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a b s t r a c t

In this paper we study lift-and-project polyhedral operators defined by Lovász and
Schrijver and Balas, Ceria and Cornuéjols on the clique relaxation of the stable set polytope
of webs. We compute the disjunctive rank of all webs and consequently of antiwebs. We
also obtain the disjunctive rank of the antiweb constraints for which the complexity of the
separation problem is still unknown. Finally, we use our results to provide bounds of the
disjunctive rank of larger classes of graphs as joined a-perfect graphs, where near-bipartite
graphs belong to.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In this work we study the behavior of lift-and-project operators over the clique relaxation of the stable set polytope of
webs and use the results for finding lower bounds for the disjunctive rank of larger classes of graphs as near-bipartite and
quasi-line graphs.

Webs have circular symmetry of their maximum cliques and stable sets. They belong to the classes of quasi-line graphs
and claw-free graphs and are, besides line graphs, relevant for describing the stable set polytope of larger graph classes
[12,13,18].

The lift-and-project operators we analyze are the disjunctive operator defined by Balas, Ceria and Cornuéjols in [2] and
the N-operator defined by Lovász and Schrijver in [16]. It is known that after applying successively these operators to a
convex set in [0, 1]n they arrive to the convex hull of integer solutions in this set in at most n iterations [2,16]. These results
allow the definition of the lift-and-project rank as theminimum number of iterations needed in order to get this convex hull.

These ranks can be seen as a measure of how far a polyhedron is from being integral. One of the main goals of this
contribution is to find this measure in the family of webs and their complements. In addition, it is interesting to compute
bounds for the minimum number of iterations needed for a lift-and-project operator in order to obtain a certain type of
inequality to be valid for the corresponding relaxation. This number, called the lift-and-project rank of the inequality can be
used for bounding the lift-and-project rank of other families of polyhedra.

In this sense, we compute the disjunctive rank of all webs (see Lemma 3.2 and Theorem 3.4). These results also give
the disjunctive ranks of their complements, the antiwebs. Later we focus on determining the N-rank of the inequalities
describing the stable set polytope of a particular family of webs (see Theorem 4.5). Finally, in Theorem 5.2 we compute the
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disjunctive rank of antiweb inequalities and using it, we find bounds for the disjunctive rank of more general families of
graphs such as a-perfect and joined a-perfect graphs.

A preliminary version of some of the results presented in this paper appeared without proofs in [4–6].

2. Preliminaries

Given G = (V , E) and v ∈ V , the neighborhood of v is Γ (v) = {u ∈ V : uv ∈ E}. The graph obtained by deletion of a set
of nodes U ⊆ V is denoted by G − U and corresponds to the subgraph induced by V \ U . When U = {u} we simply write
G − u.

A stable set inG is a subset of nodesmutually nonadjacent inG andα(G)denotes the cardinality of a stable set ofmaximum
cardinality. A clique is a subset of nodes inducing a complete graph in G. We denote by ω(G) the clique number of G, the size
of a maximum clique in the graph. In addition, the chromatic number of G is the minimum number of colors needed in order
to assign different colors to adjacent nodes in G.

A graph is a hole if it is a chordless cycle and an antihole if it is the complement of a hole. If the number of nodes is odd,
it is called an odd hole or odd antihole, respectively.

The stable set polytope ofG, STAB(G), is the convex hull of the incidence vectors of all stable sets inG. A canonical relaxation
of STAB(G) called the fractional stable set polytope is defined as

FRAC(G) = {x ∈ RV
+

: xi + xj ≤ 1, for every ij ∈ E}.

A stronger relaxation of the stable set polytope is the clique relaxation given by

QSTAB(G) = {x ∈ RV
+

: x(Q ) ≤ 1, for every Q clique in G}

where x(U) =


i∈U xi for any U ⊆ V . For a clique Q , the inequality x(Q ) ≤ 1 is called a clique constraint.
Clearly, STAB(G) ⊆ QSTAB(G) for every graph G but equality holds for perfect graphs only [9]. A graph is perfect if all its

node induced subgraphs have the same chromatic and clique numbers [3]. A graph is called minimally imperfect if it is not
perfect but all its proper node induced subgraphs are perfect. It is known that the only minimally imperfect graphs are the
odd holes and their complements [8].

