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In the presence of correlated and/or heteroscedastic noise, i.e., for measurement noise which is not in-
dependent and identically distributed (iid), new expressions are required to estimate multi-way cali-
bration figures of merit. They are derived in the present report, with focus towards a useful multi-way
approach based on unfolded partial least-squares with residual multi-linearization. The expressions al-
low one to estimate figures of merit under a generalized noise propagation scenario, and to gain insight
into the various uncertainty sources contributing to the overall prediction error and limit of detection.
Through the study of both simulated and experimental data, it is shown that significant differences exist
between the values estimated assuming an iid noise structure and when the underlying structure de-
viates from this classical paradigm.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

Multi-way calibration is becoming increasingly popular in the
chemical analysis of complex samples, particularly for its ability to
cope with uncalibrated interferents [1–3]. This leads to considerably
simpler calibration strategies, thanks to the achievement of the
second-order advantage, which is potentially inherent to data arrays
with at least two different instrumental modes [1]. In the framework
of multi-way calibration, research on analytical figures of merit
(AFOMs) has made considerable progress in recent years, although
the usual assumption has been to consider instrumental errors as
independently and identically distributed (iid) [4–8].

Multiple causes may lead to instrumental noise structures
which deviate from the simple iid condition [9]. Multi-way AFOM
expressions which are valid under this general scenario are re-
quired, for a variety of reasons: (1) method development and
optimization, (2) comparison of different methodologies, (3) un-
certainty reporting along with prediction results, and (4) assess-
ment of detection capabilities. Recently, equations were developed
for the prediction uncertainty of first-order multivariate calibra-
tion in the presence of generalized noise structures [10], extending
previous developments in the field [11].
emistry and Psychology con-
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In the context of multi-way calibration, an approximation has
been proposed based on the mean square calibration error which
can be achieved by processing second-order data [12]. This latter
approach assumes that the measurement noise structure is the
same both in calibration and prediction. Moreover, it only con-
siders the overall effect of the noise, with no insight into each of
the individual error sources. The present report intends to fill the
gap between first-order and multi-way calibration AFOMs for
generalized noise structures.

We should first consider the sensitivity, a relevant figure of
merit affecting all calibration scenarios [13–15]. Recently, a general
sensitivity expression has been discussed, which is able to cover
from univariate to multi-way data processing [4]. The strategy to
derive the general equation involved the study of the propagation
of noise from a test sample to the prediction of the analyte con-
centration. A very small amount of iid noise was added to a test
sample signal, to probe the relative magnitude of the propagation,
regardless of the experimental noise structure [4]. Thus, it is rea-
sonable to assume that the sensitivity definition will not change,
even when the true noise structure is not iid.

On the other hand, other relevant figures of merit such as
prediction uncertainty and detection capabilities may be sig-
nificantly affected by the noise structure. These parameters should
always be reported when developing new analytical protocols
[11,16,17]. It might be argued that replicate sample analysis could
in principle provide an experimental estimation of these figures.
However, it is important to be able to dissect the overall
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uncertainty into the different contributing error sources. This
could allow one to identify the influence of specific errors, to limit
and/or mitigate them, leading to improved analytical results.

In this work, a general scheme is presented to estimate sample
dependent uncertainties in a multi-way calibration model based
on unfolded partial least-squares with residual multi-linearization
(U-PLS/RML). The latter has been widely employed in recent years
to process multi-way data achieving the important second-order
advantage [18]. To illustrate the usefulness of the proposed ex-
pressions, we describe different situations which depend on the
structure of the measurement noise. The adequacy of the results
was demonstrated through extensive noise addition simulations,
and also by application to experimental data sets.

