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Final state of a perturbed liquid film inside a container under the effect
of solid-liquid molecular forces and gravity
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We investigate theoretically the possible final stationary configurations that can be reached by a laterally
confined uniform liquid film inside a container. The liquid is under the action of gravity, surface tension, and
the molecular interaction with the solid substrate. We study the case when the container is in an upright position
as well as when it is turned upside down. The governing parameters of the problem are the initial thickness
of the film, the size of the recipient that contains the liquid, and a dimensionless number that quantifies the
relative strength of gravity with respect to the molecular interaction. The uniform film is always a possible final
state and depending on the value of the parameters, up to three different additional final states may exist, each
one consisting in a droplet surrounded by a thin film. We derive analytical expressions for the energy of these
possible final configurations and from these we analyze which state is indeed reached. A uniform thin film may
show three different behaviors after a perturbation: The system recovers its initial shape after any perturbation,
the fluid evolves towards a drop (if more than one is possible, it tends toward that with the thinnest precursor
film) for any perturbation, or the system ends as a uniform film or a drop depending on the details of the

perturbation.
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I. INTRODUCTION

The coverage of a solid surface with a liquid and the
eventual emergence of stationary patterns are intensive areas
of theoretical study due to their technological applications as
much as for modeling certain natural processes. For example,
we can mention the industrial coating processes [1,2], the
liquid lining of pulmonary alveoli and ocular surfaces by poly-
meric solutions [3,4], and the pattern formation in dewetting of
liquids [5,6]. The final morphology adopted by the fluid is the
result of the competition among the different forces and effects
involved in each problem such as surface tension, evaporation,
condensation, centrifugation, molecular interaction with the
substrate, gravity, chemical and/or physical inhomogeneities
of the substrate and/or the liquid, and stresses applied on the
surface of the fluid (for reviews see [7-10]). A successful
theoretical approach employed to study the evolution of thin
films is the lubrication or long-wave approximation. The
fundamental assumptions are that the liquid surface has smooth
variations so that the longitudinal scale of the liquid layer is
much larger than its thickness and that the inertial effects are
negligible.

For horizontal substrates, typical stationary thickness pro-
files are a uniform liquid film or a droplet. In Ref. [8], the
authors presented a review of the stability of a film under
different combination of forces, including the case of hanging
films. There are also many papers studying the morphology of
droplets [11-19], however, few of them give analytical solu-
tions that relate the macroscopic and microscopic parameters
of the droplets when a pair of attractive and repulsive molecular
forces is considered. More recently, an analytical expression
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for two-dimensional drops mounted on a thin film under the
action of surface tension and the intermolecular interaction
between the liquid and the substrate was found in [20]. This
work was generalized in [21], incorporating gravity, which in
fact allows us to consider sitting droplets as well as hanging
droplets. In addition, given that gravity is considered in [21],
a different kind of drop, called pancake in the literature, is
included in the analysis. This pancake drop is much wider
than it is high (this structure can be seen as a uniform film
surrounded by a thinner uniform film). In [21] the authors
analyzed the necessary conditions for a drop to exist, although
nothing is said about its stability.

The works mentioned in the previous paragraphs assumed
that the solid substrate is infinite. In a more realistic situation,
an additional factor involved in the selection of the possible
patterns is the size of the recipient that contains the liquid. The
finiteness of the container has two effects. On the one hand, an
unstable configuration may become stable if the wavelength
of the shortest unstable mode does not fit in the container. On
the other hand, the volume of the liquid will also be finite. This
point was addressed in Refs. [22-25] for the two-dimensional
(2D) case and more recently for the three-dimensional case
in Ref. [26]. Here we analyze theoretically the possible final
2D state of an initially uniform liquid film inside a container
with finite width after perturbation. We consider the effects of
surface tension, intermolecular interaction between the liquid
and the bottom of the recipient, and gravity, when the container
is in an upright position and the liquid is over the substrate as
well as when the container is turned upside down and the liquid
is below the substrate. The results from [21] allow us to do
this work without heavy numerical calculations and to obtain
some analytical results.

