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e Sensitivity for various multivariate
calibration methods is studied.

e Different  error  structures are
considered.

e Generalized analytical sensitivity is
proposed as a new figure of merit.

e The new parameter allows better
comparison ~ among  calibration
methods.
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Generalized analytical sensitivity (y) is proposed as a new figure of merit, which can be estimated from a
multivariate calibration data set. It can be confidently applied to compare different calibration meth-
odologies, and helps to solve literature inconsistencies on the relationship between classical sensitivity
and prediction error. In contrast to the classical plain sensitivity, y incorporates the noise properties in its
definition, and its inverse is well correlated with root mean square errors of prediction in the presence of
general noise structures. The proposal is supported by studying simulated and experimental first-order
multivariate calibration systems with various models, namely multiple linear regression, principal
component regression (PCR) and maximum likelihood PCR (MLPCR). The simulations included instru-
mental noise of different types: independently and identically distributed (iid), correlated (pink) and
proportional noise, while the experimental data carried noise which is clearly non-iid.
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1. Introduction analytical community [2—7]. In particular, the derivation of a

generalized expression for estimating the important sensitivity

Starting from the seminal work of Lorber [1], the estimation of
analytical figures of merit in multivariate calibration has become an
active research field in analytical chemistry. Some recent de-
velopments show the continuous interest in this area by the
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parameter in a general calibration scenario has been possible [3],
with a twofold consequence. On one hand, the sensitivity has
traditionally been considered as a good indicator for comparing
methodologies in terms of analytical performance, thus any
advance in the estimation of multivariate and multiway sensitivity
is welcome [3]. On the other, knowledge of the sensitivity provides
access to additional figures which depend on the latter, such as
prediction uncertainty and detection capabilities [3,5].
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The classical definition of sensitivity is based on the idea of a
signal change for a given change in analyte concentration [8]. This
concept is valid in univariate calibration, where the sensitivity is
numerically equal to the slope of the calibration graph [8]. It is also
suitable in first-order multivariate calibration, provided 'signal’ is
replaced by 'net analyte signal' [1]. However, the analogous concept
of net signal cannot be successfully extended to multiway calibra-
tion, for reasons already discussed [3].

It has been increasingly clear that a new definition of sensitivity
was required, and this was possible in the framework of uncer-
tainty propagation [3]. When the sensitivity is numerically defined
as the ratio of signal to concentration uncertainties, a completely
general expression can be derived, valid for univariate, first-order
multivariate and higher-order multiway calibrations, including
cases where the second-order advantage is achieved. This new
definition is completely consistent with the classical univariate and
first-order expressions, and is also in agreement with extensive
noise addition simulations [3].

However, at the heart of the general sensitivity expression,
derived from uncertainty propagation arguments, rests the
assumption of a particular structure for the signal noise: it should
be identically and independently distributed (iid). Operationally, a
small amount of iid noise is numerically added to the test sample
signal, and analyte concentration is predicted with its corre-
sponding uncertainty (Fig. 1A). It is postulated that the small noise
added to the signal is simply a probe to monitor the uncertainty
propagation behavior, and should not necessarily reflect the real
noise structure of the instrumental signals [3]. It should be noted
that the small iid noise is only added to the test sample signal,
keeping the calibration model precise. In this way, uncertainty only
propagates from the instrumental signal for the test sample and not
from the calibration signals or concentrations.

The question remains whether the sensitivity parameter is
useful for one of its intended purposes, i.e., method performance
comparison, in the case of real systems showing signal noise
structures different than the ideal iid. In light of the presently dis-
cussed results, the answer is negative. In this report, an alternative
figure of merit is proposed, which is better correlated with
analytical performance and can be estimated only from the cali-
bration data set. It is a generalization of the already known
analytical sensitivity (v) [9,10], here extended to any noise structure
and calibration methodology [11]. The classical parameter Y,
defined as the ratio between univariate calibration slope and
standard measurement error, has been proposed for method
comparison instead of the slope, because the former is independent
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Fig. 1. Schematic representation of the uncertainty propagation approach to sensitivity
analysis. A) iid noise (represented by its standard deviation o) is introduced only in
the test sample signal, keeping the model precise, and the sensitivity (SEN) is
computed as the ratio of input signal noise to output concentration noise (ay). B) Real
non-iid noise (represented by its error variance-covariance matrix =) is added only to
the test signal, keeping the model precise, and the generalized analytical sensitivity (y)
is estimated as the inverse of the output concentration noise. See text for the meanings
of oy, oy and 3.

on the type of instrumental signal [9]. We generalize the definition
of v for multivariate methods, as the inverse of the concentration
uncertainty generated by real noise propagation, and show it to be
an excellent parameter for method comparison in the case of
general noise structures. Fig. 1B adequately illustrates the presently
proposed definition, noting that, as in Fig. 1A, the noise is only
added to the instrumental signal for the test sample, keeping the
calibration model precise, i.e., avoiding propagation from errors in
calibration signals or concentrations.

