℓ

· · · 0
...

...
...

...
∗ · · · ∗ · · · ∗ · · · ∗


n×nℓ

, π ℓ−1
j1,jℓ
=

ℓ−1
i=1

viji,ji+1 . (45)

Thus, to have V(J1,ℓ) = 0, the common eigenvector assignment should satisfy ξ ℓ
Jℓ
= 0.
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At iteration κ , with pκ = nκ , the same procedure yields a matrix
κ

r=1 Ur of the form (45) with dimension n× nκ . Then
since pκ = nκ and from Lemma 8, all the Bκi matrices for i ∈ N have rank nκ . That is, the control inputmatrices are invertible,
and we can assign an arbitrary eigenvector matrix and select a diagonal matrix ∆3

i = diag{λκi , . . . , λ
n
i } to complete the Mi

matrices construction as follows

Mi =


∆1

i ∆2
i

0 ∆3
i


where ∆1

i ∈ C(κ−1)×(κ−1) is an upper triangular matrix with diagonal elements {λ1i , . . . , λ
κ−1
i } computed in the previous

iterations and∆2
i ∈ C(κ−1)×(n−κ+1) is an arbitrary matrix.

We assign a common eigenvector matrix Inκ , that is, all remaining iterations from κ to n of Algorithm ITBF can be
subsumed in one step by taking

V ℓ = Inκ .

Since the matrix (
κ

r=1 Ur) ∈ Cn×nκ , as mentioned before, has #J rows (with indices in J1) with one nonzero entry and
otherwise zero, bymultiplying this matrix with the common eigenvector matrix Inκ , the last n−κ+1 columns of thematrix
V in (13) will be the matrix

κ
r=1 Ur and thus,

V(:,κ:n) =


κ

r=1

Ur


V ℓ =



∗ · · · ∗ · · · ∗ · · · ∗

...
...

...
...

0 · · · πκ−1
j1,jκ

· · · 0 · · · 0
...

...
...

...

0 · · · 0 · · · πκ−1
i1,iκ

· · · 0
...

...
...

...
∗ · · · ∗ · · · ∗ · · · ∗


,

V =

V(:,1:κ−1) V(:,κ:n)


,

V(J1,:) =


0 · · · 0 · · · πκ−1

j1,jκ
· · · 0 · · · 0

...
...

...
...

...

0 · · · 0 · · · 0 · · · πκ−1i1,iκ
· · · 0

 .
Then, the condition in Lemmas 3 and 4 for Mi, can be satisfied by assigning to zero the eigenvalues associated with the

nonzero entries of the matrix V(J1,:), that is, the eigenvalues in∆3
i satisfy λ

κ−1+jκ
i = 0,∀jκ ∈ Jκ . Note that in the matrixMi,

the row corresponding to the zero eigenvalue λκ−1+j
κ

i , jκ ∈ Jκ is zero and hence, together with its corresponding nonzero
entry inV(j1,:), j

1
∈ J1, the conditions of Lemma3 are satisfied and the j1th ultimate bound isminimised to its lowest possible

value. �

3.5. Successful termination of Algorithm ITBF

As mentioned in Theorem 11, Algorithm ITBF is successful if at each iteration, αℓ that satisfies (44) also renders pℓ+1 ≥
pℓ − 1, with equality if and only if pℓ = nℓ (see Theorem 7). The latter property is achieved if the vector αℓ satisfying (44) is
such that the resulting common eigenvector ξ ℓ as in (28) does not lie in the intersection subspace Sℓ unless pℓ = nℓ = ρℓ, in
which case the minimisation problem is trivially solved in one step (see Remark 1) due to invertibility of all input matrices.

We next give sufficient conditions for the ℓth iteration of Algorithm ITBF ensuring the common eigenvector ξ ℓ ∈ Cnℓ

satisfying (44) is not inside the intersection subspace Sℓ with ρℓ < nℓ.