This article is organized as follows. In Sec. II the problem
is stated. We show how many final configurations are possible,
depending on the governing parameters of the problem in
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Sec. III. Section IV is devoted to the derivation of the energy
of a liquid layer and of a droplet inside a container. In Sec. V
we show how to determine which is indeed the chosen final
configuration between the possible final states. In Sec. VI we
discuss our results and conclusions are given. Since this article
makes intensive use of the results of [21], some of them are
listed in the Appendix.

II. PROBLEM STATEMENT

Let us consider an initially uniform film of fluid within a
horizontal vessel. The aim of the work is to predict analytically
what the final stable distribution of the fluid will be after the
film is perturbed. The thickness of the fluid is h= ﬁ()%,f),
where the dimensional coordinate X runs along the bottom of
the container and f is the time. The fluid is under the action
of molecular interaction with the substrate, by means of a
disjoining-conjoining potential [27], and gravity.

In order to simplify the analysis and be able to use previous
results, it is convenient to employ the dimensionless variables
h, x, and ¢ that were defined in Ref. [21],

h=h/hy, x==%/xo, t=10/ty, u=ity/xo. (1)

The scales are hg, which is the thickness for which the
disjoining-conjoining pressure vanishes, xo = (yho/«)'/?, and
to = 3uy/hok?. Here y is the surface tension, u is the
viscosity of the fluid, and the constant x quantifies the strength
of the conjoining-disjoining pressure and is proportional to the
Hamaker constant (interested readers can find the relationship
between « and the Hamaker constant in the Appendix of
Ref. [20]).

Figure 1 shows a sketch of the problem. The dimensionless
half-width of the container is £, the initial thickness is H, and
in order to keep the problem simple we assume that the contact
angle between the fluid and the vertical walls of the recipient
ism/2.

Within the framework of the lubrication approximation, the
evolution of the thickness profile is described by the following
dimensionless equation [21]:
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The first term in square brackets represents the action of surface
tension. The second one is the disjoining-conjoining pressure
that takes into account the molecular forces of the substrate on
the liquid [5,28]. Among the different approximations found
in the literature, we choose a two-term approximation for
the disjoining-conjoining pressure that is frequently employed
to represent the action of two antagonistic molecular forces
and also to model partial wetting conditions, which is our
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FIG. 1. An amount of fluid with an initially uniform thickness H
inside a rectangular recipient with width 2¢. The system may remain
in the initial configuration or evolve towards a final state with the
shape of a drop with precursor film /4 ;.
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interest here. The theoretical foundation of each term has
been discussed elsewhere [29-31]. In particular, the exponents
(3 and 2) take into account the effect of London—van der
Waals molecular and ionic-electrostatic interactions. It has
been successfully applied to model different partial wetting
phenomena, such as the analysis of hysteretic effects in droplet
motion [32], the formation of dewetting patterns [5], the
growth of contact line instabilities [28], and flow at nanopores
[33]. The last term is the gravity term, in which d is a dimen-
sionless number that measures the strength of gravity relative
to the conjoining-disjoining pressure, which is defined as

d = pgho/k, (3)

where p is the density and g is the acceleration of gravity. If
the container is in an upright position we have d > 0; when
the container is turned upside down we have d < 0. In what
follows we will employ d = 0.02, except in cases specifically
indicated otherwise. Despite this value being high by a factor
of 1000 for terrestrial gravity and simple liquids such as water
on silica at room temperature, it allows us to speed up the
simulations without affecting the generality of the results. The
use of smaller values of d only introduces slight quantitative
changes with no qualitative modifications. It is important to
have in mind that the stationary solutions for Eq. (2) that
describe a drop surrounded by a uniform film that is laterally
unconfined can be found in Ref. [21].