Webs are a natural generalization of the minimally imperfect graphs. More precisely, if n and k are integer numbers with
n ≥ 2(k + 1), a web W k

n is a graph with node set {1, . . . , n} and where ij is an edge if |i − j| ≤ k considering {1, . . . , n} as
the algebraic group with addition modulo n.

If G = (V , E) is a minimally imperfect graph then [19,20]

STAB(G) = QSTAB(G) ∩ {x : x(V ) ≤ α(G)}

where x(V ) ≤ α(G) is the rank constraint of G.
For all imperfect graphs G, STAB(G) ≠ QSTAB(G) and it is natural to consider the difference between these two polytopes

in order to determine how far an imperfect graph is from being perfect. In this context, lift-and-project operators have been
widely used in polyhedral combinatorics (see, for instance, [1,2,7,15]).

Lift-and-project operators.
Starting from a polyhedron K ⊆ [0, 1]n, these methods attempt to give a description of the convex hull of integer points

in it, K∗
= conv(K ∩ {0, 1}n) through a finite number of lift-and-project steps.

The disjunctive operator is a lift-and-project method which can be characterized as follows [2]: if j ∈ {1, . . . , n},

Pj(K) = conv(K ∩ {x ∈ Rn
+

: xj ∈ {0, 1}}). (2.1)

The authors prove that this operator can be applied iteratively over a set F ⊆ {1, . . . , n} and using (2.1), it achievesK∗ in
atmost n iterations. Then, the disjunctive rank ofK , rd(K), is defined as the smallest cardinality of F for which PF (K) = K∗.

Lovász and Schrijver had previously defined another lift-and-project operator in [16], called the N-operator. If K ⊆

[0, 1]n, cone(K) is the polyhedral cone obtained from K via homogenization on the new variable x0 (see [23] for further
details). Let

M(cone(K)) = {Y ∈ R(n+1)×(n+1)
: Y symmetric, Ye0 = diag(Y ),

Yei ∈ cone(K), Y (e0 − ei) ∈ cone(K), for i = 1, . . . , n},

where ei is the ith unit vector in Rn+1.
Projecting this set back onto Rn+1, it results in

N(cone(K)) = {Ye0 : Y ∈ M(cone(K))}.

For simplicity, when we say that we are applying the N-operator to some convex set K ⊆ [0, 1]n, we mean that we
consider the cone corresponding to this convex set, apply the lift-and-project procedure, then take the convex subset of
[0, 1]n defined by the intersection of this new cone with x0 = 1. N(K) denotes this final subset of [0, 1]n and similarly the
relaxations of K∗ obtained after applying this operators in succession.
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If N r(K) is the rth iteration of N over K , in [16] it is proved that Nn(K) = K∗. As for the disjunctive operator, this
property allows the definition of r(K), the N-rank of K , as the smallest integer r for which N r(K) = K∗.

It is not hard to see that, for every j = 1, . . . , n, these relaxations satisfy

K∗
⊆ N(K) ⊆

n
j=1

Pj(K) ⊆ Pj(K) ⊆ K

and then

r(K) ≤ rd(K). (2.2)

In addition, if L stands for any of the lift-and-project operators considered herein, the L-rank of a constraint ax ≤ b of K∗

is the minimum number of steps r needed to obtain ax ≤ b as a valid inequality for Lr(K).
Clearly, if ax ≤ b is a facet constraint of K∗, its L-rank is at most the L-rank of the relaxation.
In the following sections we apply the above defined lift-and-project operators over the clique relaxation of the stable

set polytope in a graph G, i.e., K = QSTAB(G) and K∗
= STAB(G). Then, in order to simplify the notation, we write Pj(G)

andNk(G) for Pj(QSTAB(G)) andNk(QSTAB(G)), respectively. Similarly, rd(G) and r(G) denote their corresponding ranks and
we refer to them as the disjunctive rank and the N-rank of G.

Due to the relationship between the corresponding relaxations we have that, in general,

rd(G) ≤ rd(FRAC(G)) and r(G) ≤ r(FRAC(G)). (2.3)

Moreover, using the results in [16], the N-ranks of QSTAB(G) and FRAC(G) are related through the clique number of G.
Actually,

r(FRAC(G)) ≤ r(G) + ω(G) − 2. (2.4)

In [17] it is shown that the disjunctive rank of a graph G, namely rd(G), can be easily described by taking its combinatorial
structure into account.

Theorem 2.5 ([17]). Given a graph G, the disjunctive rank of a graph G coincides with the minimum number of nodes that must
be deleted from G in order to obtain a perfect graph.