Lemma 12. At the ℓth iteration of Algorithm ITBF, consider pℓ defined in (22) and let Jℓ ⊂ {1, 2, . . . , nℓ}, #Jℓ ≤ pℓ − 1 be
the target zero elements of the common eigenvector ξ ℓ. Let S ∈ Cnℓ×ρℓ , ρℓ < nℓ, be a basis of the intersection subspace Sℓ, and
from (35), consider the matrix W ℓ

(1:nℓ,:)
∈ Cnℓ×ψℓ where W ℓ is a basis for KerQ ℓ, with the matrix Q ℓ defined in (21). Suppose

that d(Ker S(Jℓ,:)) < d(KerW ℓ

(Jℓ,:)
), then, a common eigenvector ξ ℓ with ξ ℓ

Jℓ
= 0 can be found such that ξ ℓ ∉ Sℓ, namely, the

intersection subspace can be avoided.

Proof. From (24), (27), (36) and the matrixW ℓ
(1:nℓ,:)

, we have v = W ℓ
(1:nℓ,:)

αℓ and thus, the common eigenvector (28) is

ξ ℓ = W ℓ
(1:nℓ,:)α

ℓ/∥v∥. (46)
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For the condition ξ ℓ ∈ Sℓ to hold, there should exist a nonzero vector β ∈ Cρ
ℓ
such that

Sβ = ξ ℓ = W ℓ
(1:nℓ,:)α

ℓ/∥v∥. (47)

For simplicity, reorder the rows of the matrices S and W ℓ
(1:nℓ,:)

, respectively, to form S̄ = [S ′1 S ′2]
′ and W̄ = [W ′1 W ′2]

′,
such that S1 = S(Jℓ,:) andW1 = W ℓ

(Jℓ,:)
. According to these reordered matrices, reorder β and αℓ (for simplicity we keep the

same symbols). Then, combining (47) with (44) yields
S1
S2


β =


W1
W2


αℓ/∥v∥, S1β = W1α

ℓ
= 0. (48)

We divide the proof into two parts to obtain a sufficient condition to avoid (48).

(i) If d(Ker S1) = 0, then there exists no β ≠ 0 such that S1β = 0 and hence, any αℓ in the nullspace of W1 avoids the
intersection space.

(ii) If d(Ker S1) > 0, then S1β = W1α
ℓ
= 0 is feasible and in order to avoid (48) we need to derive conditions preventing

the occurrence of the equality S2β = W2α
ℓ.

LetΦS1 ∈ Cρ
ℓ
×d(Ker S1) be a basis of Ker S1. Then, we can choose β ∈ Cρ

ℓ
in ImΦS1 as β = ΦS1ηβ with ηβ ∈ Cd(Ker S1)

arbitrary. Also, let ΦW1 ∈ Cpℓ×d(KerW1) be a matrix of a set of basis vectors of KerW1. The vector αℓ ∈ Cpℓ can then be
selected in ImΦW1 as αℓ = ΦW1ηα with ηα ∈ Cd(KerW1) arbitrary.
The equality S2β = W2α

ℓ then takes the form

S2ΦS1ηβ = W2ΦW1ηα. (49)

Note thatW2ΦW1 is not rank deficient. If otherwise, it means that ImΦW1


KerW2 ≠ ∅, that is, KerW1


KerW2 ≠ ∅

which is in contradiction with W̄ being full column rank (cf. (37)).
Hence, rank(W2ΦW1) = d(KerW1). Then, if d(Ker S1) < d(KerW1), proper selection of ηα ensures that no ηβ in

Ker S1 can be found to satisfy (49). �

Remark 2. In Lemma 2, we singled out a case for which the ultimate bound minimisation is not feasible. When the jth row
of at least one of the Bi matrices is zero, then the corresponding ultimate bound cannot be minimised to its minimum value
bmin
j as in (2). In the Appendix we show how this case causes Algorithm ITBF to break down at some iteration for which the

conditions in Lemma 9 cease to hold. ⃝

4. Numerical example

Consider a switched system formed by two subsystems with matrices

A1 =


−1.1680 4.0080 0.4535 −1.5970 2.0732 −4.5139
2.1211 2.5822 1.6484 −4.9292 0.0862 0.1569
3.5424 0.8391 3.1124 −4.2657 −0.4706 −1.5780
1.9897 −0.9946 3.0450 −0.8680 −3.1999 −0.7216
4.5828 −4.8787 0.8283 −2.3990 −3.7715 3.4032
−4.7401 −2.1672 −2.7062 0.4180 −0.2747 −1.1410