To support our proposal, we use a set of simulated first-order
data carrying iid, correlated and proportional noise, and also
experimental data including non-iid noise. They were processed
using the following multivariate tools: (1) multiple linear regres-
sion (MLR) [12] of signals for a few wavelengths, which were
carefully selected with the aid of the successive projection algo-
rithm (SPA) [13], (2) principal component regression (PCR) [14] and
(3) maximum likelihood PCR (MLPCR) [15,16]. The purpose of using
MLR was to assess the performance when calibration is built using a
few wavelengths, which in principle presents significantly smaller
sensitivity in comparison with full spectral latent methods such as
PCR and MLPCR, yet sometimes producing comparable or even
better analytical results [17,18]. On the other hand, MLPCR was
applied because of its known ability to cope with noise structures
other than the iid one [15,16], and to check whether this improved
analytical ability is correlated with the corresponding numerical
sensitivity value.

In sum, the present proposal has the following purposes: (1)
providing a figure of merit which could be used to compare
different calibration models with confidence, and derived only
from the calibration data set, i.e., not requiring an independent set
of samples for its estimation, and (2) solving inconsistencies in
literature reports where calibration with a few sensors provided
better analytical results but lower classical sensitivity.

2. Theory
2.1. Calibration methodologies

The theory behind MLR and PCR calibration is well known
[12,14]. SPA and MLPCR are briefly described in the Supplementary
Material. Partial least-squares (PLS) results are not shown, as they
were almost identical to those furnished by PCR, but are included in
the Supplementary Material.

In all cases, a calibration data matrix X (size I x J, I = number of
calibration samples, ] = number of sensors or wavelengths) and a
calibration concentration vector for the analyte of interest yc,; (size
I x 1) were submitted to the calibration phase with a given
multivariate model. This yields the regression vector b (size J x 1),
which permits analyte quantitation through the usual predictive
expression y = X"b (x is the test sample spectrum, size J x 1, the hat
" implying predicted value).

2.2. Uncertainty propagation

In a recent work, Allegrini et al. presented a general scheme to
estimate sample dependent prediction uncertainties in first-order
multivariate calibration [19]. Because the iid hypothesis for mea-
surement errors is not always valid for real data sets, new expres-
sions were developed to take into account the specific noise
structure. The overall prediction variance (05) in multivariate
models can be estimated by a sum of three contributing terms: (1)
the variance from instrumental signals measured for the test
sample, (2) the variance from instrumental signals measured for
the calibration set of samples and (3) the variance in nominal
concentrations of the analyte or property of interest [2,19]. The
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following general equation adequately covers these contributions
to a3 [19]:

02 =b"Sxb + hb Sxgb + ho? ) (1)
where h is the test sample leverage, afml is the variance in cali-
bration concentrations, b is the vector of regression coefficients, =
is the error covariance matrix for the test sample signals and Zxe is
an effective error covariance matrix for the calibration signals. The
latter is a weighted average of the error covariance matrices for all
calibration samples, the weight being a specific element of the
sample leverage vector h. For details see Ref. [19].

When all error covariance matrices are equal, Exeff = =x in
Equation (1), as for correlated homoscedastic noise such as the so-
called pink noise [19]. Finally, when the noise is iid, both =x and
Sxeff become diagonal and equal to ¢2I, where ¢2 is the (constant)
variance of all instrumental signals and I is aJ x J identity matrix. In
such a case, Equation (1) collapses to:
of = 02b'b + hazb'b + ho (2)

Since the product (b'h) is numerically equal to the inverse
squared sensitivity [2]:

1
SEN = W (3)

and replacing the latter result in Equation (2) leads to:

0§ = 02/SEN? + haZ /SEN + haZ (4)

The relative effect of the three terms in Equation (4) have been
previously studied, finding that the first term usually dominates the
prediction uncertainty (see Fig. 3 of Ref. [19], where the position of
the points corresponding to the second and third terms are always
at lower values with respect to the points corresponding to the first
term). Thus, according to Equation (4), one would expect a corre-
lation between predictive ability, measured by the average pre-
diction error, and the inverse of the plain sensitivity (SEN™1).
However, this would be true provided the error structure is iid, as
clearly shown in the above expressions. What actually occurs when
the real noise structure deviates from the iid situation, and what is
the relationship between average prediction error and SEN~! is
obviously less clear. The remaining of this report is devoted to
explore the connection.