Witelski and co-workers largely studied the evolution of
thin films in infinite domains and found that nonsteady con-
figurations evolve to a single droplet surrounded by a thin film
[14,17]. Based on their results, we assume that if a liquid film
with uniform thickness H inside the container is perturbed,
there are only two possible ways in which the system may
evolve: (a) The system returns to the initial configuration and
remains at rest with 2 = H forever or (b) after a transient
period the liquid finally adopts the shape of a single droplet
surrounded by a thin film with thickness iy (with hy < H).
In case (b), if the width of the drop is sufficiently smaller than
2¢, or equivalently h(£) = h(—£) ~ h, then the shape of the
droplet is well described by an implicit expression x = x(h)
giveninEq. (A3). Asshownin Ref. [21], the thickness & s of the
precursor film is bounded and verifies 4 fmin < Ay < K fmax-
The analytical expressions for & ¢ min and £ £ max are reproduced
in Egs. (A4) and (AS), respectively [21].

For given values of £ and H the possible drop is charac-
terized by the thickness of its precursor film /. From the
conservation of mass the value of / ; must satisfy

1
H = — 4
hf + 2561, @
where
¢
a= / (h — hyp)dx ®))
—¢

is the area of the drop above /. Once again, assuming that
h(£) = h(—£) ~ hy, the area a can be calculated as

a= / T - h)dx, (6)

whose analytical expression is reproduced in the Appendix. A
noticeable result is that for a given value of d, there is a one-to-
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one relationship between a and & ¢, as shown in Eq. (A7). Itis
also convenient to have in mind that for Ay — hfmax, a — 0
and then H — 5 £max [21].

III. POSSIBLE FINAL STATES

In this section the possible final states will be identified
based solely on the ability of the system to satisfy the mass
conservation condition (4), without any reference to the values
of energy (this will be the subject of the next section). Since
a is only a function of Ay and d [21], for fixed values of H,
¢, and d Eq. (4) gives the allowed value or values for hy. A
stationary solution of Eq. (2) describing a drop is completely
characterized by the values of d and A (see the Appendix).
Then, for given values of H, d, and ¢ there is a possible single-
drop stationary solution for each real value of %  that satisfies
the mass conservation (4). On the contrary, if Eq. (4) does not
provide areal value of 4 ; a drop cannot be a final state. Figure 2
shows the mass conservation presented in Eq. (4) ford = 0.02
and different values of £. Here we can determine the existence
and number of possible drop solutions for any value of H by
counting the number of times the line H = H = const crosses
a curve for a given £.

It can be observed that for any ¢ there is an absolute
minimum for A, which we call H,,, such thatif H < H,, there
is no possible drop and only the uniform film with thickness H
is possible. For example, for £ = 115 the absolute minimum
is H,, =1.41 and for £ =15, H, = 1.56. Notice that for
H > H,, and depending on ¢, there are up to three different
final stages, all of them consisting in a droplet surrounded by
a thin film.
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1.7 1
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1.5 , |
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/ /=115
/

14 1 1 1 1 1 1 1
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h

f

FIG. 2. (Color online) Thickness H of the initial uniform film
vs the thickness & of the surrounding film of the possible drop for
d = 0.02. Thin lines correspond to equally spaced values of ¢ from
15 to 115. Thick lines correspond to £ = ¢; = 30.132 and ¢ = ¢, =
39.427. The dashed line is the locus of the critical points of the curves,
whose ordinates are H; for the minimum and H, for the maximum.
The minimum and maximum values of &, are A fmi, ~ 1.205 and
h g max ~ 1.559.
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The topography of the curves H vs i s, which depends on £,
is what determines how many solutions (if any) exist. For each
value of d there are two characteristic values of ¢, which we
denote by ¢; and ¢, with £; < £, (black solid lines in Fig. 2).
The shape of the curve is different for each of the following
ranges of £. For £ < £, the curve H vs hy is monotonically
decreasing. For £ > ¢, there is a local minimum H; and a
local maximum H,. In particular, for £; < £ < £, the absolute
minimum H,, = h fma # H;. Finally, if £ > £, it is verified
that H,, = Hy and H = h 1, is just a local minimum.