It is hoped that the present report will stimulate further re-
search concerning the estimation of multi-way analytical figures of
merit for generalized noise structures when other data processing
algorithms are applied, such as multi-linear decomposition [19] or
multivariate curve resolution [20].
2. Theory

2.1. U-PLS/RML

The theory of U-PLS/RML is well-known [18]. In the case of
three-way/second-order calibration, data matrices are measured
for each experimental sample. The (unfolded) test sample signal x
is modeled as the sum of two contributions: (1) the portion of the
test signal modeled by the calibration, and (2) the signal from the
interferents modeled by RML:

∑

= + + =

= + ⊗ +
( )=

ex x x

Pt c b e

Calibration model of RML model of
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n n
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where P is the matrix of U-PLS calibration loadings, t is the test
sample scores, the vectors bint,n and cint,n are the profiles in each
data mode for the nth interferent, Nint is the number of inter-
ferents, ⊗ indicates the Kronecker product, and e is a vector of
model errors (see Table 1 for details on vector and matrix sizes). In
Eq. (1), the product P tT represents the part of x which can be
Table 1
Parameter symbols, size and details regarding the variables discussed in the pre-
sent report.

Parameter Size Details

βeff JK�1 Effective U-PLS regression coefficients
bint,n J�1 Profile for interferent in the first mode
cint,n K�1 Profile for interferent in the second mode
e JK�1 Vector of second order RML residuals
h 1� I Sample leverage vector
IJ J� J Identity matrix
IK K�K Identity matrix
IJK JK� JK Identity matrix
P JK�A U-PLS loading matrix
Peff JK�A Effective U-PLS loading matrix
PZint JK� JK Orthogonal projection matrix to Zint
t 1�A Sample score vector
T I�A Calibration score matrix
X I� JK Calibration data matrix
x JK�1 Test data vector (after unfolding the data matrix)
v A�1 Vector of latent U-PLS regression coefficients
ycal I�1 Calibration concentrations
Zint JK�Nint(JþK) Matrix spanning the interferent space
Σ2
x JK� JK Error covariance matrix for test sample

Σ2
X JK� JK Error covariance matrix for calibration samples

Σ2
X,i JK� JK Error covariance matrix for calibration sample i

Σ2
X,eff JK� JK Effective error covariance matrix for calibration
modeled by the calibration parameters, while the summation of
Kronecker products represents the contribution from the
interferents.

The aim of the RML procedure is to find the score vector t
minimizing the norm of the vector e in Eq. (1), rendering at the
same time the interferent profiles in each data mode. Once t is
found by RML, prediction of the analyte concentration ŷ proceeds
through:

^ = = ( )+y t v t T y 2cal

where v is the vector of latent regression coefficients provided by
the U-PLS calibration model, T is the matrix of calibration scores,
ycal the vector of analyte calibration concentrations and ‘þ ’ in-
dicates the pseudo-inverse operation. An analogous expression to
Eq. (1) holds for higher-order data [18].

2.2. Prediction uncertainty

A general expression for prediction uncertainty using U-PLS/
RML is derived in this section. It can be easily extended for further
multi-way data systems. In the most general scenario, noise affects
both calibration and test sample signals and calibration con-
centrations, and hence differentiation of Eq. (1) leads to:
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The last term of Eq. (3) can be shown to be the product of a
matrix Zint representing the space spanned by the interferents and
a column vector containing the differentials dcint,n and dbint,n (see
Appendix), i.e.:

⎡⎣ ⎤⎦= + + … ( )d d d d d d dx P t P t Z b c b c; ; ; ; 4T T
int int,1 int,1 int,2 int,2

where the usual MATLAB notation ‘;’ is employed to append col-
umn vectors on top of each other [21], and Zint is given by:

= [ ⊗ ⊗ ⊗ ⊗ ⊗ …] ( )Z c I I b c I I b, , , , 5int J K J Kint,1 int,1 int,2 int,2

where the ‘,’ appends matrices adjacent to each other, and IJ and IK
are J� J and K�K identity matrices respectively. This suggest that
the last term in Eq. (4) can be removed by multiplication by a
suitable projection matrix, orthogonal to Zint:

= + ( )d d dP x P P t P P t 6Z Z
T

Z
T

int int int

where PZint¼(IJK–Zint Zint
þ) and IJK is an identity matrix of size

JK� JK. From Eq. (6):
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Since PT¼Tþ X, where X is the matrix of calibration (unfolded)
signals, differentiation of P and replacement in Eq. (7) gives:

⎡⎣ ⎤⎦{ }( ) ( )= – + ( )
+ + +d d d dt x t T X T X P P P 8

T T
Zint Zint

We now focus attention on the expression for the differential
change in predicted concentration, starting from Eq. (2):
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And inserting in the latter equation dt from Eq. (8):
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In the latter equation, two important changes can be made:
(1) the factor PZint (PZint P)þT can be condensed as Peff