In [1] it is proved that:

Theorem 2.6 ([1]). The disjunctive rank of a graph coincides with the disjunctive rank of its complement.

3. Lift-and-project operators on the clique relaxation of the stable set polytope of webs

In this section we present our main results on the behavior of the disjunctive operator over all webs and compare it with
the N-operator over a particular family of webs.

Observe that for an integer number k ≥ 2,W 1
2k+1 is an odd hole andW k−1

2k+1 an odd antihole.
If the webW k′

n′ is a subgraph ofW k
n , it is called a subweb and we writeW k′

n′ ⊆ W k
n . A subweb is proper when it is a proper

subgraph, i.e., when n′ < n. In [22] Trotter presented necessary and sufficient conditions for a graph to be a subweb of a
given web.

The next result provides a characterization of subwebs.

Lemma 3.1 ([22]). Given k and n ≥ 2(k + 1), the web W k′
n′ is a subweb of W k

n if and only if these numbers satisfy

n
k′

k
≤ n′

≤
k′

+ 1
k + 1

n.

Nowwe focus on the disjunctive rank of webs. There are particular webs whose disjunctive rank is known. For instance,
from Theorem 2.5, rd(W 1

2p) = 0 sinceW 1
2p is a perfect graph and rd(W 1

2p+1) = 1 sinceW 1
2p+1 is a minimally imperfect graph.

In what follows we study websW k
n with k ≥ 2 and n ≥ 2(k + 1).

Lemma 3.2. If k ≥ 2 and 0 ≤ s ≤ k then rd(W k
2(k+1)+s) = s.

Proof. Let G be the graph that results after deleting s consecutive nodes of W k
2(k+1)+s. Clearly Ḡ, the complement of G,

is a bipartite graph and then it is perfect. Applying Theorem 2.5 and the fact that G results a perfect graph we obtain
rd(W k

2(k+1)+s) ≤ s.
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Now, in [11] it is proved that if 0 ≤ s ≤ k then

r(FRAC(W k
2(k+1)+s)) = k + s − 1.

Using (2.3), (2.4) and the fact that ω(W k
n ) = k + 1, it follows that

rd(W k
2(k+1)+s) ≥ r(FRAC(W k

2(k+1)+s)) − (k − 1).

Therefore rd(W k
2(k+1)+s) ≥ s, and the proof is complete. �

The following result provides a general upper bound for the disjunctive rank of webs and, as a consequence, for their
N-rank.

Lemma 3.3. For every web W k
n with k ≥ 1 and n ≥ 2(k + 1), we have that rd(W k

n ) ≤ k.

Proof. For every i ∈ {1, . . . , n}, let Qi = {i, . . . , i + k} denote the maximum clique starting at node i in the webW k
n , where

additions are taken modulo n.
Let us consider the matrix Q whose rows are the incidence vectors of Qi for all i ∈ {1, . . . , n}. If we delete the columns of

Q indexed in the set {j, . . . , j + k − 1}, for any j ∈ {1, . . . , n}, the resulting matrix has the consecutive ones property. Then,
the polyhedron

{x ∈ Rn
+

: x(Qi) ≤ 1 for i = 1, . . . , n} ∩ {x : xi = 0 for i = j, . . . , j + k − 1}

is integral for every j ∈ {1, . . . , n}. Since

QSTAB(W k
n ) ⊆ {x ∈ Rn

+
: x(Qi) ≤ 1 for i = 1, . . . , n},

it follows that

QSTAB(W k
n ) ∩ {x : xi = 0 for i = j, . . . , j + k − 1}

coincides with

STAB(W k
n ) ∩ {x : xi = 0 for i = j, . . . , j + k − 1}.

If Gj = W k
n \ {j, . . . , j + k − 1} we have that QSTAB(Gj) = STAB(Gj) and then Gj is a perfect graph, for any j ∈ {1, . . . , n}.

Then, after deleting k consecutive nodes inW k
n we arrive to a perfect graph. Applying Theorem 2.5 the result follows. �

In addition, the bound in Lemma 3.3 is actually achieved by all websW k
n with at least 3k + 2 nodes.

Theorem 3.4. If k ≥ 2 and n ≥ 3k + 2 then rd(W k
n ) = k.