It should be noticed that a procedure for estimating prediction
error has been formulated by Andersen and Bro [20], proposing an
equation similar to (4), but incorporating the so-called model er-
rors. The latter include model deviations such as lack of linearity,
and require the estimation of concentration prediction errors for a
set of samples. This issue is certainly important, and deserves
future detailed analysis, but is beyond the present purpose, where
we apply error propagation to the model predictive expression,
assuming only that random errors are present.

2.3. Software

All calculations were made using MATLAB [21]. Variable selec-
tion was performed using the graphical interface SPA_GULp,
available in the authors' homepage http://www.ele.ita.br/
~kawakami/spa/(accessed February 2016). MLPCR was performed
using the algorithm developed by Wentzell and Lohnes [22]. Pink
noise and the associated error covariance matrix were calculated by
a MATLAB routine provided by Wentzell [19]. PCR was imple-
mented with an in-house MATLAB routine.

3. Data sets
3.1. Simulated data

For the simulated study, 15 independent calibration data sets,
named S1 to S15 were built, with 200 sensors and 100 samples
each. Fig. 2A shows the spectra of the four pure components and
one representative mixture. The concentrations were chosen
randomly between 0 and 1. The noise in concentrations was
included adding a random value between 0 and 1 times a noise
level factor (103 units). For each calibration system, two new sets
were built by addition of either iid or pink noise. The error
covariance matrix of the iid noise was calculated by:

=x = 1 x 1074NLymax(Xg)I (5)

where NLy is the spectral noise level, equal to 1 for S1 to S10 (these
systems differ in the specific component concentrations), and to
1.2, 14, 1.6, 1.8 and 2.0 units for S11, S12, S13, S14 and S15,
respectively, max(Xp) is the maximum intensity value in the
noiseless spectral matrix Xp, and I is a 200 x 200 identity matrix.

The pink noise and the associated error covariance matrix were
computed using the same NLy values defined for the iid noise.
Validation data sets were built in the same way. Fig. 2B shows a
representative sample without noise, with iid noise and with pink
noise. Short range correlations in the pink noise spectrum are
clearly seen in comparison with iid noise.

3.2. Experimental data

In this work we use the data set generated by Shreyer et al. [16]
to test the application of MLPCR to fluorescence emission spectra. It
consists of 5 replicates of 27 mixtures of three polycyclic aromatic
hydrocarbons: acenaphthylene (ACE), naphthalene (NAP) and
phenanthrene (PHE). A three level, three-factor factorial design was
used to build the data set and the samples were scanned in a
randomized order of five blocks. The final concentration ranges
were 0.10—-0.34 mg g~! (ACE), 0.018—0.063 mg g~! (NAP), and
0.0072—0.027 mg g~ (PHE). The emission spectra were obtained
through a 1 cm quartz cuvette on a Shimadzu RF-5301PC spectro-
fluorometer with a xenon lamp excitation source. The excitation
wavelength was 278 nm. The emission spectra were measured
between 310 and 460 nm with an interval of 0.2 nm. The excitation
and emission slit widths were both set to 3.0 nm. For further details
see ref. [16].

4. Results and discussion
4.1. Simulations

For all studied systems, we computed the root mean square
error of prediction (RMSEP) for the test sets, which is normally used
to evaluate the quality of a multivariate model, comparing the
predicted and nominal concentrations of a reference set of samples.
Lower values of RMSEP are associated with models with a better
prediction power. On the other hand, higher sensitivity is intui-
tively expected for good models. Thus, analysis of the mutual
relationship of RMSEP and SEN should allow, in theory, for a
comparison among different models.

Fig. 3 shows the RMSEP for analyte 1 in the 15 simulated data
sets which involve different noise types (iid and pink noise), noise
levels and models (SPA-MLR, PCR and MLPCR; the latter is not
shown for iid noise because in this case it is equivalent to classical
PCR). Complementary results for the calibration of the remaining
sample components are shown in the Supplementary Material
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Fig. 2. A) Bottom: simulated spectra of the four pure components. Top: a representative sample spectrum. B) A typical simulated sample without noise and with iid and pink noise
(as indicated). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. Root mean square error of prediction (RMSEP) in the simulated data sets. The
different methods were applied to systems having iid or pink noise, as indicated.
MLPCR was only applied to data carrying pink noise, since for iid noise it becomes
identical to PCR. The level of noise is also indicated (see text).