A2 =


1.5627 −1.5909 −1.9712 −2.9420 0.3049 1.4167
0.1561 4.6490 4.4860 1.6537 −4.4574 −1.6594
0.8228 −4.1364 −3.9620 −3.1066 −2.4372 −1.6533
0.4060 4.6741 4.3958 1.9146 −0.1129 2.3545
3.9448 0.5444 −1.1935 −2.2255 −2.2387 4.5450
0.6211 −0.1799 −0.2757 2.5900 −4.6122 −2.9693



B1 =


−1.2420 2.3311 −4.6076 0.9842 −0.1453
−4.2966 0.2976 −1.0773 −4.4021 −0.1310
−1.1432 −2.2856 −0.9735 −4.7206 3.1869
−4.5608 0.6943 −4.0939 3.5796 −0.0540
−3.6490 4.1370 −1.0558 4.3792 1.7705
3.8813 4.6013 4.3709 0.1758 −0.1383

 , H1 =


1
1
1
1
1
1



B2 =


−4.6122 −0.6965 −1.4818 −0.0505
−1.9460 1.3177 −4.5455 −1.1453
0.9533 3.4591 −2.9129 −2.6257
4.8218 −0.2982 4.8561 −2.7867
−3.4101 1.0458 4.1421 2.4541
3.7593 3.7462 4.1393 −3.8830

 , H2 =


1
1
1
1
1
1

 , d = 1.
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From (22) we can compute p1 = 3. Hence, as in Assumption 10, we aim at minimising up to p1− 1 = 2 ultimate bounds
of the switched system under arbitrary switching. For this 6th order system, we choose the 5th and 6th states for ultimate
bound minimisation and thus, J = {5, 6},#J = 2.

At the first iteration, (q1 = 0 and) p1 = 3 > #J and thus, for an arbitrary set of eigenvalues Λ1
=

λ11 λ12

′
=

0.0551 0.3846
′ Procedure SCEA successfully results inV(:,1) = ξ 1 =


−0.6042 0.6026 −0.4930 −0.1696 0 0

T
with α1

=

0.2242 −0.9283 0.2968

T . The matrix U2 as in (17) with J2
= {4, 5} is

U2 =


0.7968 0 0 0 0
0.4569 0.6543 0 0 0
−0.3738 0.7151 −0.3254 0 0
−0.1286 0.2461 0.9456 0 0

0 0 0 1 0
0 0 0 0 1

 .

At the next iteration, (q2 = 3 and) p2 = 4 > #J and thus, for an arbitrary set of eigenvalues Λ2
=

λ21 λ22

′
=

0.4242 0.5993
′, Procedure SCEA for J2 gives ξ 2 and α2 as shown below ξ 2 =


0.4273 0.3156 0.8472 0 0

T
with α2

=

0.0723 0.5665 0.9188 0.9108

T . The second column of the matrix V in (13) is thus V(:,2) = I6 U2 ξ
2
=

0.3405 0.4018 −0.2097 0.8238 0 0
T . Also the matrix U3 as in (17) with J3

= {3, 4} is

U3 =


−0.9041 0 0 0
0.1492 −0.9371 0 0
0.4005 0.3491 0 0

0 0 1 0
0 0 0 1

 .
At the next iteration, n3 = 4 and m3

1 = m3
2 = 4 and hence, the input matrices are invertible. In this case, the common

eigenvector matrix associated with arbitrary eigenvalues can be taken to be the identity matrix. Since at this iteration with
subsystems of order 4 we have J3

= {3, 4}, we need the last two eigenvalues of both subsystems to be zero. Therefore,
assigning the remaining eigenvalues at

∆3
1 = diag{λ31, λ

4
1, λ

5
1, λ

6
1} = diag{−0.2854,−0.5910, 0, 0}

∆3
2 = diag{λ32, λ

4
2, λ

5
2, λ

6
2} = diag{−0.9381, 0.3268, 0, 0}

and computing the eigenvectors as in Part 2 of the proof of Theorem 11, V 3
= I4, yields

V(:,3:6) = I6 U2 U3 V 3
=


−0.7204 0 0 0
−0.3155 −0.6131 0 0
0.3144 −0.7837 0 0
0.5317 0.0995 0 0

0 0 1 0
0 0 0 1

 .

