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Abstract. Given a positive integer k, the {k}-packing function problem
({k}PF) is to find in a given graph G, a function f of maximum weight
that assigns a non-negative integer to the vertices of G in such a way
that the sum of f(v) over each closed neighborhood is at most k. This
notion was recently introduced as a variation of the k-limited packing
problem (kLP) introduced in 2010, where the function was supposed to
assign a value in {0, 1}. For all the graph classes explored up to now,
{k}PF and kLP have the same computational complexity. It is an open
problem to determine a graph class where one of them is NP-complete
and the other, polynomially solvable. In this work, we first prove that
{k}PF is NP-complete for bipartite graphs, as kLP is known to be. We
also obtain new graph classes where the complexity of these problems
would coincide.
Keywords: computational complexity · F-free graph· bipartite graph.

1 Basic definitions and preliminaries

All the graphs in this paper are simple, finite and undirected.
For a graph G, V (G) and E(G) denote respectively its vertex and edge sets.

For any v ∈ V (G), NG[v] is the closed neighborhood of v in G. For a given
graph G and a function f : V (G) → R, we denote f(A) =

∑
v∈A f(v), where

A ⊆ V (G). The weight of f is f(V (G)).
A graph H is bipartite if V (G) is the union of two disjoint (possibly empty)

independent sets called partite sets of G. Equivalently, bipartite graphs are de-
fined as odd-cycle-free graphs, i.e graphs that have no induced odd-cycle.

A graph is complete if E(G) contains all edges corresponding to any pair of
distinct vertices from V (G). The complete graph on n vertices is denoted by Kn.

Given G1 and G2 two graphs, the strong product G1 ⊗G2 is defined on the
vertex set V (G1) × V (G2), where two vertices u1v1 and u2v2 are adjacent if
and only if u1 = u2 and (v1, v2) ∈ E(G2), or v1 = v2 and (u1, u2) ∈ E(G1), or
(v1, v2) ∈ E(G2) and (u1, u2) ∈ E(G1).



Given a graph G and a positive integer k, a set B ⊆ V (G) is a k-limited
packing in G if each closed neighborhood has at most k vertices of B [8]. Observe
that a k-limited packing in G can be considered as a function f : V (G)→ {0, 1}
such that f(NG[v]) ≤ k for all v ∈ V (G). The maximum possible weight of a
k-limited packing in G is denoted by Lk(G). When k = 1, a k-limited packing
in G is a 2-packing in G and Lk(G) is the known packing number of G, ρ(G).

This concept is a good model for many utility location problems in operations
research, for example the problem of locating garbage dumps in a city. In most
of them, the utilities —garbage dumps— are necessary but probably obnoxious.
That is why it is of interest to place the maximum number of utilities in such a
way that no more than a given number of them (k) is near to each agent in a
given scenario.

Class kLP {k}PF

General graphs NP-c [4] NP-c [6, 7]

Strongly chordal P [3] P [5]

Dually chordal ? P [6, 7]

Doubly chordal ? P [7]

P4-lite P [4] P [5]

P4-tidy P [4] P [5]

bounded tree-width P [5] P [5]

bounded clique-width P [5] P [5]

Split NP-c [4] NP-c [7]

Chordal NP-c [4] NP-c [7]

Bipartite NP-c [4] ?

Table 1. “NP-c”, “P” and “?” mean NP-complete, polynomial and open problem,
resp.

In order to expand the set of utility location problems to be modeled, the
concept of {k}-packing function of a graph was introduced in [5] as a variation of
a k-limited packing. Recalling the problem of locating garbage dumps in a given
city, if a graph G and a positive integer k model the scenario, when dealing
with {k}-packing functions we are allowed to locate more than one garbage
dump in any vertex of G subject to there are at most k garbage dumps in each
closed neighborhood. Formally, given a graph G and a positive integer k, a {k}-
packing function of G is a function f : V (G) → Z0

+ such that for all v ∈ V (G),
f(NG[v]) ≤ k. The maximum possible weight of a {k}-packing function of G is
denoted by L{k}(G) [5].

Since any k-limited packing in G can be seen as a {k}-packing function of
G, it is clear to see that Lk(G) ≤ L{k}(G). For K3, L3(K3) = L{3}(K3) = 3.
Nevertheless, for the following graph these numbers do not coincide:
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Fig. 1. A graph G with L3(G) = 4 and L{3}(G) = 6.

The above definitions induce the study —started in [3] and [5]— of the com-
putational complexity of the following decision problems:

k-LIMITED PACKING, fixed k ∈ Z+ (kLP) [3]
Instance: (G, l), where G is a graph and l ∈ Z+.
Question: Does G have a k-limited packing of size at least l?

{k}-PACKING FUNCTION, fixed k ∈ Z+ ({k}PF) [5]
Instance: (G, l), where G is a graph and l ∈ Z+.
Question: Does G have a {k}-packing function of weight at least l?

Table 1 summarizes the already known results on the complexity of {k}PF
in contrast with kLP, for fixed k ∈ Z+.

It is an open problem to determine a graph class where one of these problems
is NP-complete and the other, polynomially solvable.

In Section 2 we prove that {k}PF is NP-complete on bipartite graphs, an-
swering in this way one of the open questions in Table 1.

In Section 3 we obtain new graph classes where the complexity of kLP and
{k}PF would coincide.

2 {k}-packing functions on bipartite graphs

As Table 1 shows, it is already known that kLP is NP-complete on bipartite
graphs [4]. The proof is based on a reduction from a variation of the classical
domination problem on a bipartite graph to kLP on a bipartite graph.