Proof. Assume that n = sk + r with r ∈ {0, . . . , k − 1} if s ≥ 4 and r ∈ {3, . . . , k − 1} if s = 3. Let Ci = {i, . . . , i + k − 1}
for every i ∈ {1, . . . , n}, where additions are taken modulo n.

If we show that, for every F ⊆ {1, . . . , n} with |F | = k − 1, W k
n \ F contains a minimally imperfect graph then, due to

Theorem 2.5, we obtain rd(W k
n ) ≥ k. This fact together with Lemma 3.3 prove the theorem.

Therefore, the proof of the theorem relies on the following claim.

Claim 1. Let F ⊆ {1, . . . , n} with |F | = k − 1 and F̄ the complement of F . Then, there is an odd set D ⊂ F̄ that induces an odd
hole in W k

n \ F .

Proof of the claim. Let us define Dj = {j, j+ k, j+ 2k, . . . , j+ (s− 1)k} for each j ∈ {1, . . . , n} where addition is modulo n.
Observe that Dj ∪ {j + sk} = Dj for each j ∈ {1, . . . , n} if and only if r = 0 (since in this case j + sk = j(mod n)).
Let us define Lj = Dj ∪ {j + sk} for j ∈ {1, . . . , r}.
It is clear that the set {1, . . . , n} can be partitioned into the following k sets: Lj for j ∈ {1, . . . , r} and Dj for j ∈

{r + 1, . . . , k}.
According to the Pigeonhole Principle there is i ∈ {1, . . . , k} such that either Li ∩ F = ∅ if i ∈ {1, . . . , r} or Di ∩ F = ∅ if

i ∈ {r + 1, . . . , k}.
Then, in what follows we study the only two possibilities; i.e., the case when Li ∩ F = ∅ for some i ∈ {1, . . . , n} and the

case when Li ∩ F ≠ ∅ for all i ∈ {1, . . . , n}.

(a) Let us first consider the case when Li ∩ F = ∅ for some i ∈ {1, . . . , n}. This case includes either r = 0 and s ≥ 4 or r ≠ 0
and s ≥ 3, thus |Di| ≥ 4.
Then if |Li| is odd the set D = Li ⊂ F̄ induces an odd hole in W k

n and the claim follows.
Assume that |Li| is even.
If there is t ∈ Di such that |Ct ∩ F | = k − 1 then F̄ = ({1, . . . , n} \ Ct) ∪ {t}. In this case there are many ways
to find a subset D of nodes inducing an odd hole in W k

n \ F . For instance, if t ∉ {i + (s − 2)k, i + (s − 1)k} then
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D = (Di\{t+2k})∪{t+2k−1, t+2k+1}. Otherwise if t ∈ {i+(s−2)k, i+(s−1)k} thenD = (Di\{t−k})∪{t−1, t−k−1}.
Hence, the claim follows.
Now, consider |Ct ∩ F | < k − 1 for all t ∈ Di. Let i + l ∈ Ci ∩ F̄ be such that {i + l + 1, . . . , i + k − 1} ⊂ F , i.e., i + l is
the farthest node from node i that also belongs to F̄ ∩ Ci. Observe that l ∈ {1, . . . , k − 1}.
If |Ci+l+1 ∩ F | < k−1 then there ism ∈ {1, . . . , l} such that i+k+m ∈ F̄ . Hence the setD = (Di\{i+k})∪{i+l, i+k+m}

induces an odd hole inW k
n \ F .

Otherwise, if |Ci+l+1 ∩ F | = k− 1 then the set D = (Di \ {i+ 2k})∪ {i+ 2k− 1, i+ 2k+ 1} induces the odd hole needed
to prove the claim.

(b) Assume that Li ∩ F ≠ ∅ for all i ∈ {1, . . . , n}. Then r ≠ 0. W.l.o.g assume that D1 ∩ F = ∅ and {1 + sk} ∈ F . Then, it
holds that Li ∩ F ≠ ∅ for i ∈ {2, . . . , r}. Again by the Pigeonhole Principle there must be j ∈ {r + 1, . . . , k} such that
Dj ∩ F = ∅ and in this case j + sk ∈ F . Observe that j + sk = j − r mod n and 1 < j − r < r . Thus j + sk ∈ C1 and
|1 − (j + (s − 1)k)| < k.
Let D′

= {1} ∪ Dj. If |D′
| is odd then we can consider D = D′ and the claim follows.