The resulting feedback gains, triangularising transformation matrix and upper triangular closed-loop matrices are

K1 =


−0.1709 −1.2207 0.9183 −0.8941 −1.2457 0.8258
0.2483 −0.2276 0.3587 0.5143 −0.2647 0.2418
0.9193 1.7895 −0.5789 0.1856 1.4308 −0.7072
−0.3254 0.7433 0.1064 −0.6640 0.4182 −0.4880
−2.1678 0 −0.0218 0.0633 0 0

 ,

K2 =

 0.2890 −0.1019 −0.2887 0.1020 −0.3859 −0.4916
−0.8009 −0.0091 0.2280 0.8341 1.1647 −0.9145
−0.1930 −0.0747 0.0430 −0.3186 0.1153 −0.0082
−0.5388 −0.2334 −0.0847 1.2309 −0.3149 −2.1316

 ,

V =


−0.6042 0.3405 −0.7204 0 0 0
0.6026 0.4018 −0.3155 −0.6131 0 0
−0.4930 −0.2097 0.3144 −0.7837 0 0
−0.1696 0.8238 0.5317 0.0995 0 0

0 0 0 0 1 0
0 0 0 0 0 1

 ,
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Fig. 3. Random bounded disturbance.

Fig. 4. First random switching signal.

M1 =


0.0551 6.6301 −6.4030 0.6186 4.3531 1.6601

0 0.4242 1.5813 −1.3306 −1.6077 −3.5081
0 0 −0.2854 0 0 0
0 0 0 −0.5910 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 ,

M2 =


0.3846 4.9649 3.7414 −6.1443 −2.7784 −3.5492

0 0.5993 −3.1425 −8.1900 −1.6449 6.7434
0 0 −0.9381 0 0 0
0 0 0 0.3268 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 .
The matrices V and Mi satisfy the conditions of Lemmas 1 and 4. For a particular realisation of the disturbance signal
shown in Fig. 3, and two random switching signals (Figs. 4 and 6), the trajectories of the perturbed switched system (Figs. 5
and 7) and zoomed trajectories of the perturbed switched system depicted in Fig. 8, corresponding to the initial condition
x(0) = [0.6146, 1.1240, 1.7603, 2.1086, 1.8297, 3.5015]′, show that the 5th and 6th states are ultimately bounded within
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Fig. 5. Switched system trajectories under first random switching signal.

Fig. 6. Second random switching signal.

their smallest possible regions. As expected, the 5th and 6th state trajectories become equal after one time step since they
correspond to maxi Hi(5)d = maxi Hi(6)d = d, that is, only the disturbance.

5. Conclusion

This paper has considered discrete-time switched linear systems in the presence of non-vanishing perturbations and
derived sufficient conditions to achieve theminimum ultimate bounds by state feedback for one ormore components of the
state of the closed-loop switched system under arbitrary switching. These conditions are expressed as design constraints on
the eigenstructure of the subsystems. A constructive procedure to satisfy these constraints has been presented in the form
of an iterative algorithm that simultaneously triangularises all closed-loop subsystem matrices and achieves the lowest
ultimate bounds for the target states provided they are feasible.

The reliance of the proposedmethod on the construction of stable, simultaneously triangularisable closed-loop feedback
matrices inherits the conservatismof this technique,which is only sufficient (andwith a CQLF) for closed-loop stability under
arbitrary switching. However, there is not much work available on control of switched systems under arbitrary switching,
and the little available focuses on stabilisation. The present paper goes beyond stabilisation by integrating in the feedback
design disturbance attenuation through the minimisation of state componentwise ultimate bounds. A distinctive feature of
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Fig. 7. Switched system trajectories under second random switching signal.

Fig. 8. Zoomed in trajectories under both random switching signals.

the proposed approach is that it is entirely analytic, which enables us to algebraically characterise when the problem can
and cannot be solved in terms of the system structure.

Appendix. Unfeasibility of ultimate bound minimisation

Let the matrix B1 of size n×m1 be of full column rank and its jth row be zero, that is

B1 =


∗ · · · ∗

...
...