(Figs. S1—S3). PCR shows better analytical performance in com-
parison with SPA-MLR for iid noise (compare open triangles with
open circles in Fig. 3). These are the classically expected results
from the known properties of full-wavelength methods (PCR) and
those based on a few selected sensors (SPA-MLR).

On the other hand, when pink noise is added, MLPCR leads to
the best results (filled squares in Fig. 3), significantly outperforming
PCR and SPA-MLR (filled triangles and filled circles respectively in
Fig. 3). Since MLPCR was specifically developed to take into account
the noise structure, it is not surprising that this model shows better
predictive ability when the data set includes correlated noise.
Although the literature alerts on the importance of considering the
noise structure in the multivariate models [23,24], the current
paradigm in analytical chemistry is still to consider the noise as iid.
It is likely that experimental difficulties in preparing replicate
samples, which are needed to estimate the error covariance matrix,
may be the most important factor in preserving this paradigm.

Somewhat surprisingly, however, SPA-MLR closely follows
MLPCR in analytical performance when pink noise is present

(Fig. 3). Therefore, the use of SPA-MLR can be a good option when
the noise is known to be correlated, especially since knowledge of
the error covariance matrix is not necessary to build an MLR model.
Since the latter includes data for a few wavelengths which are not
necessarily contiguous, the effect of short-range correlations is
minimized, leading to better predictions than PCR, which resorts to
full spectral data, where the correlation effect may be significant.
These observations may be the key to understand why sometimes
SPA-MLR presents better performance than PCR, even when SEN is
significantly larger for this latter method [17,18].

Fig. 4A and B shows the relationship between inverse sensitivity
and RMSEDP. For iid noise (Fig. 4A), PCR presents lower RMSEP values
and concomitant larger sensitivities than SPA-MLR for comparable
noise levels. The sensitivity is virtually constant within specific
models, although they show different RMSEP, which are due to
different noise levels. SPA-MLR shows a larger dispersion in SEN
values, since the selected variables change with the calibration data
set and noise level. This is due to the fact that a fair comparison
requires SPA selection to be done in the manner that leads to the
best set of selected sensors for each system.

On the other hand, in the case of pink noise RMSEP and SEN~!
do not follow any logical relationship among different models
(Fig. 4B). PCR shows the largest RMSEP values, but also the largest
SEN values, which is not consistent. On the other hand, MLPCR
presents the best RMSEP values, but intermediate values of SEN.
Finally, SPA-MLR, with intermediate RMSEP values, displays the
lowest sensitivity.

Analogous results to those shown in Fig. 4 were obtained for the
remaining sample components beyond analyte 1 (see Supple-
mentary Material, Figs. S4—S6). Additional systems were studied by
adding proportional noise, which is not correlated but hetero-
scedastic (results not shown) [22]. The trends are similar to those
discussed above for iid noise, in the sense that the RMSEP is logi-
cally correlated with SEN~!, and, as expected, MLPCR provides the
best analytical results, because the error structure is incorporated
into the calibration model.

In contrast to the inverse sensitivity, the mean standard deviation
(MSD), defined as the average of the prediction uncertainties esti-
mated using Equation (1) for the test set, is well correlated with
RMSEP. This is shownin Fig.4C and D as a function of RMSEP across all
studied models and noise structures. This confirms the validity of the
recently developed expression (2) for prediction uncertainty when
the noise structure deviates from the iid paradigm [19], and led us to
propose a new figure of merit for method comparison (see below).
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4.2. Experimental results

Fig. 5 shows a representative experimental spectrum and the
selected variables by SPA-MLR for the three analytes. Fourteen
variables were selected for ACE, eighteen for NAP and eight for PHE.
The selection of significantly more variables than the number of
sample components in the case of ACE and NAP (Fig. 5) probably
occurs because of the large degree of spectral overlap among
sample components.