þT, where
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Peff is an effective loading matrix given by Peff¼PZint P [22], and
(2) the product PZint Peff

þT Tþycal¼Peff
þT Tþycal is an effective

vector of regression coefficients βeff, valid in the presence of in-
terferents [22]. Therefore, the first term of the right hand side of
Eq. (10) is approximately equal to the fourth one, because the
latter is equal to –td(Tþ)X βeff¼–td(Tþ) ŷcal ( ŷcal is the vector of
calibration concentrations estimated by the U-PLS model). The
approximate equality of the first and fourth terms of Eq. (10) is
valid in case the model is unbiased, which is usually expected if
the rank of the system is well estimated. If this condition is ful-
filled, the mean value of (ycal� ŷcal) will tend to zero, leading to the
cancellation of both terms. In such a case, and introducing the
sample leverage vector h¼t Tþ , Eq. (10) reduces to the sought
three-term expression:

β β^ = ( ) − + ( )dy d d dx h X h y 11T
eff eff cal

These three terms are not correlated to each other, so they will
contribute independently to the prediction variance (the ex-
pectation value of the cross-products between dx and dX is ex-
pected to be negligible, since noise from different samples is un-
correlated). The variance in predicted concentration is thus the
following expectation value:

⎡⎣ ⎤⎦β β β β( ^ ) = ( ) − + ( )E dy E d d d d d dx x X h h X h y y h 12
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T T

eff eff
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The first term of Eq. (12) adopts a particularly simple form,
since the expected value of the product (dx dxT) is the error cov-
ariance matrix for the test sample signals Σ2

x. In the second term,
on the other hand, the expectation value of the product (dXT hT h
dX) can be shown to lead to an effective covariance matrix (Σ2

X,eff)
for the calibration signals. Details about the derivation to arrive to
the effective covariance matrix can be found in the Supporting
Information of ref. [10]. However, the important concept to be
remarked in this context is that the effective covariance matrix Σ2

X,

eff is a weighted average of all error covariance matrices for the
calibration set of samples.

The last term in Eq. (12) is the variance in calibration con-
centrations σycal

2 . Thus, the above study confirms that the predic-
tion variance is given by the three-term expression:

σ σβ Σ β β Σ β= + + ( )^ h h 13y X
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which accounts for all types of noise structures, and covers the
case where the error structure varies from sample to sample. In
the event of non-iid noise, but with all error covariance matrices
(calibration and prediction samples) identical, Eq. (13) simplifies
to:
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Finally, when the error structure is iid, Σ2
X,eff collapses to ΣX

2IM
and Eq. (14) gives:
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which is formally analogous to that proposed by Faber and Ko-
walski for first-order PLS calibration [11]. Since the multi-way
U-PLS/RML sensitivity SEN can be defined as 1/||βeff|| (where || ||
indicates the vector norm) [4], Eq. (15) can also be written in the
familiar form:

σ σ σ σ= + + ( )^
− −h hSEN SEN 16y

2
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2 2

x
2 2
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The latter expression has been employed in several analytical
works resorting to U-PLS/RML calibration in the past, although the
rigorous derivation is only presented here. Two aspects of the
present approach deserve attention in the framework of multi-
way data processed by U-PLS/RML. On one hand, the position of
the sample in the calibration space, in what concerns prediction
uncertainty, is measured by a leverage parameter h, computed by
first removing the contribution of the interferents, and not from
the global test sample data. This is clear in Eq. (12), where the h¼t
Tþ , with t obtained by the RML procedure during modeling of the
interferent signals. On the other hand, the effect of the interferents
is present in Eq. (13) through the effective vector of regression
coefficients βeff. Any interfering signal, overlapping with those
from the analytes, will lead to a decrease of the sensitivity of the
determination by modifying the value of βeff.

In the most general U-PLS/RML scenario, i.e., when residual
multi-linearization is employed to model interferents in multi-
way data of any number of instrumental modes, the prediction
uncertainty equation is identical to Eq. (13).