0 · · · 0
...

...
∗ · · · ∗

 . (A.1)

From Lemma 2 we know that the jth ultimate bound cannot be minimised by any feedback control. Here we want to show
where the ITBF algorithm breaks down.

At the first iteration, the common eigenvector assignment yields ξ 1 with ξ 1j = 0. Then we should check whether
ξ 1 ∈ Im B1 or not. In the worst case, if m1 = n − 1, then the part of the matrix B1 associated with the elements of ξ 1
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excluding its jth element is square and thus, ξ 1 ∈ Im B1. Then, depending on whether or not ξ 1 ∈ Im Bi for all i = 2, . . . ,N ,
we obtain ξ 1 ∈ S1 or ξ 1 ∉ S1.

Assume that we havem1 < n− 1 and ξ 1 ∉ S1. Then, from (14)–(17), for j1 = j and an arbitrary j2, the matrix U2 is of the
form

U2 =



∗ · · · 0 · · · ∗

...
...

...

0 · · · v1j1,j2 · · · 0
...

...
...

∗ · · · 0 · · · ∗


which from (19) yields the input matrix B2

1 for the second iteration with a zero j2th row

B2
i = U∗2 B

1
i =



∗ · · · 0 · · · ∗

...
...

...

0 · · · v1j1,j2 · · · 0
...

...
...

∗ · · · 0 · · · ∗



∗ 
∗ · · · ∗

...
...

0 · · · 0
...

...
∗ · · · ∗

 =

∗ · · · ∗

...
...

0 · · · 0
...

...
∗ · · · ∗

 .

As it can be seen, the zero row of the matrix B1 has been shifted to the input matrix of the second iteration such that the j2th
row of the matrix B2

1 is zero.
At this iteration α2 can be selected from (44) so that ξ 2

J2 = 0. Again we need to check whether ξ 2 ∈ S2 which includes

checking ξ 2 ∈ Im B2
1. Similar to the previous iteration, ifm2 = n2 − 1, then it is certain that ξ 2 ∈ Im B2

1.
We suppose that up to the iteration ℓ, where mℓ = nℓ − 1, we have ξ ℓ ∉ Im Bℓ1 and thus, ξ ℓ ∉ Sℓ. Computing the Uℓ+1

matrices as in (14)–(17) and determining the matrices Bℓi from (19), similar to the above we see that the matrix Bℓ1 has its
jℓth row equal to zero. At this iteration we certainly have ξ ℓ ∈ Im Bℓ1 due to mℓ = nℓ − 1. However, having ξ ℓ ∈ Sℓ still
needs checking whether ξ ℓ ∈ Im Bℓi for all i = 2, . . . ,N . Suppose that ξ ℓ ∉ Im Bℓi until the Bi matrices are invertible for all
i = 2, . . . ,N .

For the iteration ℓ + 1, since ξ ℓ ∈ Im Bℓ1, we have mℓ+1 = mℓ − 1 which together with nℓ+1 = nℓ − 1 results in
mℓ+1 = nℓ+1 − 1. Also, considering the shift of the zero row to the Bℓ+11 matrix, similar to the previous iteration, we will
have ξ ℓ+1 ∈ Im Bℓ+11 . The same situation happens at the subsequent iterations.

Continuing with Algorithm ITBF and considering the above arguments and assumptions, at some iteration l we obtain
invertible Bl

i matrices for all i = 2, . . . ,N and Bl
1 of size nl × (nl − 1). From the previous discussion we know that

ξ l ∈ Im Bl
1. Togetherwith invertibility of the other Bi matrices, the common eigenvector lies inside the intersection subspace

S l, i.e. ξ l ∈ S l which results in pl+1 = pl − 1. Thus the condition in Theorem 7 does not hold. However, we might still have
pl+1 > #J and the vector αl+1 could be selected as in (44) so that the algorithm continues without any problem. In this
case, the next iterations of Algorithm ITBF will follow the same pattern as the lth iteration and reduce the quantity pl until
we reach pl ≯ #J, at which point the condition in Lemma 9 does not hold and the required αl cannot be found. Therefore,
Algorithm ITBF is unsuccessful.
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