Table 1 shows RMSEP, SEN and MSD values for SPA-MLR, PCR
and MLPCR models of the experimental data set. Included are in-
dividual contributions of the first two terms to the prediction
variance, derived from uncertainty in instrumental signals,
showing that the first term is dominant, as was the case with the
simulations (see above). As can be seen, MLPCR provides the best
models judging by the RMSEP criterion, followed by PCR and then
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Fig. 5. Variables selected by SPA for MLR calibration of three polycyclic aromatic hy-
drocarbons (red dots). In the vertical axis, a.u. implies arbitrary units. (For interpre-
tation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

by SPA-MLR. However, the SEN values do not agree with these
observations, since PCR models show larger SEN values. In this
specific case, SPA-MLR does not outperform PCR, but the differ-
ences in favor of PCR are not significant, and do not justify the
difference in the sensitivity. The most significant error sources in
these data have been characterized by Wentzell et al. [23]. The main
contributions to the noise structure are: (1) proportional shot noise
in fluorescence spectroscopy (heteroscedastic noise where the
standard deviation is proportional to the square root of the signal,
arising from the Poisson distribution associated with photo-
multipliers) [22], (2) constant offset noise which arises from cell
positioning, and (3) offset noise proportional to the square root of
the spectrum. Correlated noise does not dominate the error sources
in this case, explaining why SPA-MLR is not better than latent

Table 1
Experimental data: figures of merit for three analytes and three different modeling
strategies.”

SPA-MLR PCR MLPCR
Acenaphthylene
RMSEP/mg g~} 0.0113 0.0085 0.0079
SEN/FU g mg™! 72 213 17.0
MSD/mg g ! 0.0111 0.0077 0.0050
MSD?: ratio of first to second term 8.6 5.0 6.3
Naphthalene
RMSEP/mg g~ 0.0016 0.0015 0.0012
SEN/FU g mg ! 45.1 206.7 130.4
MSD/mg g~ 0.0016 0.0013 0.0007
MSD?: ratio of first to second term 5.5 4.7 5.0
Phenanthrene
RMSEP/mg g~ 40x10% 39x10% 31x10*
SEN/FU g mg™! 200.9 1048.7 5413
MSD/mg g~ ! 43x10% 39x10% 25x10*
MSD?: ratio of first to second term 16 5.1 7.1

2 RMSEP = root mean square error of prediction, SEN = sensitivity, MSD = mean
standard deviation of prediction across the test sample set, FU = fluorescence in-
tensity units. The relative contribution to the value of MSD? is given as the ratio of
the first to the second term in Equation (2), which represent the uncertainty from
the instrumental signals.
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structured methods.

4.3. Generalized analytical sensitivity

The above results appear to indicate that the plain sensitivity
parameter is not the best indicator to be used for comparison of the
performance of analytical methods. However, the present study
suggests that a new figure of merit could replace SEN in this regard,
based on the results obtained using the MSD concept. In general,
the first term in Equation (1) is sample independent, at least for iid
and pink noise. According to Fig. 1B, we propose a definition for a
generalized analytical sensitivity v as the inverse of the concen-
tration uncertainty due to the first term of Equation (1):

1

- 6
(bTEXb)l/Z ( )

‘Y:

where =y is the error covariance matrix for the calibration noise. In
this way, y characterizes the calibration model, since both b and =x
correspond to the calibration phase. In the case of proportional
noise, which varies with each sample, we suggest to employ the
average calibration error covariance matrix in Equation (6), to
obtain a sample-independent figure of merit for the calibration
model. The use of average error covariance matrices has already
been shown to be a good approximation to estimate prediction
uncertainties from Equation (1) [19].

Fig. 6 shows the changes in inverse analytical sensitivity (Y1) as
a function of RMSEP for all simulated and experimental models
studied in this report (proportional noise results are not shown but
follow the same trend observed in this figure). In the case of the
simulated systems, Fig. 6 shows the results for analyte 1, while that
for the remaining sample components are presented in the Sup-
plementary Material (Figs. S7—S9) for clarity. A nice correlation is
clearly appreciated between both statistical indicators in Fig. 6,
which leads us to believe that y is an appropriate parameter for
comparing different models in terms of prediction ability in
generalized calibration and noise scenarios.

5. Conclusions

Comparison of predictive ability is a necessary activity when

developing new analytical methodologies. Although the sensitivity
has been traditionally used for this purpose, the present reports
shows that this is only valid when the instrumental noise is of a
particular type, i.e., independently and identically distributed. In
other noise scenarios, however, the sensitivity fails to provide the
required answer. A detailed study of the prediction uncertainty
under general noise structures shows that it is possible to define a
new figure of merit for method comparison. The generalized
analytical sensitivity has been proposed for this purpose, and
showed to be suitably correlated with analytical performance in a
variety of situations.
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