It is important to remark that the error structure information is
being used in the evaluation of prediction uncertainty, but it could
be argued that it should also appear in the PLS/RML procedure
itself. Minimizing the norm of the residuals assumes an iid
structure for optimal results, which is not the case. In first-order
calibration, this has been solved with the development of a max-
imum likelihood version of principal component regression
(MLPCR), with a significant improvement in comparison with
classical PCR/PLS in different spectroscopic systems [23–25]. This
may imply the need of developing a similar multi-way maximum
likelihood strategy, but this is outside the scope of the present
work. However, the lack of an optimal multi-way PLS model to
deal with non-iid noise structures does not imply that satisfactory
predictions cannot be obtained in the presence of modest devia-
tions. This justifies one of the main objectives of this work: to
show how these modest deviations affect the sample dependent
prediction uncertainty.

Another important aspect to be considered is that Eq. (16)
could be extended to a potential multi-way maximum likelihood
model as the one previously proposed. Support to this observation
is given by a recent publication [26] where a general expression to
calculate analytical sensitivity under different noise structures was
presented, together with a first attempt to extend Eq. (16) to cal-
culate prediction uncertainties when first-order MLPCR is used as
a predictive model.

2.3. Practical implications: limits of detection and quantitation

It has been recently shown that the limit of detection in first-
order PLS calibration can be reported as a range of values, which
depend on the varying composition of the blank [27].
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In the above expressions, h0min and h0max are the maximum
and minimum, respectively, of the leverages for the calibration
samples projected onto the plane of zero analyte concentration
[27]:
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where ȳcal is the mean calibration concentration, yi is the centered
concentration for the ith calibration sample, Ical is the number of
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calibration samples, and hi is the leverage of a generic calibration
sample. For mean-centered data, the effective leverages (h0minþ1/
Ical) and (h0maxþ1/Ical) should be employed in Eqs. (20) and (21).

Analogous expressions are valid for the limit of quantitation
[27]:
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An essential condition for the application of these expressions,
is that the composition of the test samples should be well re-
presented by the composition of calibration samples. In principle it
could be stated that, because of the presence of unexpected
components in test samples, the latter condition will not be ful-
filled by most multi-way systems. However, the previous difficulty
is automatically solved by the RML procedure by filtering the effect
of the unexpected components, and making the unknown sample
scores part of the calibration space. In consequence, these defini-
tions could be directly extended to the multi-way version of PLS
(U-PLS/RML) without further developments.

Considering the general equation to calculate sample depen-
dent prediction uncertainty derived in Section 2.2, it is possible to
extend the previous detection limit definitions to non-iid error
structures. The corresponding equations would be as follows:
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2.4. Practical implications: generalized analytical sensitivity

As mentioned in Section 2.2, a recent work proposed a new
version of the analytical sensitivity, which incorporates the noise
properties in its definition, and is well correlated with average
prediction errors. To be consistent with the traditional sensitivity
in terms of units, this new definition states that a generalized
analytical sensitivity (GAS) can be defined as the inverse of the
first term of the general prediction uncertainty
equation [analogous of Eq. (16) for first-order calibration] [26]. In
this sense, the derivation presented in Section 2.2 provides a for-
mal background for the calculation of GAS in the context of multi-
way calibration using the UPLS-RML model.
3. Data sets

3.1. Simulated data

Multi-way synthetic data sets were generated using noiseless
Gaussian profiles to simulate the response of the components in
each instrumental mode. These profiles were normalized and then
used to create the corresponding multi-way arrays. They were
then multiplied by the corresponding calibration and test con-
centrations to obtain calibration and test sample arrays. The con-
centrations consisted of random numbers in the range of 0–1, with
10 calibration samples and 4 test samples.

Following the same scheme as the one described in ref. [8], the
number of analytes (present in both calibration and test samples)
and interferents (only present in test samples) were combined to
generate different kinds of binary (two components), ternary
(three components) and quaternary (four components) systems.
Sensitivity was also varied, changing the positions of the peaks in
each mode with respect to the position of the peak corresponding
to the analyte to be quantified. The dimensions for each simulated
instrumental mode were: J¼30, K¼30 for second-order systems,
J¼20, K¼20, L¼20 for third-order systems, and J¼10, K¼10,
L¼10, M¼10, for fourth-order systems.