The procedure to calculate £ and ¢, is the following. Given
d, one must find £.(h ), which is obtained by solving for £
the equation dH (hr,£)/0h s = 0. Then £; is the minimum of
£c(hy). To calculate £, we first define H.(h ) = H(hy,Lc(hy))
and find an hy, that satisfies H.(h ) = h ;max (notice that
the dashed line in Fig. 2 is the plot of H. vs hy). Finally,
£y = L.(hyp). Only for d = 0 can the exact values of £; and
£, be obtained.

Now it is possible to assert the final solutions for the steady
problem as follows (the number in parentheses is the total
number of solutions).

(@) If £ < £y and (al) H < H,;, = h ymax, a uniform film
results (1) or (a2) H,, < H, a uniform film or a drop results
2).

(b)If £, < £ < & and (bl) H < H, = h f,max, a uniform
film results (1); (b2) H,, < H < H;, a uniform film or a
drop results (2); (b3) H; < H < H,, a uniform film or three
different drops result (4); or (b4) H, < H, a uniform film or a
drop results (2).

(c)If¢y, < £and(cl) H < H,, = H;, auniform film results
(1); (c2) Hy, < H < hfmax, a uniform film and two different
drops result (3); (¢3) A fmax < H < Hj, a uniform film and
three different drops result (4); or (c4) H, < H, a uniform
film and a single drop results (2).

It is appropriate to note that when & is close t0 /i f,;max the
drops have a value of i very similar to H, so these drops
are extremely flat and in fact they are not discernible from the
uniform film. In addition, when % ; tends to % 7 i, the width of
a drop diverges for d > 0 and the contact angle tends to /2
ford < 0, so the region iy — h f,min should be disregarded in
the analysis for any d.

IV. ENERGY OF FLAT FILMS AND DROPS

The energy of the liquid inside the container is given by

¢
8=/ (g +ur +u, + A)dx, (7
—L
where
1 2
U, = Edh , ®)
1 1
ST ©
1 (dh\?
My=§ E > (10)

and A is a constant. For a vertical column of fluid with height
h and width dx, ug, u,, and u,, are the gravitational energy, the
energy from the molecular interaction with the substrate, and
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the energy from surface tension, respectively. It was chosen
A= (1—-d)/2sothate =0 forall £ when h = 1.

The energy &, of a liquid film with thickness H inside a
recipient whose width is 2¢ is then easily calculated

¢
£ = m(H — 1)(dH?+dH*+ H —1).

Similarly, an analytical expression for the energy ¢, of a drop
is obtained after heavy algebraical manipulations. The energy
& defined by Eq. (7) can be calculated for a drop, noting that
the energy due to surface tension can be written down by
substituting (A1) in (10) as

PHYSICAL REVIEW E 89, 043010 (2014)

Then the integral in (7) can be transformed in an integral in &:

e h(e) dx
/ (ug +uz +uy,)dx = 2/ (ug +ur + uy)d—hdh.
—t

m

(12)

Assuming again that h(£) > hy, the integral involved in the
calculation of the energy of a drop is
hy dx
x —dh, 13
B e 2 +uy)dh 4
where ug, Uy, u,, and Z—Z are given by Egs. (8), (9), (11), and
(A1), respectively. This integral can be analytically performed

1(h—h,) and the energy of a drop inside a rectangular recipient with
u, = §h2—h;[dh2h} —2(hy — Dh+hys].  (11)  width2¢is
f
J
¢ 1
ea =33y = D(dhy +dh% +hp—1) — E\/d — dy(Vdy + dh?)
s
1 Vdy — Nd(d + Jd = d,)h>
+ o [d3 — 4hy) — dy]In | f
d3h3 Vdy —d
o Vdy —dh%(1 = hy + dy — dh?) 04
2+ hp(Jd—duhy — DI +hp(dy —dhy—D1|’

where d,, and dj; are defined in Eq. (A3b).