On the other hand, if |D′
| is even, since {1+ sk, j+ sk} ∈ F , then |Cj ∩ F | ≤ k−3. Therefore there must bem ∈ {1, . . . , k}

such that j + m ∈ F̄ ∩ C1+k. Hence we can define D = {1, j + m, 1 + 2k} ∪ (Dj \ {j + k}) and the proof is complete. �

Remark 3.5. In [5] we proved that the N-rank of the web W k
s(k+1)+k is also k. For this purpose, we showed the existence of

a point in Nk−1(W k
s(k+1)+k) violating the rank inequality, valid for STAB(W k

s(k+1)+k).
This result, together with the previous theorem exhibits an infinite family of webs where the two ranks coincide,

i.e., rd(W k
s(k+1)+k) = r(W k

s(k+1)+k), for s, k ≥ 2.

Next, we see thatmost of webs have amember of the above family as a subweb thus giving a lower bound for theN-rank.
More precisely,

Corollary 3.6. Let n = s(k + 1) + r with k ≥ 2, s ≥ 3 and 0 ≤ r ≤ k − 1. Then r(W k
n ) ≥ k − t where t =


k(1+r)
r+s


.

Proof. Firstly observe that if t =


k(1+r)
r+s


then t ≤ k − 1.

After Trotter’s formula, it is easy to prove that if k′
= k − t and n′

= (s − 1)(k′
+ 1) + k′ then W k′

n′ is a subweb of W k
n .

According to Remark 3.5 we obtain that r(W k′
n′ ) = k′ and then k − t ≤ r(W k

n ). �

Let us nowmake use of these results in order to determine the rank of the complementary graphs ofwebs, called antiwebs.
For simplicity, we denote by Ak

n the antiweb obtained as the complement ofW k−1
n . Theorems 2.6 and 3.4 allow us to compute

the disjunctive rank of antiwebs.

Corollary 3.7. Let k ≥ 2. If s ∈ {0, . . . , k} then rd(Ak+1
2(k+1)+s) = s and if n ≥ 3k + 2 then rd(Ak+1

n ) = k.

4. Lift-and-project rank of facets of the stable set polytope of webs

Let us consider the rank constraint associatedwith thewebW k
s(k+1)+k, mentioned in Remark 3.5, a particular familywhere

the disjunctive and the N-rank coincide.

Lemma 4.1. If π is the rank constraint associated with W k
s(k+1)+k, i.e.,

π : x(V (W k
s(k+1)+k)) ≤ s,

then r(π) = rd(π) = k.

Proof. In [5] it is proved the existence of a point x̄ ∈ Nk−1(W k
s(k+1)+k) violating the rank constraint. This shows that r(π) ≥ k.

From Theorem 3.4 we have that rd(π) ≤ k. Since r(π) ≤ rd(π) ≤ k, the result follows. �

Dahl in [10] characterizes the facet defining inequalities of STAB(W 2
n ) for n ≥ 6, by introducing 1-interval inequalities.

Let us consider W 2
n , for n ≥ 6. If V = {1, . . . , n} an interval is a subset of consecutive nodes using modulo n arithmetic.

For example, the set {n−2, n−1, n, 1} is an interval. A set T ( V is a 1-interval set if there is a partition of V into a collection
of disjoint intervals I1, J1, . . . , It , Jt where T =

t
j=1 Ij and

Jj = 1 for every j = 1, . . . , t .
Given a 1-interval set T , the 1-interval inequality associated with T is x(T ) ≤ α(T ) where α(T ) is the stability number of

the subgraph ofW 2
n induced by the nodes of T (see [10] for further details).

Theorem 4.2 ([10]). For every n ≥ 6, STAB(W 2
n ) is described by

1. non-negativity constraints,
2. clique constraints,
3. the rank constraint when n is not a multiple of 3,
4. 1-interval inequalities associated with T ( V such that

Ij = 1 mod 3 for j = 1, . . . , t and t ≥ 3 odd.
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Let us first compute the disjunctive rank of the rank constraint associated withW 2
n .

Lemma 4.3. If π is the rank constraint associated with W 2
3s+ℓ for ℓ ∈ {0, 1, 2}, i.e.,

π : x(V (W 2
n )) ≤ s,

then r(π) = rd(π) = ℓ.