The code to generate the simulations was written using MA-
TLAB version 7.4.0 (R2007a) [21], using the Parallelization Toolbox
to increase calculation speed. This latter factor turned out to be
critical as the data order increases.

3.2. Noise addition

In agreement with the generalized proposal presented in ref.
[10] for first-order calibration, two types of typical noise structures
were used to evaluate the deviation from iid paradigm: (1) pink
noise, to analyze the violation of the condition of independence,
and (2) proportional noise, to analyze the divergence from the
“identically distributed” condition.

In all cases, noise was simulated by adding a vector corre-
sponding to the type of noise under study to each unfolded matrix.
For pink noise, the MATLAB function presented in ref. [10] was
used to generate a noise vector of a size matching the dimensions
of the unfolded data arrays. This noise sequence was scaled in such
a way that its standard deviation ranged between 5% and 10% of
the mean spectral intensity calculated for the calibration samples.
In the case of proportional noise, the sequence was generated by
multiplying each unfolded array both by a scaling factor of 0.01,
and by a number randomly extracted from a normal distribution.
In other words, the noise at each sensor of the unfolded matrix
will be 1% of the signal intensity at that particular sensor.

As the data order increases, the error structure elucidation
becomes more complex. This means that, for example, different
types of correlations could appear along the different data modes
and also between them. As a consequence, some types of noise (as
1/f or pink noise), are unlikely to extend over multiple modes in a
smooth fashion, as proposed in the present simulations. Indeed, it
is more likely that some type of block diagonal structure would be
observed for the error covariance matrix. In any case, although the
simulations may not exactly represent a particular real case, the
simplification could be considered as sufficient to the aim of de-
riving conclusions based on error propagation.

Noise can be added not only with the purpose of evaluating a
particular error structure, but also to investigate the effect of the
different error propagation sources contributing to the final un-
certainty, i.e.: (1) uncertainty propagated only from errors in test
sample signals, (2) uncertainty propagated only from errors in
calibration sample signals, (3) uncertainty propagated only from
errors in calibration concentrations, and (4) uncertainty propa-
gated from all error sources together. It is important to remark that
systems containing iid noise were not studied in this work, be-
cause this analysis has been previously reported in the literature in
the context of a proposal of a new expression for sensitivity cal-
culation in U-PLS/RML [8].

Overall, for each type of noise, 960 different systems were
studied, corresponding to 3 different data orders, 6 systems with
varying number of analytes and interferent agents, 4 different
component concentrations, and 10 different sensitivities which
depended on the degree of spectral overlap.

3.3. Experimental data

The experimental system analyzed in this work corresponds to
synchronous fluorescence spectra measured in a flow-injection
analysis (FIA) system with double pH gradient modulation. The
double pH gradient was generated with a peristaltic pump, which
drives an acid carrier through a Teflon tube. After the injection of
an alkaline sample, the flow is sent to a spectrofluorometer flow
cell. The start of the spectral measurements is determined by the
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injection time. Between the possible procedures to generate the
pH gradient inside a flow stream, the one selected was to inject
the alkaline sample into the acid sample used as the carrier. While
the sample was flowing through the measuring cell, synchronous
fluorescence spectra were collected under the following condi-
tions: (1) constant difference between excitation and emission
monochromators, 175 nm; (2) emission wavelength range, 425–
525 nm each 1 nm; excitation wavelength range, 250–350 nm
each 1 nm; time between successive spectra, 30 s; total time,
10.5 min.

The measurements previously described lead to a second-order
system where a matrix is obtained for each sample. One of the
instrumental modes corresponds to fluorescence spectra and the
other to different times at which pH is modified following a gra-
dient. This is why the latter data mode could be called as either
“pH” or “time”. For simplicity, in the remainder of this work, we
will refer to this mode as the “time” mode. These second-order
data were used for the determination of three analytes in human
urine: the antibiotics ciprofloxacin, norfloxacin, and ofloxacin. The
calibration was developed using aqueous solutions of each of the
three analytes in turn. In this case, the use of U-PLS/RML is justi-
fied by the presence of a fluorescent urine background that makes
it necessary to achieve the second-order advantage.