In this section we state that also {k}PF is NP-complete for bipartite graphs.
In this case the proof consists in a reduction from {k}PF in a general graph to
{k}PF in a bipartite graph.

We have:

Theorem 1. For every fixed k ∈ Z+, {k}PF is NP-complete on bipartite graphs.

Proof. Let k ∈ Z+ be fixed. It is already known that {k}PF is NP-complete for
general graphs [6].



Let (G, l) be an instance of {k}PF. We build a bipartite graph B in the
following way. Let

X = {xv : v ∈ V (G)} ∪ {x}, Y = {yv : v ∈ V (G)} ∪ {y}

be the partite sets of B. Let also

E(B) =
⋃

v∈V (G)

{(xv, yu) : u ∈ NG[v]} ∪ {(x, y′) : y′ ∈ Y }.

x y

G

Fig. 2. Construction of B from a graph G in Theorem 1.

We will prove that

L{k}(B) = L{k}(G) + k.

On the one hand, let f be a {k}-packing function of G with weight L{k}(G).
Consider the function h : V (B)→ Z0

+ defined as follows. For each v ∈ V (G) let
h(xv) = f(v) and h(yv) = 0. Let also h(x) = 0 and h(y) = k. Notice that h is
indeed a {k}-packing function of B with weight L{k}(G) + k. Hence,

L{k}(B) ≥ L{k}(G) + k.

On the other hand, let h be a {k}-packing function of B with weight L{k}(B).
We can assume that h satisfies h(x) = 0 and h(yv) = 0 for each v ∈ V (G): if h
does not satisfy these conditions, we can construct another {k}-packing function

ĥ of B of maximum weight, by defining ĥ(xv) = h(xv) and ĥ(yv) = 0 for each

v ∈ V (G), ĥ(x) = 0 and ĥ(y) =
∑

v∈V (G) h(yv) +h(x) +h(y). Now we construct

a function f : V (G) → Z0
+ by letting f(v) = h(xv) for each v ∈ V (G). Clearly,

f is a {k}-packing function of G with weight L{k}(B)− ĥ(y). Hence, L{k}(G) ≥
L{k}(B) − ĥ(y). Since ĥ(y) =

∑
v∈V (G) h(yv) + h(x) + h(y) = h(NB [x]) ≤ k, it

follows that

L{k}(G) ≥ L{k}(B)− k.
ut



3 A general result

Clearly, there are polynomial-time reductions from kLP ({k}PF) to {k}PF
(kLP), since both problems are NP-complete in the general case. It is known
a linear reduction from {k}PF to kLP that involves changes in the graph; more
precisely, it is proved that L{k}(G) = Lk(G⊗Kk), for every graph G and posi-
tive integer k [5]. This reduction is closed within some graph classes, for instance
strongly chordal graphs and graphs with the parameter clique-width bounded
by a constant. From these facts it is derived the polynomiality of {k}PF for
strongly chordal graphs and graphs with the parameter clique-width bounded
by a constant [5].

In this section we prove that the above reduction is closed within certain
graph class defined by forbidden induced subgraphs, following the ideas of The-
orem 9 in [2]. For this purpose, we consider the following definition:

Definition 1. Let F be a family of graphs satisfying the following property:
for every graph G in F , |V (G)| ≥ 2 and, for every v ∈ V (G), no connected
component of G− v is complete. We call G the class of F-free graphs.

Some examples of graph classes in G are {house, hole, gem}-free graphs,
{house, hole, domino}-free graphs and {house, hole, domino, sun}-free graphs.
It is worth studying the complexities for the mentioned classes since they all
have the parameter clique-width unbounded. For other examples, like distance-
hereditary graphs which are {house, hole, domino, gem}-free graphs, the com-
plexity of both problems is already known since they have the parameter clique-
width bounded by a constant.

We can state and prove:

Theorem 2. Consider the graph class G in Definition 1. For fixed positive in-
teger k and graph G in G, G⊗Kk ∈ G.

Proof. Let k be a fixed positive integer and G be graph in G. We will prove that
G⊗Kk ∈ G, i.e. we will prove that G⊗Kk is F-free. Let G′ be a subgraph of
G ⊗Kk induced by V ′ with |V ′| ≥ 2. Then V ′ is the disjoint union of sets V ′

vj
with j ∈ J , where 1 ≤ |J | ≤ |V (G)|.

When |J | = 1, G′ = Kk and thus G′ /∈ F . When |J | ≥ 2, consider the
subgraph G′′ of G induced by the vertices {v1, . . . , v|J|}. Since G is F-free, there
is a vertex vr with r ∈ J and such that G′′ − vr has a complete connected
component. From the definition of G⊗Kk, it is not difficult to see that G′ − v′r
has a complete connected component, where v′r is any vertex in V ′

vr . Therefore,
G′ /∈ F . Since G′ is arbitrary, this proves that G⊗Kk is F-free, concluding that
G⊗Kk ∈ G. ut

As a corollary, knowing from [5] that L{k}(G) = Lk(G⊗Kk) for every graph
G and positive integer k, we have:



Corollary 1. Consider the graph class G in Definition 1. Then, for fixed pos-
itive integer k, {k}PF is solvable in polynomial time in the class G, provided
that kLP is solvable in polynomial time in G. Besides, if {k}PF is NP-complete
in G, then kLP is NP-complete in G.

4 Final remarks

It remains an open problem to know if there exists a graph class where one of
the problems considered in this work is NP-complete and the other can be solved
in polynomial time. Corollary 1 helps to keep working on this line of research.
Besides, it is an open problem to determine the complexity of kLP for dually
chordal graphs, as shown in Table 1, or at least for one of its maximal subclasses
constituted by doubly chordal graphs (also shown in Table 1).
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