Proof. Let us recall that Qi denotes the clique of the k + 1 consecutive nodes in the web starting at node i. Then, consider
the clique constraints x(Q3j+1) ≤ 1 for j = 0, . . . , s − 1. If we sum them up, we obtain

s−1
j=0

x(Q3j+1) =

3s
i=1

xi ≤ s, (4.4)

a valid inequality for QSTAB(W 2
n ).

If ℓ = 0 then π is obtained by a linear combination of the clique constraints, showing that both, the disjunctive and the
N rank, are equal to zero.

Now, if ℓ = 1 the point x =
1
31 ∈ QSTAB(W 2

3s+1) violates the rank inequality π . Therefore any of the ranks is at least one.
On the other hand, (4.4) is valid for QSTAB(W 2

3s+1) ∩ {x : x3s+1 = 0}. Hence rd(π) = 1 and then r(π) = 1.
Finally, if ℓ = 2 the web is W 2

3s+2 and Lemma 4.1 shows that r(π) = rd(π) = 2. �

In addition,

Theorem 4.5. Every 1-interval facet defining inequality for the stable set polytope of W 2
n has disjunctive and N-rank equal to

one.

Proof. Let T = ∪
t
j=1 Ij and |Ij| = 3kj + 1 for some integer kj, j ∈ {1, . . . , t} for t odd. Let πT : x(T ) ≤ α(T ) be the

corresponding 1-interval facet defining inequality for STAB(W 2
n ). Clearly, its rank is at least 1 since this facet is absent in the

original relaxation of STAB(W 2
n ).

If x ∈ QSTAB(W 2
n ) then it satisfies x(Ij) ≤ kj + 1 for each j = 1, . . . , t . In addition,

x(Ij−1 ∪ Ij) ≤ kj−1 + 1 + kj

for every j ∈ {2, . . . , t}.
Therefore, since t is odd, it follows that x ∈ QSTAB(W 2

n ) satisfies


i∈T

xi ≤

t−1
j=1

kj +
t − 1
2

+ kt + x3kt+1. (4.6)

Moreover,

α(T ) =

t
j=1

kj +
t − 1
2

. (4.7)

According to (4.6) and (4.7), if x̄ ∈ QSTAB(W 2
n ) ∩ {x : x3kt+1 = 0} then x̄(T ) ≤ α(T ).

This shows that the 1-interval inequality πT is valid for P3kt+1(W 2
n ) and then rd(πT ) ≤ 1. This completes the proof since

1 ≤ r(πT ) ≤ rd(πT ). �

Observe that, according to Theorem 4.2, all the inequalities describing STAB(W 2
n ) are obtained in at most one step of the

N-operator when n is either 3s or 3s + 1 for some s ≥ 2. Hence we have the following consequence.

Corollary 4.8. For every s ≥ 2, r(W 2
3s) = r(W 2

3s+1) = 1.

Proof. Using Lemma 4.3 and Theorem 4.5 we have that the rank constraint and the 1-interval inequalities are valid for
N(W 2

n ) when n ∈ {3s, 3s + 1}. According to Theorem 4.2, these inequalities together with the inequalities in QSTAB(W 2
n )

are enough to describe STAB(W 2
n ). From the fact that STAB(W 2

n ) ⊆ N(W 2
n ) ⊆ QSTAB(W 2

n ) and convexity arguments, the
corollary follows. �

Although Lemma 4.3 and Theorem 4.5 prove that the disjunctive rank of all inequalities describing STAB(W 2
n ) is also one

when n ∈ {3s, 3s + 1}, in Theorem 3.4 we obtained that rd(W 2
n ) = 2 if n ≥ 8.

Nevertheless, from Remark 3.5 when k = 2 and the previous corollary, we have:

Corollary 4.9. If n ≥ 8, the disjunctive and the N-ranks of W 2
n coincide if and only if n = 3s + 2 for some s ≥ 2.
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5. Joined a-perfect graphs

Let us recall that Ak
n denotes the complement of the webW k−1

n . The rank constraint of the antiweb Ak
n

x(V (Ak
n)) ≤ k (5.1)

is called an antiweb constraint.
In [22] Trotter shows that the constraint (5.1) defines a facet of STAB(Ak

n) if and only if n and k are relatively prime
numbers. In this case, the antiweb is called prime and the inequality (5.1) is a prime antiweb constraint.