For each analyte, the calibration set was prepared with five
duplicate concentration levels, equally spaced in the range 0.00–
1.00 mg L�1. The urine set consisted on 22 test samples spiked at
concentrations given by random numbers in the range 0–
200 mg L�1, to test the method performance for many con-
centrations within the therapeutic range. All samples were
Fig. 1. Steps of the procedure designed to analyze the error structure of experimental sec
map of the data matrices corresponding to two replicates of a calibration sample used fo
same calibration sample, when the spectra corresponding to pH with similar signal var
measured in random order. For additional experimental details see
ref. [28].
4. Results and discussion

4.1. Estimation of the error covariance matrix

Experimental replication consists in taking N replicate mea-
surement vectors xn and then calculating the error covariance
matrix as:

∑Σ =
−

( − ¯)( − ¯)
( )=N

x x x x
1

1 25n

N

n nx
2

1

T

The error covariance matrix is a symmetric square matrix con-
taining, as diagonal elements, the error variances associated with
each measurement channel, and as off-diagonal elements, all of the
covariances among measurement errors at different sensors [9]. For
the analysis of the error structure, the diagonal of the covariance
matrix gives information about the noise heteroscedasticity, whereas
the off-diagonal values describe the nature of the correlated noise.

A good approach to estimating Σ2
x involves pooling the error

covariance estimates by averaging the calculated covariance ma-
trix from different subsets of samples, each of which has a rela-
tively small number of replicates [29]. Theoretical prediction of the
error covariance matrix is also possible for simulated data and for
certain experimental data sets in which the error sources are well
characterized. This strategy was employed for the simulated data
sets used in this work.
ond-order data with a minimum number of replicates per sample. (A) and (B) color
r ciprofloxacin determination. (C) Resulting pooled error covariance matrix for the
iation are considered as a pooling subset. (D) Error correlation matrix.
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To analyze the error structure of the experimental data, the
error sources were determined using an alternative pooling
strategy (Fig. 1). The latter was designed considering two limiting
factors: (1) the small number of replicates, and (2) the significant
difference in spectral intensity from sample to sample, which
limits the possibility of building pools from different subsets of
samples. In response to these limitations, a region was selected
from a given data matrix of the same pool (pooling region in
Fig. 1), where the spectral variation from sample to sample was not
significant.

The procedure basically consists in two steps: an error covar-
iance matrix is first built from the spectra extracted for a certain
time using both replicates. This step is repeated for each of the
spectra belonging to the pooling region, and can be summarized
by the following expression:

( )( )∑Σ = ̅ ̅
( )=

x x x-x -
26

2
j

n 1

N

nj j nj j
T

where Σ2
j is a covariance matrix calculated from the spectral re-

plicates at time j, xnj is the spectrum for replicate n and time j, and
x̅j the mean spectrum calculated for both replicates at time j. As
these latter matrices are obtained using a minimum number of
replicates, they are extremely noisy. To sort out this difficulty, a
second step is added, where a covariance matrix is built by pooling
the covariance matrices obtained in the previous step. The ex-
pression to calculate this matrix is:

Σ Σ Σ Σ= ( + +… ) ( )J / 27j r
2

pools
2

1
2

2
2

where Σ2
pools is the pooled covariance matrix for the sth sample

and Jr is the number of time points included in the pooling region
(see Fig. 1).

Eq. (27) provides a model of the error structure with con-
siderably smaller noise, and is a valid resource as a first stage to
infer about the error structure along the spectral mode of this
particular data set. However, it is important to remark that this is
not a general strategy to model an error covariance matrix, be-
cause it depends on the similarity of spectra at different times,
which is a condition that may not be fulfilled in other kinds of
higher-order data sets.

The inspection of the error covariance matrix obtained by the
methodology previously described (Fig. 1) constitutes a first visual
evidence that spectral proportional noise along the spectral mode
is the main error source affecting the system. At the same time, the
correlation matrix shows that there is a low correlation along the
spectral mode.