In Figs. 3, 4, and 5 we plot the energy ¢, of a drop minus
the energy & of the uniform film for £ =25 < £y, ¢; < £ =
35 < £,, and £ = 55 > {,, respectively, and d = 0.02. It can
be noticed that, except for those values of H slightly larger
than H,,, the energy of a drop is less than the energy of the
uniform film. This is not true for larger values of H, but in this
region the results are in doubt because the width of the drop
is comparable to the size of the recipient and the condition
h(£L) = hy is not verified. In the three figures a bold dot
marks the point where [2(£) — h ¢1/(h,, — h ) = 0.001, which

¢=25and d=0.02
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0.0 ™~ 2- ) i 35

0.0002
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FIG. 3. Energy &, of a drop minus the energy &, of a film vs the
thickness H for £ = 25 and d = 0.02. In this case (due to £ < £;)
there is only one possible drop as the final state. The bold dot denotes
the value of H for which [h(£) — h]/(h,, — hf) = 1073. The lower
plot is a zoom of of the region H 2 H,,.

(

is the arbitrary limit we choose for the validity of our analysis.
When there are two or three drop solutions, only the one with
the smallest i, satisfies ¢4 — &y < 0 (corresponding to the
branch to the left of the dashed line for each curve H vs iy in
Fig. 2). Furthermore, there are segments of the curves where
&g — €5 ~ 0, which is so because in those parts & ¢ — 5 f,max
and thus the drops are so flat that they are indistinguishable
from the film.

¢=35and d=0.02

0.2 8- &

L

3.5

0.0

H
N-.2.0 2.5 3.0 4.0

0.2F!
0.4 |
0.6F |

-0.8%

0.0010

0.0005 ... il
iii

)
00000351365 T570 1575 15% 1.585
-0.0005 ;
-0.0010 l

FIG. 4. (Color online) Energy &, of a drop minus the energy ¢ ; of
a film vs the thickness H for £ = 35 and d = 0.02. In this case (£; <
¢ < {,) there are one or three possible drops as the final different
states, depending on the value of H. The bold dot denotes the value
of H for which [A(€) — hf]/(hy — hy) = 1073, In the lower plot we
show the details of the graph for H Z H,,. The segments i (black
line), ii (blue line), and iii (red line) correspond to the drop with the
lowest, intermediate, and largest A ;, respectively.

043010-4



FINAL STATE OF A PERTURBED LIQUID FILM INSIDE ...

(=55and d=0.02
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FIG. 5. (Color online) Energy ¢, of a drop minus the energy ¢ ; of
a film vs the thickness H for £ = 55 and d = 0.02. In this case (£, <
¢) there are one, two, or three possible drops as the final different
states, depending on the value of H. The bold dot denotes the value
of H for which [1(€) — h¢]/(hm — hy) = 1073, In the lower plot we
show the details of the graph for H 2 H,,. The segments i (black
line), ii (blue line), and iii (red line) correspond to the drop with the
lowest, intermediate, and largest 4 ;, respectively.

V. FINAL STAGE

At this point, the question about what the final configuration
is seems to be definitely answered: The final state must
correspond to the solution, film or droplet, with the lowest
energy. This criterion explains why slightly perturbed films
evolve to the solution predicted by (A3), such as the case
with d = 0.02, H = 3, and £ = 35. Nevertheless, for some
other set of parameters, the solution with the lowest energy
is not always reached. For example, let us consider the case
of a thin film of thickness H = 1.582, £ = 35, and d = 0.02.
From Fig. 4, the lowest-energy solution correspond to the
droplet with the smallest 4 ; (segment 7). However, as shown
in Fig. 6(a), the flat film profile is recovered after imposing
a small initial perturbation of the form P cos(wx/{), with
P =0.1. [Details of the numerical procedure employed to
solve Eq. (2) can be found elsewhere [20,34].] Only when the
amplitude of the perturbation is high enough does the system
evolve to the solution with the lowest energy, as shown in
Figs. 6(b) and 6(c).