Later, Wagler in [24] proves that STAB(Ak
n) is completely described by non-negativity constraints and prime antiweb

constraints associated with subantiwebs in Ak
n. In addition, the author defines several graph classes where the inequality in

(5.1) plays an important role.
A graph G is a-perfect if STAB(G) is described by non-negativity and prime antiweb constraints only (see [24]). Observe

that perfect graphs and antiwebs are a-perfect graphs.
In this section we exhibit bounds for the disjunctive rank of a-perfect graphs bymeans of the disjunctive rank of antiweb

constraints.
Let us first show the following result.

Theorem 5.2. Let k ≥ 1 and n ≥ 2k. If Ak
n is a prime antiweb and π : x(V (Ak

n)) ≤ k stands for its rank constraint, then

rd(π) = n − ωk,

where ω =
 n

k


is the clique number of Ak

n.

Proof. Let us denote β = n − ωk. Clearly, β ∈ {1, . . . , k − 1} since n and k are relatively prime numbers. Let F =

{ωk + 1, . . . , ωk + β} and consider the k maximal cliques Qi = {i, i + k, . . . , i + (ω − 1)k} for i ∈ {1, . . . , k}. Then,
the set {F ,Q1, . . . ,Qk} defines a partition of V (Ak

n) = {1, . . . , n}. Also, if x ∈ QSTAB(Ak
n) then

x(V (Ak
n)) = x(F) +

k
i=1

x(Qi) ≤ x(F) + k.

It holds that π is a valid inequality for

QSTAB(Ak
n) ∩ {x : xi = 0 for i ∈ F}.

Hence, rd(π) ≤ β .
Now, let T ⊆ V (Ak

n) with |T | = β − 1 and let x̄ ∈ Rn be such that

x̄i =


0 if i ∈ T ,
1
ω

otherwise.

Clearly,

x̄(V (Ak
n)) = (ωk + 1)

1
ω

= k +
1
ω

> k.

This shows that x̄ ∈ PT (Ak
n) violates π and then, rd(π) ≥ β . This completes the proof. �

The theorem above allows us to present a lower bound for the disjunctive rank of a-perfect graphs.

Corollary 5.3. Let G be an a-perfect graph. If Aki
ni is a prime antiweb in G and ωi = ω(Aki

ni) for i ∈ I then

rd(G) ≥ max {ni − ωiki : i ∈ I} . (5.4)

Remark 5.5. Note that in the bound given in Corollary 5.3 we have to consider all the node induced prime antiwebs in the
given graph G. In fact, if Ak′

n′ is a subgraph of Ak
n and ω(Ak′

n′) = ω(Ak
n) then, using Lemma 3.1, it holds that n′

k′ ≤
n
k . Therefore,

n′
− ωk′

= k′


n′

k′
− ω


≤ k′

n
k

− ω


< k
n
k

− ω


= n − ωk.

Thus, rd(Ak′
n′) < rd(x(V (Ak

n)) ≤ k).
However, if the clique numbers do not coincide the same result may not hold. For example, A3

17 is a subantiweb of A4
25,

where rd(x(V (A4
25)) ≤ 4) = 1 and rd(x(V (A3

17)) ≤ 4) = 2.
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In [25],Wagler defines another graph classwhere itsmembers are obtained byusing the complete join operation between
antiwebs.

Given two graphs G1 = (V1, E1) and G2 = (V2, E2), the complete join of G1 and G2, denoted by G1 ∨ G2, is the graph
having node set V1 ∪ V2 and edge set E1 ∪ E2 ∪ {uv : u ∈ V1, v ∈ V2}.

Chvátal, in [9], obtained facets of the stable set polytope of a complete join of graphs from the facets of the stable set
polytopes of the corresponding graphs. More precisely,

Lemma 5.6 ([9]). If πi : aix(V (Gi)) ≤ 1 defines a facet of STAB(Gi) for i = 1, 2 then

π : a1x(V (G1)) + a2x(V (G2)) ≤ 1 (5.7)

defines a facet of STAB(G1 ∨ G2).

The inequality in (5.7) is called joined inequality associated with π1 and π2.
A graph G is joined a-perfect if STAB(G) is described by non-negativity constraints and joined inequalities associated with

prime antiwebs in G, i.e.,

t
i=1

1
α(Ai)

x(V (Ai)) ≤ 1 (5.8)

where Ai = Aki
ni is a prime antiweb in G for i = 1, . . . , t such that A1 ∨ · · · ∨ At ⊆ G.