To rationalize this observation, the mean signal intensity in the
pooling region was plotted against the standard deviation of that
Fig. 2. Signal standard deviation against average signal intensity, calculated for the po
concentration for the quantification of each analyte. (A) Ciprofloxacin 200 mg L�1. (B) O
fluorescence units (AFU). SD: Standard Deviation.
signal at each spectral sensor. Fig. 2 confirms the previous suspi-
cion, since the observed trend is the expected one for proportional
noise: as the intensity increases, the standard deviation of the
signal increases. Although the results are only shown for one ca-
libration concentration (200 mg L�1), the trend is the same for the
remaining concentration values.

Once the main error source is identified, the final step is to
build an extended covariance matrix. As the error structure is
mainly heteroscedastic, this matrix will have non-zero elements
only along its diagonal. In the event that correlation is present, the
error covariance matrix will incorporate non-zero off-diagonal
elements. However, this would require a further analysis con-
cerning a possible error structure along the time direction. To
perform this analysis in this particular data set in a reliable way, a
larger number of replicates would be necessary. The reason is that
the number of sensors showing a similar temporal profile is not
large enough to apply the described pooling strategy for the re-
maining data mode. In any case, the results presented in Section
4.4. (Fig. 5), suggest that if an extra correlation exists along the
temporal profiles, its contribution to the final prediction error is
not significant.

To calculate the scaling factor to adapt the intensity of the
signals to the intensity of the noise, a weighted linear regression of
the diagonal of Σ2

pools against the spectra of the corresponding
sample was performed. The weights were determined as the
standard deviation calculated considering the variation of each
sensor in the time direction.

4.2. Simulated data

As shown in previous works, a reasonable strategy to validate
an expression derived from the uncertainty propagation approach
is to contrast its prediction with the uncertainty obtained by
iterative noise addition simulations [10]. If the equation yields the
expected result, the points representing test samples predicted
under different calibrations and variable conditions of noise ad-
dition will lie near the ideal equality line.

Figs. 3 and 4 show a comparison between uncertainty esti-
mated by Eq. (17) (first column) and (19) (second column) and the
standard deviation obtained by iterative noise addition simula-
tions. This comparison was performed for different data orders
using the pertinent algorithm, namely second-order U-PLS/RML (A
and B), third-order U-PLS/RML (C and D), and fourth-order U-PLS/
RML (E and F). By inspection of the plots in these figures, it is
apparent that when the specific error structure affecting the sys-
tem is included in the equation used to predict the uncertainty
through the error covariance matrix [Eq. (17)], the results nearly
perfectly match those obtained by noise addition simulations.
oling region (see Fig. 1) using the experimental calibration matrices at a specific
floxacin 200 mg L�1. (C) Norfloxacin 200 mg L�1. The values are given in arbitrary



Fig. 3. Plots of calculated uncertainties in predicted concentrations, as a function of noise addition results. The different panels show the results of pink noise addition results
over simulated systems in: second-order U-PLS/RML (A and B), third-order U-PLS/RML (C and D), fourth-order U-PLS/RML (E and F). In all plots, the symbols identify the
following cases: blue circles, noise only in calibration concentrations, green down triangles, noise only in calibration signals, red up triangles, noise only in test sample
signals, and black squares, noise in all concentrations and signals. The thin solid line indicates a perfect correlation. All axes are in logarithmic scale. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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However, when an iid structure is assumed, and the variance is
estimated from residuals as a unique number, a significant de-
viation is observed, showing that Eq. (18) is not optimal when
trying to estimate uncertainty in the presence of non iid error
structures.

4.3. Experimental data

Since in a real experimental data set it is impossible to repeat
many calibrations to obtain a reference value of uncertainty, other
statistical resources should be applied to compare and contrast the
values predicted by the proposed expressions [10]. An alternative
is the root mean square error of prediction calculated for a set of
test samples (RMSEPtest). Another possibility is to calculate the
standard deviation of a t value (st) [12]. As the estimation of the
prediction error improves, this value should approach 1, and the
mean standard deviation calculated over all the test samples
(MSDtest) should resemble the RMSEPtest value.