To understand this behavior, we must consider the stability
of the initial condition. Making a standard linear stability
analysis of a uniform infinite liquid film, it is possible
to demonstrate that the film with thickness H is stable if
d > 212113. This implies that the thin film is linearly stable
in any of the following cases: (i) d > 1/16, (ii)) H < h f,max OF
H > hfmaxoand 0 < d < 1/16 [h f,max2 is calculated as £ £ max
but replacing — by + just before the square root in Eq. (A5)],
and (iii) H < hfmax and d < 0. The shortest wavelength of an
unstable mode is

_ 27 H?

- V2H —3—dH*
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FIG. 6. (Color online) Numerical solution of the evolution of a
perturbation P cos(wx/¢) on a film with thickness H = 1.582 for
¢=35andd =0.02: (a) P = 0.1, (b) P = 0.2, and (c) comparison
of the final profile for the case (b) with the closed-form expression
given by Eq. (A3) with h, = 1.385 86.

so a uniform film inside a recipient with width 2¢ is stable
when A > 2/, which finally leads to

2H -3 n?
- —. (15)

d > 7T 7

Notice that this implies that if £ < €, = 47/4/1 — 16d, a
uniform film with any thickness is linearly stable.

This stability analysis adds clarity to our problem. Re-
turning to our example, if £ =35 and d = 0.02, according
to Eq. (15) a uniform film is linearly stable if H < 1.58956
or H > 3.42067.In addition, &5 — 5 < 0if 1.58023 < H <
3.7112. Then, if H € (1.58023,1.589 56) U (3.42067,3.7112)
the film is stable but its energy is not the lowest one. Thus,
a relatively strong perturbation is needed for the system to
escape from this linearly stable state.
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FIG. 7. (Color online) To the left (right) of the solid red line a uniform film is stable (unstable) and to the left (right) of the dashed blue
line a uniform film has less (more) energy than a drop. In region I a uniform film is the final state, while in region II a drop is the final state.
The final state in region III is either a film or a drop, depending on the perturbation. In region IV the state with the least energy is a half drop,

as discussed in the text.

Now we have the elements to determine whether a uniform
film or a drop will be the final state. In Fig. 7 we plot in the plane
£-H the curves where . = 2€ and g, = ¢ . These curves define
four regions. The region to the left of both curves, indicated in
the figure as I, is the place where A > 2¢ (the shorter unstable
wavelength is larger than the size of the container) and e, > €.
Thus, in this region, a uniform film will be the final state.
Region II is to the right of both curves and thus it is the place
where a drop will be the final state. In region III the uniform
film is stable but has a higher energy than the drop solution,
so the final configuration would be either the uniform film or
the drop, depending on the characteristics of the perturbation,
as it was previously explained.

Finally, in region IV a uniform film is unstable and has
less energy than the drop, so the final state is neither of these
two possibilities. Then the question is what the final state is
in region IV. Although we accept that, under the physical
assumptions of this work, a uniform film and a drop are
the two unique possible final states, from a mathematical
point of view there is another possibility: a half drop with
its maximum at one of the vertical walls of the container
(x = —£ or x = £). This is in indeed the final state reached
by our numerical simulations when the parameters are chosen
inside region IV. For this half drop the thickness & of the
precursor film is determined by Eq. (4) but replacing a by a /2.
However, this state can be ignored because, unlike the film
or the centered drop solutions, the existence of the half-drop
state strongly depends on the boundary conditions. Here we
have assumed for simplicity that the contact angle between
the liquid and the lateral walls is 90°. If we would assume,
for example, a contact angle of 10°, the film and centered
drop solutions will be slightly modified by a meniscus at each
lateral wall. Nevertheless, we cannot assume the same for a
half-drop configuration because a small contact angle at the
boundary will severely modify the profile. We note that there
is another possible final state: a depression that is obtained if
a drop is broken at x = 0 and each half drop is located with
its maximum at a lateral wall. This state has the same energy
as a drop, but can be ignored for the same reasons as the half
drop.