Hence we have:

Theorem 5.9. Let G = A1 ∨ A2 where Ai = Aki
ni is a prime antiweb for i = 1, 2. Let πi be the rank constraint associated with Ai

for i = 1, 2 and π their joined inequality, i.e.,

π :
1

α(A1)
x(V (A1)) +

1
α(A2)

x(V (A2)) ≤ 1. (5.10)

Then, rd(π) ≥ rd(π1) + rd(π2).

Proof. Let F ⊆ V (G). If |F | < rd(π1) + rd(π2) then |F ∩ V (Ai)| < rd(πi) for some i ∈ {1, 2}. W.l.o.g. assume that
|F ∩ V (A1)| < rd(π1).

Then, there exists

x̄ ∈ QSTAB(A1) ∩ {x ∈ RV (A1) : xi = 0 for i ∈ F ∩ V (A1)}

such that x̄ violates π1, or equivalently, x̄(V (A1)) > α(A1).
Consider x̃ ∈ R|V | defined by

x̃i =


x̄i if i ∈ V (A1)
0 if i ∈ V (A2).

Clearly x̃ ∈ QSTAB(G) and

1
α(A1)

x̃(V (A1)) +
1

α(A2)
x̃(V (A2)) =

1
α(A1)

x̄(V (G)) >
1

α(A1)
α(A1),

that is, x̃ ∈ PF (G) and it violates the inequality π .
Therefore, rd(π) ≥ rd(π1) + rd(π2). �

This result gives a bound for the disjunctive rank of joined a-perfect graphs.

Corollary 5.11. Let G be a joined a-perfect graph and Aki
ni ⊆ G a prime antiweb, for every i ∈ I . If ωi = ω(Aki

ni) for i ∈ I then

rd(G) ≥ max


i∈S

(ni − ωiki) :


i∈S

Aki
ni ⊆ G, for S ⊆ I


. (5.12)

Proof. If π is a nontrivial facet of STAB(G) then, since G is a joined a-perfect graph,

π :


i∈S

1

α(Aki
ni)

x(V (Aki
ni)) ≤ 1

for some S ⊆ I such that


i∈S A
ki
ni ⊆ G.
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From Theorem 5.2, rd(A
ki
ni) = ni − ωiki, for all i ∈ I . Applying Theorem 5.9 it holds that

rd(G) ≥ rd(π) ≥


i∈S

(ni − ωiki)

and then the result follows. �

This last result helps us to compute bounds for the disjunctive rank of larger classes of graphs, such as near-bipartite
graphs and their complements, the quasi-line graphs. A graph G is near-bipartite if the graph obtained after deleting any
node and all its neighbors, is a bipartite graph. If G is near-bipartite, its complement has the property that the neighborhood
of any of its nodes can be partitioned into two cliques. The graphs with this property are called quasi-line graphs.

Using the results due to Shepherd in [21] we have that near-bipartite graphs are joined a-perfect graphs.

Theorem 5.13 ([21]). The only nontrivial facets describing the stable set polytope of a near-bipartite graph are inequalities
associated with join of cliques and prime antiwebs in G.

As a consequence of Theorem 2.6 we can extend the result obtained in Corollary 5.11 to quasi-line graphs.

6. Conclusions

In this paper we have studied the disjunctive rank of graphs also known as imperfection index of graphs in [1] and [14].
In the latter paper the disjunctive rank of (anti)webs was studied showing that there is no fixed value k that can bound the
rank from above. As we can see Theorem 5.2 generalizes this result.

In addition we have exactly determined the disjunctive rank of antiweb inequalities for which the complexity of the
separation problem is still unknown. The importance of the result in Theorem 5.2 is that we have identified the set of indices
wherewe can apply the disjunctive operator for finding an antiweb inequality as a valid inequality for the stable set polytope.

Also, the result in Corollary 5.11 helps us to compute bounds for the disjunctive rank of larger classes of graphs, such as
near-bipartite graphs and their complements, the quasi-line graphs.

Finally it is known that in general, the N-operator is much stronger than the disjunctive operator. However, we give
evidence that they do not differ too much in the family of webs. In fact, we have presented an infinite family of webs where
they coincide, and, when n is large enough, they can differ in at most one unit (see Corollary 3.6).

The importance of this result relies on the fact that computing the disjunctive rank of a graph is easier than the N-rank
and after applying the disjunctive procedure the convex set obtained preserves the combinatorial properties of the problem.
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