From the bar plot in Fig. 5A, it is evident that RMSEPtest is closer
to the MSDtest estimated under the assumption of a proportional
error structure. The same trend is observed when the comparison
is made through the st value, which gets closer to 1 when a
proportional noise structure is considered along the spectral mode
(Fig. 5B). These results confirm once again the importance of
having an approximate idea of the error sources that are affecting
the system under study, to get to a reliable estimate of the pre-
diction uncertainty.
5. Conclusions

The presently discussed trends clearly show the importance of
drawing attention to the different contributions affecting the error
structure of the data under analysis to estimate reliable un-
certainty values. It is important to note that the proposed ap-
proach allows one to estimate prediction uncertainties for differ-
ent error sources, without depending on the RMSEP value, which
is not sample specific. The estimator is also useful to analyze the
influence of specific error sources. Further work is required to
develop of general strategies to elucidate error sources when the
number of replicates is low or when there are no replicates, as well
as the to extend the non-iid paradigm to other multi-way algo-
rithms beyond U-PLS/RML.



Fig. 4. Plots of calculated uncertainties in predicted concentrations, as a function of noise addition results. The different panels show the results of proportional noise
addition results over simulated systems in: second-order U-PLS/RML (A and B), third-order U-PLS/RML (C and D), fourth-order U-PLS/RML (E and F). In all plots, the symbols
identify the following cases: blue circles, noise only in calibration concentrations, green down triangles, noise only in calibration signals, red up triangles, noise only in test
sample signals, and black squares, noise in all concentrations and signals. The thin solid line indicates perfect correlation. All axes are in logarithmic scale. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Bar plots summarizing the results obtained for the experimental data set. (A) Comparison between MSD and RMSEP. Red bars: MSD calculated assuming iid noise
structure, green bars: MSD calculated assuming proportional noise in the spectral mode, blue bars: RMSEPtest. (B) Standard deviation of a t value calculated as =

^ –

^
t

y y

sy

ref .
Yellow bars: st calculated for ciprofloxacin determination in test samples, cyan bars: st calculated for ofloxacin determination in test samples, green bars: st calculated for
norfloxacin determination in test samples. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Table A.1
Matrices representing the space spanned by the interferents in multi-way
calibration.

Data order Zinta

2 [c1⊗IJ, IK⊗b1, c2⊗IJ, IK⊗b2, …]
3 [d1⊗c1⊗IJ, d1⊗IK⊗b1, IL⊗c1⊗b1, d2⊗c2⊗IJ, d2⊗IK⊗b2, IL⊗c2⊗b2,

…]
4 [e1⊗d1⊗c1⊗IJ, e1⊗d1⊗IK⊗b1, e1⊗IL⊗c1⊗b1, IM⊗d1⊗c1⊗b1,

e2⊗d2⊗c2⊗IJ, e2⊗d2⊗IK⊗b2, e2⊗IL⊗c2⊗b2, IM⊗d2⊗c2⊗b2,…]
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Appendix A.

If C is a generic m�n matrix and B is a p� q matrix, then the
Kronecker product C⊗B is the mp�nq matrix:

⎡
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If only the first column of C (c) and B (b) are taken, the resulting
Kronecker product between these vectors can be expressed as:
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For the derivation of Eq. (4), we consider the signal for two
interferents modeled by RML (cint,1⊗bint,1þcint,2⊗bint,2), having
2 sensors in one mode (represented by matrix B, with columns
bint,1 and bint,2) and 3 sensors in the other one (represented by
matrix C, with columns cint,1 and cint,2):
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where the first subscript represents the sensor and the second one
the interferent index. The subscript ‘int’ has been dropped in the
right-hand side for simplicity. Differentiation leads to:

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥⎥

( ⊗ + ⊗ )

=

+ + +
+ + +
+ + +
+ + +
+ + +
+ + + ( )

d

c db dc b c db dc b

c db dc b c db dc b

c db dc b c db dc b

c db dc b c db dc b

c db dc b c db dc b

c db dc b c db dc b

c b c b

A4

int,1 int,1 int,2 int,2

11 11 11 11 12 12 12 12

11 21 11 11 12 22 12 22

211 11 21 11 22 12 22 12

21 21 21 11 22 22 22 22

31 11 31 11 32 12 32 12

31 21 31 11 32 22 32 22

The latter equation can be written as the product of a matrix
and a vector of differentials:
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where I2 and I3 are 2�2 and 3�3 unit matrices respectively.
General Zint matrices obtained from RML data processing are

provided in Table A.1.
Appendix B. Supporting information

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.chemolab.2016.09.
001.
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