VI. DISCUSSION AND CONCLUSIONS

Here we analyzed theoretically the possible 2D final shape
that a uniform film of liquid confined inside a container
adopts after a perturbation. The problem is governed by three
parameters: the initial thickness H of fluid, the half-width £ of
the recipient, and d, which quantifies the gravity with respect
to the molecular interaction of the fluid with the bottom of the
container. We showed that, depending on the values of these
parameters, the possible final states are a flat film or up to three
different drops (although one of them is so flat that it is in fact
almost a uniform film). We derived analytical expressions for
the energies of a film and a drop and we determined which
state is the one with less energy. The results presented here
are consistent with those for the 3D case [26] and they are
generalizations in the sense that gravity is included.

The system may show three different behaviors after the
perturbation: It recovers unavoidably the uniform thickness it
had before the perturbation, it adopts unavoidably the shape of
a droplet surrounded by a thin film, or it ends as a uniform film
or a drop, depending on the details of the perturbation. For a
given value of H, the containers with £ < £,;, have a uniform
liquid film as the only possible final state; £, increases
with gravity for upright containers (d > 0) and decreases for
containers turned upside down (d < 0).

For very wide recipients, that is, for £ — 0o, and for those
values of H for which a drop is the final state, the value of & ¢
will be very close t0 A f,yin, as shown in Fig. 2. In Ref. [21] it
was shown that for d > Othelimit sy — & ¢ min corresponds to
drops with finite height and divergent area and width. When the
recipient is wide and in the upright position the drop solutions
are of the pancake type. Figure 8 shows one of these profiles
for £ = 400.

For d > 0 and constant £ > £.;, a film will be the final
configuration for small and large values of the initial thickness
H and a drop will be the final state for intermediate values of
H. For d < 0 the uniform layer of liquid is the final state for
small values of H.From Fig. 7 we can infer that for a container
in an upright position the effect of gravity is to increase the
size of region I, where the film is the final state, reducing the
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FIG. 8. The final configuration for large values of ¢ is a pancake-
shaped drop. Here ¢ =400, d = 0.02, and H = 2.5. With these
values replaced in Eq. (4) one obtains &, = 1.206.

possibility of obtaining a drop as the final configuration (region
IT) and also reducing the size of region III where both a film and
a drop are possible. On the contrary, for the case of a container
turned upside down, the effect of gravity is to expand region II,
where a droplet is the final state, at the expense of reducing the
possibility of getting a uniform layer as the final configuration.

Imagine now a recipient such that one of its vertical walls
may be smoothly displaced laterally and thus the width 2¢
may be modified slowly, but the amount of liquid inside the
container is held constant. Our results allow us to predict the
evolution of the free surface of the liquid (assuming that ¢
varies slowly enough such that the surface evolves through a
succession of stationary states). To do this it is necessary to
plot the hyperbola 2¢ H = A = const (where A denotes area)
in Fig. 7 (for the corresponding d). For those points of the
hyperbola inside region I the final state of the system is a
uniform film, for those inside region II the final state is a drop,
and for those in region III, where both a drop and a uniform
film are possible final stages, the shape of the surface cannot be
predicted because it depends on the details of the perturbation
induced by the movement of the vertical wall. Nevertheless,
if we move very slowly (so that the perturbation is tiny) from
region I to a given point Q within region III we will finally get
a uniform film, but if we move on the same hyperbola from
region II to Q the final state will be a drop. In this example,
the system has a memory of the initial condition under which
it enter region III, although this memory is fragile because it
will be lost with a sufficiently strong perturbation.

It is important to emphasize the double effect of lateral
confinement. On the one hand, the confinement implies that
the volume of the fluid is finite, which provide a link between H
and h ; [expressed by Eq. (4)] that selects the possible attained
drops only based on the constancy of the volume of fluid. On
the other hand, any unstable mode whose wavelength is longer
than the size of the container cannot exist inside it, which
increases the chances that a uniform film is stable. In fact, if
the container is sufficiently small (¢ < £,;,) any uniform film
is linearly stable.

Here it was assumed just for simplicity that the contact
angle of the liquid with the vertical walls of the container is
/2. However, the results reported here are still valid if the
contact angle takes a different value (assuming that ¢ is large
enough such that the droplet and each meniscus are separated
by a flat film). To see this, one has to realize that if the fluid
wets the lateral walls of the recipient it is necessary to add
(to subtract if the liquid does not wet the walls) the area of
the meniscus on both sides of Eq. (4) and thus this equation
remains unchanged.

PHYSICAL REVIEW E 89, 043010 (2014)

It is possible to speculate about the existence of a final
state with two or more drops. Let us first consider a state
composed of two drops. The pressure inside the highest one
is smaller than the pressure inside the other drop and this
pressure difference will generate a flow towards the highest
droplet through the thin film connecting the drops, which
in turns increases the pressure difference. Thus, the highest
droplet grows at the expense of the smallest drop, until this
is completely absorbed. Now let us consider a state with n
identical drops (this problem is equivalent to considering only
one drop inside a container with width 2¢/n) so that there
is no pressure difference between the drops. However, this
state is unstable because if any little difference between the
drops appears, the mechanism just described is started. A deep
analysis on how a system with n droplets coalesce in one drop
can be found in Refs. [14,17].
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APPENDIX: EQUATIONS FOR A DROP

Assuming that the flow is slow and the surface of the liquid
is a gentle slope, the lubrication theory can be applied and
Eq. (2) is derived. Then, looking for a stationary solution that
satisfies that h — h if x — F00, one arrives at an equation
for the profile / of a drop

dh\*  (h—hys)?
(E) = hz—h;[d}ﬂh} —2(hy — Dh+hys]. (AD

From here the maximum thickness 4, is obtained

hy—1— Jlhy— 1) —dh?
hyy = . (A2)

3
dn’

Equation (A1) has an implicit solution that describes any
sessile or pendant two-dimensional drop centered at x = 0
and is given by
1 51— s/d 1
x=——7=h|—m——= |+ —
\/E hf\/dM_d d_dm

§2 + S/ d— dm
x In , (A3a)
(h—hp)dy —d
where
s = \Jhy (2 +hy =2k +dn213).

st =1—(1+dhh})/hy,
52 =—1+ (h+2hs — hhy + dhh})/h7,
dw = (2hy —3)/h¥,
dy = (hy — 1)’/ h}. (A3b)
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For a given value of d the thickness of the precursor film 4 ¢
must verify i min < A < A fmax, where

{0 ifd <0
hfmin = 2 : (A4)
’ —=— ifd >0
14+4/1-44/d !
and
D 4
hofmax = — - [— D——. A5
. 5 («/_ r+ dﬁ) (A5)
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Here D = sgn(d) and r is given by

25/3d+21/3(d+ /d?2 — 16d3)2/3
d(d + dx —16d3)\/3 )

Finally, the dimensionless area over the precursor film a
defined in Eq. (6) can be calculated from Egs. (A3),

2 2 1
a= —E,/d—dmhf+—<—— 1)

W2d32 \ h

hy =1 —dh} — d(d —d,)h}
X In . (A7)
iy —dn’

(A6)
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